Réduction stable tordue pour les revêtements galoisiens aux mauvaises caractéristiques

Matthieu Romagny

Exposé à Versailles (20.03.2007), Nantes (29.03.2007) et Rennes (07.06.2007)

1 Motivations

 \rightarrow Comprendre le π_1 des courbes lisses (affines ou projectives) en caractéristique p > 0.

Rappel 1 : Grothendieck a calculé la partie première à p du groupe fondamental par un argument de déformation. Le groupe fondamental complet, lui, ne dépend plus seulement de la topologie, ce que l'on voit déjà pour les courbes elliptiques.

Rappel 2 : Raynaud a démontré la conjecture d'Abhyankar qui dit quels groupes finis apparaissent comme groupes de Galois de revêtements de la droite projective ramifiés seulement à l'infini. Ici c'est un argument de dégénérescence (1).

Dans la suite on déplace légèrement le problème. On fixe G un groupe fini ; on est amené à comprendre les G-revêtements $Y \to X$, et en particulier leurs dégénérescences. (Derrière ces mots se trouvent, concrètement, des espaces de modules projectifs.)

2 Ce qui est connu et ce qui pose problème

Soit n = |G|.

En caractéristique $p \nmid n$ le stabilisateur G_y en un point $y \in Y$ est cyclique et l'action de G_y sur le tangent $T_{Y,y}$ est fidèle. On a une réduction « stable » vers des revêtements galoisiens de courbes stables $Y \to X$ tels que en tout point double y, les caractères du stabilisateur G_y sur les espaces tangents aux branches en y vérifient $\chi_1\chi_2 = 1$. (On a supposé que G_y préserve les branches pour simplifier.) Les anneaux de déformations universels de G-revêtements sont lisses (l'espace de modules projectif qui est derrière, ou plutôt le champ, est lisse.) Ceci est dû à Bertin et Ekedahl, indépendamment.

En caractéristique $p \mid n$ ou mixte, il y a plein de problèmes, liés essentiellement à la ramification (présence de ramification supérieure = chaîne de sous-groupes de G_y). Les caractères aux points d'inertie ne sont plus injectifs donc $\chi_1\chi_2 = 1$ tombe à l'eau. Des résultats récents de Bertin et Mézard étudient les déformations de G-revêtements et décrivent aussi précisément que possible les anneaux de déformation. On y voit que l'espace de modules est en général singulier.

De plus on a un principe local-global qui dit que les déformations sont contrôlées par les points fixes $(p \nmid n)$ et les points de ramification sauvage dans le cas lisse $(p \mid n)$. Dans le cas stable avec $p \mid n$ apparaît le phénomène suivant. Un exemple : $R = \mathbb{Z}_p[\zeta]$, $G = \mathbb{Z}/p\mathbb{Z}$ agit sur $R[x,y]/xy - \pi$ par $x \mapsto x/(x+\zeta)$ et $y \mapsto \zeta y + \pi$. (Poser z = y+1 pour voir μ_p .) C'est pathologique du point de vue des déformations (principe local-global à l'eau), et on n'a plus de définition raisonnable en familles.

¹Plus précisément, pour la preuve, il construit un revêtement en caractéristique 0 (là, le π_1 est connu) puis étudie une dégénérescence en courbe stable en caractéristique p. Parmi les composantes irréductibles de cette courbe stable, il exhibe un revêtement qui répond à sa question.

3 Réduction stable tordue

Rappelons qu'une courbe (semi-stable) tordue (au sens d'Abramovich-Vistoli) sur une base S est un champ X dont l'espace modulaire grossier X est une courbe semi-stable (ordinaire), tel que $X \to X$ est un isomorphisme sauf en les points doubles $x \in X$. En x, étale localement sur S, la courbe X a une équation $uv = \pi^m$; on demande à avoir $X = [\operatorname{Spec}(R[g,h]/(gh - \pi^a))/\mu_b]$ pour certains a, b tels que ab = m (et R est le hensélisé de S).

Définissons un G-revêtement à base tordue sur S comme étant un triplet $(Y \to \mathfrak{X}, \mathfrak{G} \to \mathfrak{X}, G \times_S \mathfrak{X} \to \mathfrak{G})$. Ici,

- Y est une courbe stable, \mathfrak{X} est une courbe tordue, et $Y \to \mathfrak{X}$ est un morphisme fini, surjectif, plat de degré n.
- \mathcal{G} est un sous-schéma en groupes de $\operatorname{Aut}_{\mathcal{X}}(Y)$, fini plat de degré n.
- $G \times_S \mathcal{X} \to \mathcal{G}$ est un morphisme de \mathcal{X} -schémas en groupes qui, pour tout $s \in S$, induit un isomorphisme sur les sections globales $G = G(\mathcal{X}_s) \simeq \mathcal{G}_s(\mathcal{X}_s)$.

Par ex. un G-revêtement $Y \to X$ entre courbes lisses est un G-revêtement à base tordue. Pout toute la suite de l'exposé nous notons R, K, k, π un AVD.

Théorème $(G = \mathbb{Z}/p\mathbb{Z} : Abramovich, G \text{ quelconque} : Romagny)$

Soit $Y_K \to X_K$ un G-revêtement de courbes projectives lisses sur K. Alors, après une extension finie $R \to R'$, il existe un G-revêtement à base tordue

$$(Y \to \mathfrak{X}, \mathfrak{G} \to \mathfrak{X}, G \times_R \mathfrak{X} \to \mathfrak{G})$$

sur R, de fibre générique isomorphe à $Y_K \to X_K$. Ce modèle est unique.

