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Abstract

In [2] we have proved some inequalities for holomorphic functions of a linear operator,
when this operator has its numerical range contained in a conic domain. Here we present
direct proofs in the particular cases of sector and parabola.

1 Introduction.

The numerical range (or field of values) of a square matrix A ∈ C
d,d is the set

W (A) := {〈Av, v〉 ; v ∈ C
d, ‖v‖ = 1},

where 〈., .〉 denotes the usual inner product on the euclidean space C
d and ‖.‖ the corresponding

norm. In this paper we are concerned with the following problem: given a convex open set
Ω ⊂ C, find upper bounds for the smallest constant C(Ω) depending only on Ω such that for
any matrix A ∈ C

d,d with W (A) ⊂ Ω and for any rational function r there holds

‖r(A)‖ ≤ C(Ω) sup
z∈Ω

‖r(z)‖. (1)

In [2] some new bounds for C(Ω) have been given in the case where the boundary of Ω is a
(branch of a) conic curve. By a limiting argument this induces the bound

C(Sα) ≤ 2
π − α

π
+ µ(α), µ(α) :=

sin 2α

π

∫ ∞

0

dy

y2 cos α − 2 y cos 2α + cos α
, (2)

if Sα is a sector of angle 2α ∈ (0, π), and the bound C(P ) ≤ 2 + 2/
√

3 < 3.16 for a parabola.
These bounds improved previous ones given for instance in [3] , [1] and [4].

This paper does not contain new result with respect to [2], but the proofs given here are
direct, and simpler in the sector case.

2 Some useful lemmas

We consider two matrix-valued functions M and S satisfying the following assumptions

(H)







M and S ∈ C0([a,+∞) ; Cd,d)
∀x > a, S(x) = S∗(x), ReM(x) ≥ S(x), S(x) is positive definite,
the integral

∫ ∞
a S−1(x) dx is convergent.

We use the notation Re M = 1
2(M+M∗) for the selfadjoint part of M , and ImM = 1

2i(M−M∗).
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Lemma 1. We assume that the functions M and S satisfy the assumptions (H) and that g is a

continuous function such that |g(x)| ≤ 1 for all x ∈ [a,∞). Then the matrix
∫ ∞
a g(x) (M∗(x))−1 dx

is well defined and we have

∥

∥

∥

∫ ∞

a
g(x) (M∗(x))−1 dx

∥

∥

∥
≤

∥

∥

∥

∫ ∞

a
(S(x))−1 dx

∥

∥

∥
.

Proof. It is sufficient to give the proof when S = ReM . Then we introduce L = S−1/2 and
D = L (Im M)L. Since the matrix D(x) is selfadjoint, the matrix I−iD(x) is invertible and
‖(I−iD(x))−1‖ ≤ 1. We have M∗ = L−1(I−iD)L−1, thus

|g(x)〈(M∗(x))−1u, v〉| = |〈(I−iD(x))−1L(x)u,L(x)v〉| ≤ ‖L(x)u‖ ‖L(x)v‖, ∀u, v ∈ C
d.

This yields
∫ ∞

a
|g(x)〈(M∗(x))−1u, v〉| dx ≤

(

∫ ∞

a
‖L(x)u‖2dx

)1/2(
∫ ∞

a
‖L(x)v‖2dx

)1/2

≤
∥

∥

∥

∫ ∞

a
(S(x))−1 dx

∥

∥

∥
‖u‖ ‖v‖. (3)

We have used that
∫ ∞

a
‖L(x)u‖2dx =

∫ ∞

a
〈(S(x))−1u, u〉dx =

〈

∫

∞

a (S(x))−1dxu, u
〉

≤
∥

∥

∥

∫ ∞

a
(S(x))−1 dx

∥

∥

∥
‖u‖2.

The lemma easily follows from (3).

Le us consider now the sector Sθ with θ ∈ (0, π/2), defined by

Sθ := {z ∈ C ; z 6= 0, | arg(z)| < θ}.

