Corrigé de l'examen terminal du 7 janvier 2015.

Exercice 1.

1. On peut écrire

$$|z_1 + z_2|^2 = (z_1 + z_2)\overline{(z_1 + z_2)} = (z_1 + z_2)(\overline{z_1} + \overline{z_2})$$

$$= z_1\overline{z_1} + z_2\overline{z_1} + z_1\overline{z_2} + z_2\overline{z_2} = |z_1|^2 + z_2\overline{z_1} + z_1\overline{z_2} + |z_2|^2$$

et

$$|z_1 - z_2|^2 = (z_1 - z_2)\overline{(z_1 - z_2)} = (z_1 - z_2)(\overline{z_1} - \overline{z_2})$$

= $z_1\overline{z_1} - z_2\overline{z_1} - z_1\overline{z_2} + z_2\overline{z_2} = |z_1|^2 - z_2\overline{z_1} - z_1\overline{z_2} + |z_2|^2$.

En additionant les deux membres de gauche et les deux membres de droite des égalités précédentes on trouve l'égalité recherchée.

2. D'après l'énoncé on a que $|z_1|^2 \le 1$ et $|z_2|^2 \le 1$, d'où $2|z_1|^2 + 2|z_2|^2 \le 4$ ou encore, d'après la première partie $|z_1 + z_2|^2 + |z_1 - z_2|^2 \le 4$.

Si on suppose que les deux nombres complexes sont de module strictement supérieur à $\sqrt{2}$, c'est-à-dire que $|z_1+z_2| > \sqrt{2}$ et $|z_1-z_2| > \sqrt{2}$ on déduit que $|z_1+z_2|^2 > 2$ et $|z_1-z_2|^2 > 2$ ou encore $|z_1+z_2|^2 + |z_1-z_2|^2 > 4$. Cela contredit le calcul basé sur l'hypothèse de l'énoncé donc au moins un des deux nombres complexes z_1+z_2 , z_1-z_2 est de module inférieur ou égal à $\sqrt{2}$.

Exercice 2.

L'inégalité suivante est satisfaite puisque $|\cos(e^x)| \leq 1$ pour tout x réel.

$$\left| \frac{x \cos\left(e^x\right)}{1 + x^2} \right| \le \frac{x}{1 + x^2}$$

et lorsque x est supérieur à un réel A > 0 le majorant peut s'écrire $\frac{1/x}{1+1/x^2}$. On en déduit que le majorant tend vers 0 lorsque $x \to +\infty$, ensuite que la limite de l'énoncé existe, et que

$$\lim_{x \to +\infty} \frac{x \cos\left(e^x\right)}{1 + x^2} = 0.$$

La fonction $f(x) = \sin(\ln x)$ est bien définie et continue sur l'intervalle $[1, e^{\pi}]$ en tant que composée de fonction continues. Ainsi l'intégrale de l'énoncé est bien définie. Pour la calculer on applique deux fois l'intégration par parties :

$$\int_{1}^{e^{\pi}} \sin(\ln x) \, dx = \left[x \, \sin(\ln x) \right]_{1}^{e^{\pi}} - \int_{1}^{e^{\pi}} x \, \cos(\ln x) \, \frac{1}{x} \, dx = 0 - \int_{1}^{e^{\pi}} \cos(\ln x) \, dx$$
$$= -\left[x \, \cos(\ln x) \right]_{1}^{e^{\pi}} - \int_{1}^{e^{\pi}} x \, (-\sin(\ln x)) \, \frac{1}{x} \, dx = (e^{\pi} + 1) - \int_{1}^{e^{\pi}} \sin(\ln x) \, dx.$$

Ainsi, en passant l'intégrale au membre de gauche, on trouve

$$2\int_{1}^{e^{\pi}} \sin(\ln x) \, dx = e^{\pi} + 1$$

et donc

$$\int_{1}^{e^{\pi}} \sin(\ln x) \, dx = \frac{e^{\pi} + 1}{2}.$$

Exercice 3.

Lorsque $x \neq a$ on peut écrire

$$\frac{x g(a) - a g(x)}{x - a} = \frac{x g(a) - a g(a) + a g(a) - a g(x)}{x - a}$$

$$= \frac{(x - a) g(a) + a (g(a) - g(x))}{x - a} = g(a) - a \frac{g(x) - g(a)}{x - a}.$$

Comme g est dérivable en a la limite suivante existe et vaut

$$\lim_{x \to a} \frac{g(x) - g(a)}{x - a} = g'(a).$$

Alors la limite de l'expression de l'énoncé existe et vaut

$$\lim_{x \to a} \frac{x g(a) - a g(x)}{x - a} = g(a) - a g'(a).$$

Exercice 4.

2.a) Comme les fonctions f et h sont continues sur [a,b], le produit f h est une fonction continue sur [a,b] et toutes les intégrales de l'énoncé sont bien définies.

Lorsque $\int_a^b h(x)dx = 0$, comme est h est continue et positive, d'après le résultat du point 1 (cours) on déduit que h est nulle sur [a,b] et donc le produit de fonctions f h est aussi nul sur [a,b] et alors l'intégrale $\int_a^b f(x)h(x)dx = 0$. Ainsi l'égalité de l'assertion (#) est vérifiée pour n'importe quel $c \in [a,b]$.

