Chapitre 1: Les nombres complexes

Intervalles

Exercice 1.1. Les ensembles suivants sont-ils des intervalles :

$$[0,3]\cup[3,1]$$
, $[0,3]\cup[3,1]$, \mathbb{Z} , \mathbb{Q} , $\{x\in\mathbb{R}:x^4\geq 1\}$?

Exercice 1.2. Existe-t-il un intervalle qui ne contient aucun nombre rationnel?

Exercice 1.3. L'intersection de deux intervalles est-elle un intervalle? Et la réunion?

Équations du second degré

Exercice 1.4. Trouver les solutions réelles de l'équation : $x^2 - x - 1 = 0$.

Exercice 1.5. Sans calculer les racines, expliquer pourquoi l'équation $2x^2 - 3x + 1 = 0$ admet deux racines strictement positives.

Exercice 1.6. Étudier en fonction de x le signe de $-x^2 + 6x + 1$ et de $x^2 + x + 5$.

Exercice 1.7. Trouver toutes les solutions réelles de l'équation $-x^4 + 2x^2 + 4 = 0$.

Forme algébrique et trigonométrique

Exercice 1.8. Donner la forme algébrique des complexes suivants

(a)
$$z_1 = (2+i)^4$$
; (b) $z_3 = \frac{1-3i}{1-i} - \frac{1-i}{1+2i}$.

Exercice 1.9. (a) Donner le module et un argument de 1 + i.

- (b) Donner le module et un argument de $(1+i)^5$.
- (c) En déduire la forme algébrique de $(1+i)^5$.
- (d) Quelle est la forme algébrique de $(1-i)^5$?

Forme exponentielle d'un nombre complexe

Exercice 1.10. Donner la forme exponentielle de

(a)
$$z = 1 - i\sqrt{3}$$
; (b) $z = -\sqrt{3} + i$; (c) $z = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$; (d) $z = \frac{2}{1-i}$;

Exercice 1.11. Donner la forme exponentielle des nombres complexes suivantes

(a)
$$(4+4i)^2$$
 (b) $(4+4i)(1-i\sqrt{3})$ (c) $\frac{4+4i}{1-i\sqrt{3}}$

Exercice 1.12. (Extrait du Contrôle continu du 30-10-2009)

- (a) Donner la forme exponentielle de 1 + i et de i 1.
- (b) Donner la forme exponentielle de $z = \frac{(1+i)^{19}}{(i-1)^{11}}$.
- (c) Donner la forme algébrique de z.

Représentation graphique

Exercice 1.13. Représenter dans le plan complexe l'ensemble des points M, d'affixe z tel que

(a)
$$z = -2$$
, (b) $z = 5i$, (c) $z = 2 + 2i$, (d) $z = 2 - 2i$, (e) $z = -2 - 2i$,

et en déduire la forme exponentielle de z.

Exercice 1.14. (Extrait du contrôle continu 10 du 26/11/2008) Soit $z = 2e^{i\frac{\pi}{4}}$.

- (a) Déterminer la forme exponentielle de \bar{z} , $\frac{1}{z}$ et de -z.
- (b) Représenter dans le même graphique les points d'affixe $z, \bar{z}, -z, iz$ et $\frac{1}{z}$

Exercice 1.15. Représenter dans le plan complexe, l'ensemble des points M, d'affixe z tels que :

(a)
$$|z| = 2$$
 (b) $\text{Re}(z) = -1$ (c) $|z| = 2 \text{ et } \arg(z) \in \left[\frac{9\pi}{4}, \frac{11\pi}{4}\right]$ (d) $|z| = 2 \text{ et } \operatorname{Im}(z) = 1$

Exercice 1.16. Quel est l'ensemble des complexes z tels que z, $\frac{1}{z}$ et 1-z ont le même module?

Exercice 1.17. Représenter dans le plan complexe, l'ensemble des points M dont l'affixe z vérifie la condition donnée:

(a)
$$|z-1| = |z-3-2i|$$

(b)
$$|z-3| = |z-1-i|$$

(a)
$$|z-1| = |z-3-2i|$$
 (b) $|z-3| = |z-1-i|$ (c) $|z-2+i| = \sqrt{5}$

(d)
$$|(1+i)z - 2 - i| = 2$$
 (e) $|z + 3 - i| \le 2$ (f) $|z + 3 - i| > |z|$

(e)
$$|z+3-i| \leq 2$$

(f)
$$|z+3-i| > |z|$$

(g)
$$|z| < |z+3-i| < 2$$

Linéarisation

Exercice 1.18. Linéariser:

(a)
$$\cos^5 x$$
;

(b)
$$\cos^2(3x)\sin^2(5x)$$
.