We will use frequently the following lemma.

Lemma 2. The condition W (M) ⊂ Sθ implies ReM−1 ≥ cos2 θ (Re M)−1.

Proof. We first note that the assumption implies that M is invertible and B := Re M is positive
definite. We set D = B−1/2(Im M)B−1/2 ; then D is selfadjoint and M = B1/2(I +iD)B1/2.
The condition W (M) ⊂ Sθ yields

〈(I+iD)B1/2u,B1/2u〉 ∈ Sθ, ∀u ∈ C
d, u 6= 0.

Setting v = B1/2u we deduce ‖Dv‖ ≤ tan θ ‖v‖, ∀v ∈ C
d, and thus ‖D‖ ≤ tan θ. We have

Re(I + iD)−1 ≥ inf
λ∈Sp(D)

Re
1

1 + iλ
= Re

1

1 + i tan θ
= cos2 θ.

Finally we deduce Re A−1 = Re B−1/2(I + iD)−1B−1/2 ≥ cos2 θ B−1.
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3 The sector case

Since the constant C(Sα) only depends on the angle of the sector, we can assume in this section
that Sα = {z ∈ C ; z 6= 0 and | arg z| < α}, α ∈ (0, π/2).

Theorem 3. We have the estimate

C(Sα) ≤ 2
π − α

π
+

sin 2α

π

∫ ∞

0

dy

y2 − 2 y cos 2α + cos2α
.

Proof. Let us consider a rational function r bounded by 1 in Sα and satisfying r(∞) = 0. Let
us consider also a square matrix A ∈ C

d,d such that W (A) ⊂ Sα. It suffices to show that

‖r(A)‖ ≤ 2
π − α

π
+

sin 2α

π

∫ ∞

0

dy

y2 − 2 y cos 2α + cos2α
.

For that we denote by σ the generic point on the counterclockwise oriented boundary ∂Sα and
by s its curvilinear abscissa. Then we deduce from the Cauchy formula

r(A) =
1

2πi

∫

∂Sα

r(σ) (σI−A)−1dσ,

that we have

r(A) =

∫

∂Sα

r(σ)µ(σ,A) ds + r̃(A∗),

with

µ(σ,A) =
1

2π

(

ν(σ−A)−1 + ν̄(σ̄−A∗)−1
)

, ν =
1

i

dσ

ds
,

r̃(z̄) =
1

2πi

∫

∂Sα

r(σ)
dσ̄

σ̄ − z̄
.

The condition W (A) ⊂ Sα implies that the selfadjoint matrix µ(σ,A) is positive definite for
σ ∈ ∂Sα. Thus we have the estimate

∥

∥

∥

∫

∂Sα

r(σ)µ(σ,A) ds
∥

∥

∥
≤

∥

∥

∥

∫

∂Sα

µ(σ,A) ds
∥

∥

∥
= 2

π − α

π
.

Therefore it suffices to show that

‖r̃(A∗)‖ ≤ µ(α), with µ(α) :=
sin 2α

π

∫ ∞

0

dy

y2 − 2 y cos 2α + cos2α
.

We split the boundary in Γ+ := {σ ∈ ∂Sα ; Im σ > 0} and Γ− := {σ ∈ ∂Sα ; Im σ < 0}. Note
that, on Γ±, we have σ̄ = σ e∓2iα, thus

r̃(z̄) =
1

2πi

∫

Γ+

r(σ)

σ − e2iαz̄
dσ +

1

2πi

∫

Γ−

r(σ)

σ − e−2iαz̄
dσ.

Now we remark that, in the sector Sα, the integrands are holomorphic functions of σ and have
a O(σ−2) behaviour at ∞. Using the Cauchy theorem, we can move the integrals on Γ± in
integrals on the half-real axis. This gives

∫

Γ+

r(σ)

σ − e2iαz̄
dσ =

∫ 0

∞

r(x)

x − e2iαz̄
dx, and

∫

Γ−

r(σ)

σ − e−2iαz̄
dσ =

∫ ∞

0

r(x)

x − e−2iαz̄
dx.

