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Lecture 1 : Reduction of varieties and torsors

1 A bit of motivation

1.1 Reduction. Let K be a �eld with a discrete valuation, R its ring of integers, k the residue

�eld and p its characteristic. Each algebraic K-variety XK has plenty of models (
df
= faithfully �at

R-schemes X with generic �bre X ⊗R K isomorphic to XK) with for each of them a special �bre
Xk := X ⊗R k. Studying the reduction of XK means looking for models X with the nicest possible
special �bre Xk; that special �bre is called the reduction of XK . The reasons why people are interested
in this activity is basically that the reduction of an object brings information on the object itself; in fact,
it is in some sense a part of the object itself. For example, consider the simplest K-variety: the point
XK = Spec(K). Assume that K is a local �eld and you are interested in the abelianized fundamental
group of X which is just Γab

K , the abelianized absolute Galois group of K. Let ρ : ΓK → Γk ' Ẑ be
the reduction map and εp : ΓK → Z×p the p-adic cyclotomic character. The local Kronecker-Weber

theorem states that ρ × εp : Γab
K → Γab

k × Z×p is an isomorphism. Thus we see that the reduction Γab
k

is a direct factor of the original object Γab
K . (For a nice description of GK by generators and relations

see Neukirch, Schmitt, Wingberg, Cohomology of number �elds, chap. VII, thm. 7.5.10.)

1.2 Torsors. In these lectures, we will be concerned with the reduction of torsors YK → XK under
�nite groups viewed as K-algebraic groups. Torsors appear naturally in many contexts. For example,
the moduli algebraic stack of curves Mg has useful torsors Mg(n) which are moduli spaces for curves
with full level n structure, and are representable by schemes. (A full level n structure on a curve C is
an isomorphism H1

ét(C,Z/nZ) ' (Z/nZ)2g and thus the Galois group ofMg(n)→Mg is GL2g(Z/nZ).)
Another example comes from twisted forms of a �bration P → S (here S may be simply the spectrum
of a �eld), that is, �brations P ′ → S that locally over S are isomorphic to P . Assume for simplicity
that the automorphism functor G = AutS(P ) is representable by a �at �nitely presented S-group
scheme. Then the category of such twisted forms is equivalent to that of G-torsors on S:

- to P ′ → S one associates the G-torsor I = IsomS(P ′, P ),

- to a G-torsor I → S one associates the contracted product P ′ = P
G
× I, that is, the quotient of

P × I by the action of G given by g(p, i) = (gp, gi). (The problem of existence of this quotient is not
a big issue and in any case is not our concern here.)

For instance, the group schemes that are fppf twisted forms of the group scheme of roots of unity
µn,S are in bijection with torsors under G = (Z/nZ)×S , i.e. they are classi�ed by the �at cohomology
group H1(S, (Z/nZ)×). Note that if G is commutative, then such cohomology groups are particular
cases of groups H i(S,G) which are interesting linear-algebra invariants.
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1.3 Fundamental groups. The étale torsors of a given variety or scheme XK are fruitfully studied
as a whole via the étale fundamental group πét

1 (XK , x), for a choice of a geometric base point x. The
specialization theorem of Grothendieck says that if XK is the generic �bre of a morphism X → Spec(R)
which is proper with geometrically connected �bres, then the fundamental group of the reduction Xk is
a quotient of the fundamental group of XK . The torsors under �nite, maybe non-étale groups may be
studied similarly with the help of the fundamental K-group scheme π1(XK , x) de�ned by Nori, which
in positive characteristic is a richer and more complicated object than its étale predecessor. Finally,
another related object is given by p-divisible groups: start from an elliptic curve EK de�ned over K
and consider the pn-torsion group EK [pn](K̄) where K̄ is an algebraic closure of K. One can also pass
to the limit over n to get the Tate module TpEK , a free �nite rank Zp-module. This is an extremely
interesting representation of the Galois group ΓK . Flat R-models of the group schemes give rise to
integral structures on these abelian groups, and their reduction reveals again some information.

1.4 Degeneration. It is often the case that during the reduction process, objects acquire singularities.
Roughly speaking, this is because moduli spaces for smooth objects usually fail to be projective or
proper, and have compacti�cations whose boundary divisors (classifying singular objects) tend to have
positivity properties so that every proper curve in them intersects the boundary. The moduli space of
stable curves M̄g is a typical example. This phenomenon is to be expected also for torsors and their
structure groups.

2 A few examples of models of varieties

We review some examples of varieties that are known to have nice models. We also consider the models
obtained after possible �nite base change K ′/K. These are designed to study the potential reduction
type which is relevant when one does not care too much about the arithmetic constraint coming from
the base �eld. In all cases, the existence of the model is the result of a (usually big) theorem.

