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Abstract

In [2] we have proved some inequalities for holomorphic functions of a linear operator,
when this operator has its numerical range contained in a conic domain. Here we present
direct proofs in the particular cases of sector and parabola.

1 Introduction.

The numerical range (or field of values) of a square matrix A € C%? is the set
W (4) = {{Av,v);0 € C%, ||v]| =1},

where (.,.) denotes the usual inner product on the euclidean space C? and ||.|| the corresponding
norm. In this paper we are concerned with the following problem: given a convex open set
Q C C, find upper bounds for the smallest constant C'(2) depending only on € such that for
any matrix A € C%*? with W(A) C Q and for any rational function r there holds

Ir(A)f = €(€2) sup fr(2)]] (1)

In [2] some new bounds for C'(2) have been given in the case where the boundary of Q is a
(branch of a) conic curve. By a limiting argument this induces the bound

T—« _sin2a/°° dy
0

C(S,) <2 =
(Sa) < +ula), pla) T y2cosa — 2y cos 2a + cos o’

(2)

if S, is a sector of angle 2a € (0,7), and the bound C(P) < 2+ 2/4/3 < 3.16 for a parabola.
These bounds improved previous ones given for instance in [3] , [1] and [4].

This paper does not contain new result with respect to [2], but the proofs given here are
direct, and simpler in the sector case.

2 Some useful lemmas

We consider two matrix-valued functions M and S satisfying the following assumptions

M and S € C%([a, +o0) ; C4%)
(H) Ve >a, S(z)=S5*"(z), ReM(x) > S(z), S(x) is positive definite,
the integral |[ aoo S—Y(x)dx is convergent.

We use the notation Re M = %(M—I—M*) for the selfadjoint part of M, and Im M = %(M—M*)
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Lemma 1. We assume that the functions M and S satisfy the assumptions (H) and that g is a
continuous function such that |g(z)| < 1 for all x € [a,00). Then the matriz [;° g(x) (M*(z)) ! dx
1s well defined and we have

| [ st ar ey <

Proof. Tt is sufficient to give the proof when S = Re M. Then we introduce L = S~/2 and
D = L(ImM)L. Since the matrix D(x) is selfadjoint, the matrix I —iD(z) is invertible and
|(I—iD(z))~Y < 1. We have M* = L=Y(I—iD)L~!, thus

lg(2){(M* ()" u,v)| = [{(I~iD(2)) "' L(z)u, L(z)v)| < |L(z)ul |L(z)v], Yu,veC™

This yields
o0 1/2 , [ 1/2
(] e >u||2dw) ([ I@elpa)

/:O| ()M ()", )|
| [ st da ul ol 3)
We have used that

| @k - /m«sm) v = ([(S(@)  dru,u)

H / d:cH Jul®

The lemma easily follows from (3). O

(S(x)) "t da:H.
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Le us consider now the sector Sy with 6 € (0,7/2), defined by
Sp:={2€C;z#0, |arg(z)| < 0}.
We will use frequently the following lemma.
Lemma 2. The condition W (M) C Sp implies Re M~! > cos? 6 (Re M)~ !

Proof. We first note that the assumption implies that M is invertible and B := Re M is positive
definite. We set D = B~Y/2(Im M) B~'/2; then D is selfadjoint and M = BY?(I+iD)B/2.
The condition W (M) C Sy yields

((I+iD)BY?u, BY?u) € Sy,  Vu e C¥u 0.
Setting v = B'/?u we deduce ||Dv| < tan@ |v||, Vo € C%, and thus ||D|| < tanf. We have

1 1
I+iD)~! > f — —cos?0.
Re(I+iD)" 2 | Inf Req=mn =Reqomg =«
Finally we deduce Re A~ = Re B"Y%(I +iD)"'B~Y/2 > cos?>§ B~ . O



3 The sector case

Since the constant C'(S,) only depends on the angle of the sector, we can assume in this section
that S, = {2 € C;2 # 0 and |arg z| < a}, a € (0,7/2).