Voyons comment on construit ce modèle stable à base tordue.

La courbe Y. Après une extension finie $R \to R'$, il existe un modèle stable Y pour Y_K . Par unicité de ce modèle, l'action de G s'étend à Y. Soit X = Y/G qui est une courbe semi-stable. Le morphisme de quotient

$$\pi\colon Y\to X$$

est plat au-dessus du lieu lisse, mais en général pas au-dessus des points doubles.

La courbe \mathfrak{X} . C'est en ces points doubles qu'on tord X en une courbe $\mathfrak{X} \to X$, pour rendre le morphisme plat. Soit donc un point double $x \in X_k$. Soit y un point de Y au-dessus de x, localement $\mathcal{O}_{Y,y} = R[s,t]/(st-\pi^n)$. La structure locale de $Y \to X$ est $u = s^d \mu$ et $v = t^d \nu$ où $d = [k(y):k(x)], \mu, \nu$ sont des unités dans \mathcal{O}_Y . (On vérifie que m = dn et $\mu \nu = 1$.) On définit $Z = \operatorname{Spec}(R[g,h]/(gh-\pi^n))$ et $\mathfrak{X} = [Z/\mu_d]$. Ce twisting est minimal pour que $Y \to X$ se relève en un morphisme plat $Y \to \mathfrak{X}$: pour qu'il existe $Y \to \mathfrak{X}$ il faut que b|d, et pour avoir la platitude il faut que b = d. On vérifie que ce relevé est G-équivariant.

Le groupe \mathcal{G} . Le point difficile du théorème est le suivant : l'image schématique \mathcal{G} de $G_{\mathcal{X}} \to \operatorname{Aut}_{\mathcal{X}}(Y)$ est un schéma en groupes fini plat sur \mathcal{X} .

Notons qu'il n'est même pas clair que ${\mathfrak G}$ soit un schéma en groupes.

Rappeler l'exemple précédent et faire apparaître $\mathbb{Z}/p\mathbb{Z}$ et μ_p . Ici le groupe ne s'étend pas au point double sans twisting. Après twisting il s'étend en α_p .

Insister sur cette différence majeure : maintenant $\mathcal G$ bouge sur $\mathcal X$.

4 Preuve sur un ouvert R-dense

Nous allons nous contenter de survoler la preuve de la première étape : le résultat est vrai sur un ouvert R-dense de \mathfrak{X} .

Le problème est local donc on peut se placer dans un ouvert d'une composante irréductible de \mathcal{X}_k (precisement $V=\mathcal{X}$ privé de toutes les comp. irréd. de \mathcal{X}_k sauf une). On montre alors plus précisément que sur un ouvert dense, \mathcal{G} est constant i.e. provient d'un schéma en groupes fini plat sur R.

On pourrait peut-être s'en sortir avec le th. de platitude générique, mais pour la partie de la preuve que je n'expose pas, il est crucial de montrer que \mathcal{G} est constant sur un ouvert R-dense.

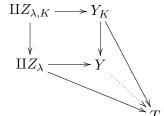
Le candidat à être ce schéma en groupes est l'image schématique de $G \to \operatorname{Aut}_R(V)$. Mais on est sur un ouvert $V \subset Y$, non projectif, donc ce Aut n'existe pas comme schéma... Problème. Le deuxième résultat que je veux mentionner est le suivant.

Théorème : Soit Y un R-schema de type fini, séparé, plat, pur, à fibre spéciale soit réduite, soit de Cohen-Macaulay. Soit G un R-schéma en groupes propre et plat, et $G \to \operatorname{Aut}_R(Y)$ une action. On suppose que le noyau de G_k sur Y_k est fini. Alors l'adhérence schématique de G dans le faisceau fppf $\operatorname{Aut}_R(Y)$ est représentable par un R-schéma en groupes plat et de type fini.

Plutôt que la définir, disons que l'adh. sch. de $G_K \subset F \otimes K$ dans un foncteur F est caractérisée par le fait que c'est un sous-foncteur $G \subset F$, plat sur R, avec $G \otimes K \simeq G_K$.

Voici ce que c'est que la pureté (Gruson-Raynaud) : sur un AVDH de base, ca veut dire essentiellement qu'il y a un recouvrement ouvert affine de Y avec des anneaux de fonctions qui sont des R-modules libres.

Idée de la preuve : supposons G fini pour simplifier (c'est le cas qui nous intéresse) et supposons R hensélien. Si Y est pur, la famille de ses SSF $Z_{\lambda} \subset Y$ qui sont finis plats sur R est universellement schématiquement dominante. On montre alors une propriété de somme amalgamée :



Pour chaque λ , le faisceau $\operatorname{Hom}(Z_{\lambda},Y)$ est représentable. Soit G_{λ} l'image schématique de G dedans. Si $Z_{\lambda} \subset Z_{\mu}$, on a $G_{\mu} \to G_{\lambda}$. On pose $G' = \lim_{\longleftarrow} G_{\lambda}$ qui est entier plat sur R. Comme on a un morphisme dominant $G \to G'$, en fait G' est fini. Appliquant l'argument de somme amalgamée avec

$$Y \leftarrow G' \times Y$$
 , $Z_{\lambda} \leftarrow G' \times Z_{\lambda}$

on montre que G' agit universellement fidèlement sur Y. Donc c'est l'adhérence schématique.