1) Models of curves. The most important ones are the minimal regular models over R, and the stable
models over a �nite extension R′/R.

2) Models of abelian varieties. The most important are the Néron models over R and the semistable

models over a �nite extension.

3) Models of surfaces, see [KSB88]. Ideas from the Minimal Model Program lead Kollár and Shepherd-
Barron to a good notion of stable model for surfaces of general type. The outcome is this: a stable

surface is a geometrically integral projective surface X with semi-log-canonical (slc) singularities and
ample dualizing sheaf ωX . We won't unravel all the de�nitions, but recall that X has slc singularities

if it is Cohen-Macaulay, its only singularities in codimension 1 are of double normal crossing type
(xy = 0) ⊂ A3, the pair (Xν ,∆ν) has log-canonical (lc) singularities (here Xν is the normalization
and ∆ν is the preimage of the one-dimensional part ∆ of the singular locus), and for some N > 0 the

re�exive power ω
[N ]
X := (ω⊗NX )∨∨ is invertible. Surfaces with lc singularities are de�ned in terms of

discrepancies (rami�cation multiplicities) in a resolution. Resolutions of singularities of surfaces exist
in all characteristics p > 0, hence the de�nition makes sense for all p. But while the moduli space of
stable surfaces is known to be proper for p = 0, this is not known for p > 0. Note that stable surfaces
need not be normal, just like stable curves.

3 Models of torsors and groups

Here, we will not give particular examples of models of torsors; rather, we will state a result whose
interest is that it shows that all models of a �nite K-group scheme are potentially structure groups
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of models of torsors. This is relevant for the content of the second and third lectures, where we shall
study all models of a �xed group scheme � the group scheme µpn,K of pn-th roots of unity.

Let us consider torsors YK → XK whose structure group GK is the group scheme ΓK de�ned by
a �nite group Γ of order n. A model of GK is by de�nition a �nite �at R-group scheme G with an
isomorphism G ⊗K ' GK . A model of the torsor is a �nite �at morphism Y → X between suitable
models of XK , YK and which is a torsor under some model G. In the case where p is prime to n, one
can usually hope to �nd models under the constant R-group ΓR, but we are especially interested in
the case where p divides n and then other models of GK are needed.

Example. Assume that R contains a primitive p-th root of unity ζ. Then the group scheme of roots
of unity µp,K is isomorphic to (Z/pZ)K and is the structure group for the well-known Kummer torsor
Gm,K → Gm,K . There are natural models Gm,R for the two copies of Gm,K . The original torsor
extends to a torsor Gm,R → Gm,R under the non-étale group µp,R but not under (Z/pZ)R.

For the existence of a model of GK acting faithfully on a model Y , that Y must not be too
pathological. For instance if Y has empty special �bre, then no �nite model acts faithfully. For the
same reasons, if YK has irreducible components that are closed in Y , the same problem arises. It turns
out that by considering (in the nonreduced case) not only generic points of irreducible components but
also all associated points of YK , one gets a good, geometrically meaningful condition:

De�nition. Let Y be an R-scheme of �nite type. Let Ks be a separable closure of K. We say that
Y is pure if for all associated points y ∈ Ass(YKs), the closure of y meets the special �bre Yk.

The condition of purity was introduced by Raynaud around 1970. We see that it is a kind of weak
valuative criterion of properness. Pure schemes are quite common; for example, proper R-schemes,
and faithfully �at R-schemes with geometrically integral generic �bre, are pure. In fact, virtually all
schemes that one encounters in concrete situations are pure. Then we have the following theorem (see
[Ro12]):

Theorem. Let Y be a faithfully �at, �nite type, separated, pure R-scheme. Let GK be a �nite K-

group scheme acting faithfully on YK . If GK has a model G acting on Y , then it has a model G′ acting
faithfully on Y , namely the schematic closure of GK in the fppf sheaf of automorphisms AutR(Y ).

We end the lecture with some comments on the theorem and its proof.

Remarks. (1) If AutR(Y ) is representable by a scheme, the theorem is easy. The di�culty in the
theorem is that AutR(Y ) is a sheaf which is not a scheme in general.

(2) If GK = ΓK is de�ned by a constant abstract group Γ, then the condition that GK has a model
acting on Y is not restrictive. Indeed, by blowing-up in the special �bre of Y one can �nd a model
Y ′ → Y such that all elements of Γ extend to automorphisms of Y ′. Then the R-group scheme ΓR
acts on Y ′.

(3) The rough idea of the proof of the theorem is that it is easy if Y is �nite over R (because in that
case AutR(Y ) is a scheme and the result is straightforward), and in general one somehow reduces to
the �nite case by showing that the �nite �at subschemes of a �at and pure R-scheme are dense in a
very strong sense (schematically, and universally after any base change on R).

