Contrôle continu 2 7 novembre 2014

Documents de cours, calculatrices, téléphones et ordinateurs portables, etc ... sont interdits.

TOUTES les réponses doivent être JUSTIFIÉES. Il sera tenu compte du soin apporté à la rédaction dans l'évaluation. RELISEZ VOS COPIES!

Exercice 1.

Énoncer et démontrer le théorème de caractérisation séquentielle de la continuité.

Exercice 2.

On considère la fonction $f: \mathbb{R}^* \to \mathbb{R}$ définie par :

$$\forall x \in \mathbb{R}^*, \quad f(x) = \frac{|x|}{x} \cos x.$$

- 1. Montrer que f est impaire.
- 2. Montrer l'inégalité suivante : pour tout $x, x_0 \in \mathbb{R}$, on a

$$|\cos(x) - \cos(x_0)| \le |x - x_0|.$$

Indication: On pourra utiliser sans démonstration:

$$\forall a \in \mathbb{R}, \ \forall b \in \mathbb{R}, \ \cos(a) - \cos(b) = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

$$\forall x \in \mathbb{R}, \quad |\sin(x)| \le |x|.$$

- 3. En utilisant la définition de la continuité et la question 2., montrer que la fonction $x \mapsto \cos(x)$ est continue en tout point $x_0 \in \mathbb{R}$.
- 4. Montrer que f est continue sur $]0, +\infty[$.
- 5. Calculer les limites suivantes, quand cela est possible.

(a)
$$\lim_{n \to +\infty} f\left(\frac{1}{n}\right)$$
, (b) $\lim_{n \to +\infty} f\left(\frac{-1}{n}\right)$

Justifier la réponse.

6. Est-ce que f admet une limite en zéro?

Exercice 3.

On considère la suite $(u_n)_{n\geq 1}$ définie pour tout $n\geq 1$ par :

$$u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{4} + \dots + \frac{1}{n^2}$$

- 1. Montrer que la suite $(u_n)_{n\geq 1}$ est strictement croissante.
- 2. Montrer que pour tout $k \geq 2$ on a

$$\frac{1}{k^2} \le \frac{1}{k(k-1)}$$
 et $\frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}$.

3. En déduire que pour tout $n \geq 1$ on a

$$u_n \le 2 - \frac{1}{n}.$$

- 4. Montrer que la suite $(u_n)_{n\geq 1}$ est convergente vers une limite notée ℓ .
- 5. Montrer qu'on a

$$\frac{5}{4} \le \ell \le 2.$$