We deduce

r̃(z̄) =
1

2πi

∫ ∞

0
r(x)

( 1

x − e−2iαz̄
− 1

x − e2iαz̄

)

dx = −sin 2α

π

∫ ∞

0

r(x)

x2z̄−1 − 2x cos 2α + z̄
dx.
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Therefore

r̃(A∗) = −sin 2α

π

∫ ∞

0
r(x)

(

M∗(x)
)−1

dx, with M(x) := x2A−1 − 2x cos 2α + A.

Now we set S(x) := x2 cos2αB−1−2x cos 2α+B, with B = Re A. Clearly we have S(x) = S∗(x)
and

S(x) ≥ min
λ∈Sp(B)

(x2 cos2α

λ
− 2x cos 2α + λ

)

≥ 2x(cos α − cos 2α) = 4x sin α
2 sin 3α

2 > 0.

Furthermore, from Lemma 2, we have Re M(x) ≥ S(x). Using then Lemma 1, we get

‖r̃(A∗)‖ ≤ sin 2α

π

∥

∥

∥

∫ ∞

0

(

S(x)
)−1

dx
∥

∥

∥
.

We note now that, for all λ > 0, by setting y = 1/(λx), we have

ϕ(λ) :=
sin 2α

π

∫ ∞

0

dx
x2 cos2α

λ − 2x cos 2α + λ
= µ(α).

This shows, by using the spectral theory for the selfadjoint matrix B,

sin 2α

π

∫ ∞

0
(S(x))−1dx = ϕ(B) = µ(α) I.

Thus we have obtained the bound

‖r(A)‖ ≤ 2
π − α

π
+ µ(α),

for rational functions bounded by 1 in Sα and satisfying r(∞) = 0. Now if r still is bounded
by 1 in the sector but r(∞) 6= 0, we introduce rε(z) = (1+εz)−1r(z), ε > 0. Then rε also is
bounded by 1 in the sector and rε(∞) = 0. Thus we have the bound ‖rε(A)‖ ≤ 2π−α

π + µ(α),
which yields the bound for ‖r(A)‖ with ε tending to 0.

4 Case of a parabola

Since all the parabolas are similar, C(P ) is the same for all parabolas P . Here we consider

P := {x+i y ;x > y2, y ∈ R}.

Theorem 4. We have the estimate C(P ) ≤ 2 + 2/
√

3.

Proof. As in the previous section we consider a matrix A ∈ C
d,d such that W (A) ⊂ P and

a rational function such that |r(z)| ≤ 1 for all z ∈ P and r(∞) = 0. In order to show that
C(P ) ≤ 2 + 2/

√
3 it suffices to show that ‖r(A)‖ < 2 + 2/

√
3 for all such A and r. With the

previous notations, we have

r(A) =

∫

∂P
r(σ)µ(σ,A) ds + r̃(A∗), with r̃(A∗) =

∫

∂P
r(σ) (σ̄−A∗)−1dσ̄.

We know that
∥

∥

∫

∂P r(σ)µ(σ,A) ds
∥

∥ ≤ 2, therefore it suffices to show that ‖r̃(A∗)‖ ≤ 2/
√

3.

Recall that the boundary ∂P is counterclockwise oriented. On this boundary we have the
relation 2(σ+σ̄) + (σ−σ̄)2 = 0, thus σ̄ = σ−1+

√
1−4σ, here the notation

√
1−4σ denotes the
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continuous determination of the square root off the cut Γ = {x ∈ R ;x > 1
4} which takes the

value 1 when σ = 0. Note also that, if σ ∈ P , then σ − 1 +
√

1−4σ /∈ P . So, for z ∈ P ,

r̃(z̄) =
1

2πi

∫

∂P

r(σ)

σ̄ − z̄
dσ̄ =

1

2πi

∫

∂P

r(σ)

σ−1+
√

1 − 4σ−z̄
(1 − 2√

1 − 4σ
) dσ.