Lecture 2 : Construction of models of µpn

The content of Lectures 2 and 3 is joint work with A. Mézard and D. Tossici, see [MRT12].
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4 The Sekiguchi-Suwa exact sequence

4.1 Statement

We let R = Z(p)[ζpn ] be the valuation ring obtained by adding a primitive pn-th root of unity ζpn to the
ring of integers localized at p. This root of unity ζpn singles out an isomorphism (Z/pnZ)K ' µpn,K .
The following result is due to Sekiguchi and Suwa (see [SS99]).

Theorem. There exists an exact sequence denoted Sn of a�ne �at R-group schemes

0 −→ (Z/pnZ)R −→Wn −→ Vn −→ 0

whose generic �bre is the Kummer-type exact sequence

0 −→ µpn,K −→ (Gm)n
Θ−→ (Gm)n −→ 0,

whose special �bre is the Artin-Schreier-Witt exact sequence

0 −→ (Z/pnZ)k −→Wn
F−id−−→Wn −→ 0,

and such that each cyclic étale pn-covering Spec(T ) → Spec(S) where S is a local �at R-algebra
is obtained by base change from Wn → Vn. Moreover, there is a natural extension of short exact

sequences:

0 −→ S1 −→ Sn −→ Sn−1 −→ 0.

The map Θ : (Gm)n → (Gm)n above is given by Θ(x1, . . . , xn) = (xp1, x
p
2x
−1
1 , . . . , xpnx

−1
n−1). Kummer

theory is usually formulated with the isogeny Gm → Gm, x 7→ xp
n
but it can equally well be formulated

with the map Θ. The latter is of course best suited for the realization of the Kummer isogeny as the
generic �bre of an integral isogeny like in the theorem, since the Artin-Schreier-Witt sequence involves
groups of dimension n.

4.2 Indications on the construction

In dimension n = 1, the groups W1 and V1 are models of Gm and these can be described easily. For
each λ ∈ R, let i : Spec(R/λ)→ Spec(R) be the closed immersion. On the small �at site of Spec(R),
reduction modulo λ de�nes a surjective morphism of sheaves Gm,R → i∗Gm,R/λ and an exact sequence:

(?) 0 −→ Gλ
α−→ Gm,R −→ i∗Gm,R/λ −→ 0.

The kernel Gλ = Spec(R[x, (1 + λx)−1]) is an a�ne smooth R-group scheme whose group law is given
on the points by x1 ? x2 = x1 + x2 + λx1x2. One proves that all models of Gm with geometrically
connected �bers are of this form. It is easy to see that Gλ depends only on the valuation of λ up to
isomorphism; hence the λ's are discrete parameters. If a uniformizer π ∈ R is chosen and λ := π`,
we may write G` instead of Gλ. For λ1 := ζp − 1, the Kummer sequence over K extends to an exact
sequence over R which turns out to be S1:

0 −→ (Z/pZ)R −→ Gλ1 −→ Gλ
p
1 −→ 0.

In dimension n > 2, the existence of the extension 0 → S1 → Sn → Sn−1 → 0 implies that the
groups Wn and Vn are iterated extensions of copies of the group Gλ1 . This extension structure is the
basic starting point of the construction.
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5 Filtered group schemes

In this section, we present a construction from [SS99].

5.1 De�nition

For the construction of models of µpn,K , we use the framework of Sekiguchi and Suwa. One minor
point is that if we do not insist that µpn,K should be isomorphic to (Z/nZ)K , the root of unity ζn is
useless and we can let the base ring R be any mixed characteristic dvr. Another point is that there
is no reason a priori to rule out extensions of groups Gλ with di�erent λ's. (We abandon the notation
λ1 = ζp − 1 and λ1, λ2, . . . may now denote arbitrary elements of R.)

De�nition. A �ltered group scheme of dimension n and type (λ1, . . . , λn) is a collection of extensions

0→ Gλi → Ei → Ei−1 → 0, for 1 6 i 6 n. It is often denoted by the symbol En alone.

It is very likely that �ltered group schemes are exactly all the models of split tori with geometrically
connected �bres, but we made no serious attempt to prove it.

Remark. We shall see that for each choice of discrete parameters λi, the extensions are parameterized
by n(n− 1)/2 continuous parameters. For the purpose of constructing Wn, one single choice of these
parameters is relevant but for the construction of models of µpn,K we allow as much choices as possible.

5.2 Deformed exponentials

It is not too hard to prove that if E is a �ltered group scheme, then Ext1
R(E,Gm) = 0. Thus the long

exact sequence in cohomology derived from (?) induces an exact sequence

Hom(E,Gm,R) −→ Hom(E, i∗Gm,R/λ) −→ Ext1(E,Gλ) −→ 0.