- 2.b) f étant continue sur le segment [a, b] elle est bornée et elle atteint ses bornes en deux points $x_0, x_1 \in [a, b]$. Ainsi $\forall x \in [a, b], f(x_0) \leq f(x) \leq f(x_1)$. En multipliant ces inégalités par la quantité positive h(x) on déduit $\forall x \in [a, b], f(x_0)h(x) \leq f(x)h(x) \leq f(x_1)h(x)$.
- 2.c) Lorsque on intégre les fonctions h et $f\,h$ sur [a,b] l'inégalité préédente fournit l'inégalité

$$f(x_0) \int_a^b h(x) dx \le \int_a^b f(x) h(x) dx \le f(x_1) \int_a^b h(x) dx.$$

Ici nous avons utilisé la linéarité de l'intégrale et le fait que $f(x_0)$ et $f(x_1)$ sont des constantes fixes. Comme on a supposé cette fois que $\int_a^b h(x)dx \neq 0$ on peut diviser par cette quantité et trouver

$$f(x_0) \le \frac{\int_a^b f(x)h(x)dx}{\int_a^b h(x)dx} \le f(x_1).$$

Il suffit maintenant d'appliquer le théorème des valeurs intermédiares à la fonction continue f pour trouver l'existence d'un point $c \in [a, b]$ tel que

$$f(c) = \frac{\int_a^b f(x)h(x)dx}{\int_a^b h(x)dx}$$

et l'égalité de l'assertion (#) est vérfiée aussi dans ce cas. L'assertion (#) est donc satisfaite.

Exercice 5.

2.a) On fixe $n \ge 1$ arbitraire. La fonction $f_n(x) = x^n \ln(x)$ est bien définie et dérivable sur $]0, +\infty[$. Sa dérivée vaut $f'_n(x) = x^{n-1}(n\ln(x)+1)$. Cette dérivée s'annule lorsque $n\ln(x)+1=0$ autrement dit lorsque $x=e^{-1/n}$. De plus comme la fonction ln est strictement croissante, lorsque $x < e^{-1/n}$ on a $n\ln(x)+1 < 0$, donc $f'_n(x) < 0$. De la même façon, lorsque $x > e^{-1/n}$ on a $f'_n(x) > 0$.

Il est facile de voir que

$$\lim_{x \to 0+} f_n(x) = 0, \ f_n(e^{-\frac{1}{n}}) = -\frac{1}{e \, n} < 0, \ f_n(1) = 0, \ \lim_{x \to +\infty} f_n(x) = +\infty.$$

On peut dresser le tableau des variations de f_n et voir, en utilisant le point 1 (cours) qu'elle est strictement décroissante sur $]0, e^{-1/n}[$ et strictement croissante sur $]e^{-1/n}, +\infty[$. Cette fonction est également continue sur $]0, +\infty[$ car dérivable sur ce domaine.

- 2.b) Encore une fois on fixe $n \geq 1$ arbitraire. En particulier la fonction f_n est bijective sur l'intervalle $]e^{-1/n}, +\infty[$ étant continue et strictement croissante. Ainsi le graphe de la fonction f_n intersecte la droite y=1 en un seul point x_n situé forcement dans l'intervalle $]e^{-1/n}, +\infty[$ puisque f_n varie entre 0 et $-1/e_n < 0$ sur $]0, e^{-1/n}[$. De plus comme $f_n(1) = 0$ et f_n est strictement croissante sur $]e^{-1/n}, +\infty[$, on a forcement $x_n \geq 1$ (en effet sinon on aurait $f_n(x_n) < 0$ ce qui contredit l'égalité $f_n(x_n) = 1$).
 - 2.c) On fixe encore $n \geq 1$ arbitraire. On sait que $f_{n+1}(x_{n+1}) = 1$ donc

$$1 = x_{n+1}^{n+1} \ln(x_{n+1}) = x_{n+1} x_{n+1}^n \ln(x_{n+1}) = x_{n+1} f_n(x_{n+1}).$$

Comme on sait que $x_{n+1} \ge 1 > 0$ on déduit que $f_n(x_{n+1}) = \frac{1}{x_{n+1}} \le 1 = f_n(x_n)$. Comme f_n est strictement croissante sur $[1, +\infty[$ on déduit que $x_{n+1} \le x_n$.

Comme $n \geq 1$ était arbitraire on trouve que la suite (x_n) est décroissante et minorée par 1. D'après le cours la suite (x_n) est donc convergente et converge vers un réel ℓ . Comme pour tout $n \geq 1$ on a $x_n \geq 1$ on déduit encore d'après le cours que $\ell \geq 1$.

2.d) Supposons que $\ell > 1$ Comme la suite (x_n) est décroissante avec limite ℓ on a pour tout $n \ge 1$ $x_n \ge \ell$. Comme f_n est strictement croissante sur $[1, +\infty[$ on déduit que $f_n(x_n) \ge f_n(\ell)$. En d'autres termes, on a pour tout $n \ge 1$, $1 \ge \ell^n \ln(\ell)$. Mais comme $\ell > 1$ on a que $\ell^n \to +\infty$ donc $\ell^n \ln(\ell) \to +\infty$ ce qui est en contradiction avec l'inégalité précédente. Ainsi l'hypothèse $\ell > 1$ est impossible et donc $\ell = 1$.