Theorem 3. We have the estimate
T — o  sin2a /°° dy
+
0

C(Sa) < 2

T T y2 — 2y cos2a + cosa’

Proof. Let us consider a rational function r bounded by 1 in S, and satisfying r(co) = 0. Let
us consider also a square matrix A € C%? such that W(A) C S,. It suffices to show that

— in 2 e d
I <2 2 [
s m 0 Y°— 2y cos2a -+ cos‘x

For that we denote by o the generic point on the counterclockwise oriented boundary 05, and
by s its curvilinear abscissa. Then we deduce from the Cauchy formula

r(A) = L r(o) (cI—A) " do,
2711 8S.,

that we have

") = [ r(o) o) ds + (4%,

with
1 T _ldo
IU(O-7A) - %(V(O-_A) +V(J_A ) )7 V= i ds’
o1 de
7(z) = 3 - r(o) =

The condition W(A) C S, implies that the selfadjoint matrix u(o, A) is positive definite for
o € 95,. Thus we have the estimate

T — &

H /asa (o) pu(o, A) dsH < H /asa (o, A) dsH =2 —

Therefore it suffices to show that

dy
Y2 — 2y cos 2a + cos?ar’

sin 2«

IF(A%) < p(e), with pu(a) = /Ow

™

We split the boundary in I'y := {0 € 9S4 ;Imo > 0} and I'_ := {0 € 35S, ;Imo < 0}. Note
that, on 'y, we have & = o e™%?, thus

1 1
7(2) = 5— / o) gy L / 0y,
2mi Jp, 0 —e*oz 21 Jp o — ez

Now we remark that, in the sector S,, the integrands are holomorphic functions of ¢ and have
a O(0~2) behaviour at co. Using the Cauchy theorem, we can move the integrals on I'y in
integrals on the half-real axis. This gives

0 o0
/ o) g, / '@ gy and / LG / A
ma—ewz 0o LT — €417 r.o—e ez 0 T —e ez

We deduce

_ 1 [ 1 1 sin2a [ r(x)
Z) = — de = — dx.
") 27i Jo r(gj)( ) v 7r /0 2271 2z cos2at z




Therefore
sin 2«

T(A") = / r(z) (M*(:E))_l dr, with M(z):=22A7" — 2z cos2a + A.

™ 0
Now we set S(z) := 22 cos?’a B~ =2z cos 2a+ B, with B = Re A. Clearly we have S(z) = S*()
and

(33‘2 COS2Oé

A

Furthermore, from Lemma 2, we have Re M (x) > S(z). Using then Lemma 1, we get

74y < 2222 /OOO (5(x)) ™" d]|

S(z) > min

> — 27 cos2a + A) > 2xz(cosa — cos2a) = 4z sin & sin 32 > 0.
AeSp(B)

T
We note now that, for all A > 0, by setting y = 1/(Ax), we have
sin2a [ dx
o= [T ~ (e
m 0 == —2xcos2a+ A

This shows, by using the spectral theory for the selfadjoint matrix B,

| (8@ e = o) = i@ .

™ 0
Thus we have obtained the bound

Ir(A)] < 27—+ u(a),

sin 2«

for rational functions bounded by 1 in S, and satisfying r(cc) = 0. Now if r still is bounded
by 1 in the sector but r(co) # 0, we introduce r-(z) = (14+e2)~!7(2), € > 0. Then r. also is
bounded by 1 in the sector and 7.(co) = 0. Thus we have the bound [|r.(A)[| < 27=2 + u(«),
which yields the bound for ||r(A)|| with e tending to 0. O

4 Case of a parabola

Since all the parabolas are similar, C'(P) is the same for all parabolas P. Here we consider
P:={z+iy;z>1y%yeR}

Theorem 4. We have the estimate C(P) < 2+ 2//3.