Using the holomorphy (in σ) of the integrand in P \Γ, we can replace the path ∂P by the path
Γ+ ∪ Γ−, where Γ± = limε→0+

Γ + iε. We also note that
√

1−4σ tends to ∓i
√

4x−1 as σ ∈ P
tends to x ∈ Γ±. Then we get

r̃(z̄) =
1

2πi

∫

Γ+

r(x)

x−1−i
√

4x−1−z̄
(1 − 2i√

4x − 1
) dx

+
1

2πi

∫

Γ−

r(x)

x−1+i
√

4x−1−z̄
(1 +

2i√
4x − 1

) dx.

Due to the counterclockwized orientation of ∂P x runs from +∞ to 1/4 on Γ+ and from 1/4 to
+∞ on Γ−. Setting x = y2+1/4 we obtain

r̃(z̄) =
1

πi

∫ ∞

0
r(y2+ 1

4)
( y + i

y2 − 3/4 + 2iy − z̄
− y − i

y2 − 3/4 − 2iy − z̄

)

dy

=
−2

π

∫ ∞

0
r(y2+ 1

4 )
y2 + 3/4 + z̄

(y2 − 3/4 − z̄)2 + 4y2
dy

=
−2

π

∫ ∞

0
r(y2+ 1

4 )
1

(y2 + 3/4 + z̄) − 4y2 + 4y2(1 + y2)(y2 + 3/4 + z̄)−1
dy.

Therefore we have

r̃(A∗) = −
∫ ∞

0
r(y2+ 1

4)
(

M∗(y)
)−1

dy,
with

M(y) :=
π

2

(

(A+y2+3/4) − 4y2 + 4y2(1+y2)(A+y2+3/4)−1
)

.

Remark.The straight lines with equations y = ± 1
2t(x + t2) are tangent to the parabola in the

points t2±it. Thus, setting θ(t) := arctan(1/2t), we have P ⊂ −t2 + Sθ(t) and the condition

W (A) ⊂ P implies W (A + t2) ⊂ Sθ(t). Therefore, setting B := Re A and applying Lemma 2, we

obtain

Re(A+t2)−1 ≥ cos2 θ(t) (B+t2)−1 =
4t2

4t2 + 1
(B+t2)−1, ∀t > 0. (4)

We now define

S(y) :=
π

2

(

(B+y2+3/4) − 4y2 + y2(4y2+3)(B+y2+3/4)−1
)

.

Using (4) with t =
√

y2+3/4 it follows

Re M(y) ≥ S(y) = S∗(y).

In order to study more precisely the matrix S(.) we introduce the function ϕ(., λ)

ϕ(y, λ) :=
π

2

(

(λ+y2+3/4) − 4y2 + y2(4y2+3)(λ+y2+3/4)−1
)

,
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that we consider for λ > 0 and y ≥ 0. Simple calculations give

1

ϕ(y, λ)
=

2

π

y2 + 3/4 + λ

(y2 − 3/4 − λ)2 + 3y2

=
1

π

( 1

(y −
√

λ)2 + 3/4
+

1

(y +
√

λ)2 + 3/4

)

.

This implies that ϕ(y, λ) > 0 for all y, λ > 0, and therefore S(y) = ϕ(y,B) is positive definite.
Furthermore we have

∫ ∞

0

1

ϕ(y, λ)
dy =

1

π

(

∫ ∞

−
√

λ

dv

v2 + 3/4
+

∫ ∞

√
λ

dv

v2 + 3/4

)

=
2√
3
,

which shows that
∫ ∞

0
(S(y))−1dy = 2/

√
3

and, by using Lemma 1, provides the estimate ‖r̃(A∗)‖ ≤ 2 + 2/
√

3.
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