Racines carrées

2

Exercice 1.19. Déterminer les racines carrées de $z = 1 + i\sqrt{3}$ de deux manières différentes :

- (a) sous forme algébrique;
- (b) sous forme exponentielle après avoir cherché la forme exponentielle de z.

Exercice 1.20. Déterminer les racines carrées de

(a)
$$2 + 6i$$
;

(a)
$$2 + 6i$$
; (b) $1 + 4\sqrt{5}i$.

Équations du second degré

Exercice 1.21. Résoudre dans \mathbb{C} :

(a)
$$(z-2-i)(z-3+i) = 0$$
 (b) $2z^2 - 6z + 5 = 0$ (c) $5z^2 + (9-7i)z + 2 - 6i = 0$

(d)
$$z^2 - (3+4i)z - 1 + 5i = 0$$

Cacul de racines n-ièmes

Exercice 1.22.

- (a) Déterminer les racines 3-ièmes de 1 + i.
- (b) Déterminer les racines 4-ièmes de 4i et représentez-les dans le plan complexe.
- (c) Déterminer les racines 6-ièmes de $\frac{1-i\sqrt{3}}{1+i}$.

COMPLÉMENTS

Forme algébrique et trigonométrique

Exercice 1.23. Pour tout complexe z, on pose

$$P(z) = z^{3} + (-4+i)z^{2} + (13-4i)z + 13i$$

Écrire la forme algébrique de P(i), de P(-i), de P(2-3i).

Forme exponentielle d'un nombre complexe

Exercice 1.24. Donner la forme exponentielle de chaque complexe proposé.

(a)
$$z_1 = \sqrt{3} + 3i$$
 (b) $z_2 = (\sqrt{3} - 2)e^{i\frac{\pi}{3}}$

Exercice 1.25. (a) Déterminer la forme exponentielle de $\sqrt{3} - i$ et de -1 + i.

(b) Déteminer la forme exponentielle de

$$z = \frac{(\sqrt{3} - i)^{13}}{(-1 + i)^{18}}.$$

(c) Donner la forme algébrique de z.

Exercice 1.26. Sachant que

$$e^{\frac{i\pi}{12}} = \frac{e^{\frac{i\pi}{3}}}{e^{\frac{i\pi}{4}}},$$

3

calculer $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

Exercice 1.27. Calculer les deux complexes :

(a)
$$z_1 = (1 + i\sqrt{3})^5 + (1 - i\sqrt{3})^5$$

(b)
$$z_2 = (1 + i\sqrt{3})^5 - (1 - i\sqrt{3})^5$$

Indication: pour (a) En posant $z = 1 + i\sqrt{3}$ on pourrait montrer que $z_1 = 2\operatorname{Re}(z^5)$.

Représentation graphique

Exercice 1.28. Le plan est rapporté à un repère orthonormé direct. Déterminer et représenter dans le plan complexe l'ensemble des points M d'affixe z tels que :

(a)
$$-1 \le \text{Im}(z) \le 2$$
. (b) $\frac{1}{2} \le |z - i| \le 3$.

(c)
$$|z| = 3$$
 et $Re(z) > 0$. (d) $z = (1+i)w$ où $|w| = 1$ et $Im(w) > 0$.

Linéarisation

Exercice 1.29. Linériser $\cos^2 x \sin^4 x$.

Équations du second degré

Exercice 1.30. Résoudre dans C

(a)
$$5z^2 + (9-7i)z + 2 - 6i = 0$$

(b)
$$z^2 + (2+i)z - 1 + 7i = 0$$
 (On rappelle que $\sqrt{625} = 25$.)

Cacul de racines n-ièmes

Exercice 1.31. (Extrait du Contrôle continu du 30-10-2009) Donner sous forme exponentielle les racines huitièmes de $e^{4i\frac{\pi}{3}}$.

Exercice 1.32. Déterminer graphiquement les racines quatrièmes de $e^{-i\frac{\pi}{4}}$

Nombres complexes et géométrie

Autres exercices

Exercice 1.33. Quel est l'ensemble des complexes z tels que le complexe

$$Z = 2z^2 - 3z + 1$$

est réel?