Proof. As in the previous section we consider a matrix A € C%? such that W(A) C P and
a rational function such that |r(z)| < 1 for all z € P and r(c0) = 0. In order to show that
C(P) < 2 +2//3 it suffices to show that ||r(A)|| < 2 + 2/v/3 for all such A and . With the
previous notations, we have

= r(o) u(o s+ 7(A* wi 7(A*) = r(o) (6—A"1da.
’”<A>‘/ap”“<““>d”‘“’ th #(A%) [)P()( A7)

We know that || [5,7(c) (o, A) ds|| < 2, therefore it suffices to show that ||F(A%)|| < 2/v/3.

Recall that the boundary 9P is counterclockwise oriented. On this boundary we have the
relation 2(c+6) + (0—)? = 0, thus & = 0—1++/1—40, here the notation v/1—40 denotes the



continuous determination of the square root off the cut I' = {z € R 3T > %} which takes the
value 1 when o = 0. Note also that, if 0 € P, then 0 — 1+ \/1—40 ¢ P. So, for z € P,

L 1 r(o) . 1 r(o) 2
- do = — 1— do.
"2) = 5 /6,30—2 il A iy e P SR e A
Using the holomorphy (in o) of the integrand in P\ I, we can replace the path 0P by the path

'y ul'_, where I'x = lim. o, I' + ie. We also note that \/1—40c tends to Fiv4r—1as o € P
tends to x € I'y.. Then we get

#z) = i/F $_1_r(m) R

2mi War—1-z Az —1
1 r(x 21
+-— ; (@) -1+ ——
2mi Jr_ x—1+iv/4dr—1—%2 Viar —1
Due to the counterclockwized orientation of P x runs from +oo to 1/4 on I'y and from 1/4 to
400 on I'_. Setting x = 32+1/4 we obtain

)dx.

~y 1 o 2.1 y+z y—Z )
= = 1 - d
") el A +4)<y2—3/4—|—2iy—2 2 —3/4—2iy )Y
-2 [ 5 y?+3/4+2
= =< 1 d
T Jo T +4)(y2—3/4—2)2+4y2 Y
2 [T 2+ ! d
= _ T = .
mJo TV 312 v a2+ D) (P 1 3/A+2) LY

Therefore we have

[ee]
. s\ —1
i) = [ h (00 w)
with 0
™
M = —
(y) =5
Remark. The straight lines with equations y = j:%(x + t2) are tangent to the parabola in the
points t?xit. Thus, setting 0(t) := arctan(1/2t), we have P C —t* + Sy and the condition
W(A) C P implies W(A+1t?) C So(t)- Therefore, setting B := Re A and applying Lemma 2, we
obtain

((A+y?+3/4) - d9? + 242 (1+y) (A+y?+3/4) 7).

2

Re(A+#2)" > cos? 0(t) (B+£2)"" = 4;:1 (B+2)", Vi >0, @)

We now define

S(y) == g((B+y2+3/4) — 42+ y2(4y2—|—3)(B+y2+3/4)_1>.

Using (4) with t = \/y?+43/4 it follows
Re M(y) = S(y) = S™(y).

In order to study more precisely the matrix S(.) we introduce the function ¢(., \)

Py, V) = T ((A+y?+3/4) — dy? + y> (4> +3) > +3/4) 7)),



that we consider for A > 0 and y > 0. Simple calculations give
1 2 Y2 +3/4+ A
e(y, ) (y? —3/4 — A)? + 3y?

SR

1 1
+ .
<(y—ﬁ)2+3/4 (y+ﬁ)2+3/4>
This implies that ¢(y,A) > 0 for all y, A > 0, and therefore S(y) = p(y, B) is positive definite.
Furthermore we have

/OO 1 d_l(/"o dv +/OO dv )_l
o oY T T\ a3 J st sa) T

which shows that
| s tay =275

and, by using Lemma 1, provides the estimate ||7(A*)|| <2+ 2/v/3.
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