This gives a presentation of Ext1(E,Gλ). The heart of the theory of Sekiguchi and Suwa is the complete
description of the middle Hom-set. More precisely, homomorphisms E → i∗Gm,R/λ, or equivalently
homomorphisms i∗E→ Gm,R/λ, will be given by the power series we introduce now (see [SS4]).

De�nition. Let A be a Z(p)-algebra and λ ∈ A. For each a ∈ A, we de�ne an element of A[[T ]] by:

Ep(a, λ, T ) = (1 + λT )
a
λ

∏
k>1

(1 + λp
k
T p

k
)

1

pk

(
( aλ)

pk−( aλ)
pk−1

)
.

For each Witt vector a = (a0, a1, a2, . . . ) ∈W (A), we de�ne an element of A[[T ]] by:

Ep(a, λ, T ) =

∞∏
`=0

Ep(a`, λ
p` , T p

`
).

Remarks. (1) A priori the coe�cients of Ep(a, λ, T ) lie in Q[a, λ] and the fact that they are integral
at p requires a proof. The corresponding fact for Ep(a, λ, T ) follows immediately.

(2) These series are called deformed Artin-Hasse exponentials, or brie�y deformed exponentials, because
Ep(1, 0, T ) is the usual p-adic Artin-Hasse exponential.

Notations. Let F : W (A)→ W (A) be the Frobenius endomorphism. For x ∈ A, denote by [x] both
the Teichmüller representative (x, 0, 0, . . . ) ∈ W (A) and the multiplication-by-[x] on W (A). Let us
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write Ŵ (A) ⊂ W (A) the subset of Witt vectors which are �nite (i.e. with all components 0 except a
�nite number) and nilpotent (i.e. with all components nilpotent).

Crucial property. Let A be a Z(p)-algebra. For each λ ∈ A and a ∈ ker(F − [λp−1]) we have:

Ep(a, λ, T1 + T2 + λT1T2) = Ep(a, λ, T1)Ep(a, λ, T2).

This says that the deformed exponentials de�ne morphisms of A-formal groups Ĝλ → Ĝm. It is not
hard to see that they de�ne morphisms of (algebraic) A-group schemes if a ∈ Ŵ (A).

5.3 The main theorem

In dimension 1, the main theorem is just the crucial property above:

Theorem (n = 1). Let λ1, λ2 ∈ R have positive valuation (for simplicity) and let U1 be the endomor-

phism F − [λp−1
1 ] : Ŵ (R/λ2)→ Ŵ (R/λ2). Then the homomorphism

Ep(−, λ1,−) : ker(U1) −→ HomR/λ2(Gλ1 ,Gm)

is an isomorphism.

In the following, we use the short notation x1..n := (x1, . . . , xn) for tuples.

Theorem (n > 2). Let λ1, . . . , λn+1 ∈ R have positive valuation (for simplicity). Let En be a �ltered

group scheme of type (λ1, . . . , λn), constructed from some �nite Witt vectors aj+1
i ∈ W (R) whose

reduction mod λj+1 is in ker(U j). Then there exist:

- a power series in n variables Ep(a
n+1
1..n , λ1..n, T1..n) with parameters an+1

1..n ∈W (R/λn+1)n,

- an endomorphism Un : Ŵ (R/λn+1)n → Ŵ (R/λn+1)n,

such that Ep(−, λ1..n,−) induces an isomorphism ker(Un)→ HomR/λn+1
(En,Gm).

Starting from an n-dimensional �ltered group scheme En and elements aji , here is how we get an
n + 1-dimensional �ltered group scheme En+1. A choice of n �nite Witt vectors an+1

i ∈ W (R) whose
reduction mod λn+1 is in ker(Un) de�nes an exponential Dn(T1, . . . , Tn) = Ep(a

n+1
1..n , λ1..n, T1..n) which

we view as a morphism of R/λn+1-group schemes Dn : En → i∗Gm,R/λn+1
. We obtain En+1 by pullback

from the extension (?) as follows:

0 // Gλn+1 //

id
��

En+1
//

Dn+ λn+1Tn+1

��

En //

Dn
��

0

0 // Gλn+1 // Gm
// i∗Gm,R/λn+1

// 0

It follows immediately by induction that

En+1 = Spec

(
R

[
T1, . . . , Tn+1,

1

D0 + λ1T1
, . . . ,

1

Dn + λn+1Tn+1

])
.

We can collect the parameters aji into a matrix. It is useful to normalize things a bit by setting λi = π`i

where π is a �xed uniformizer of R. Thus each �ltered group scheme is determined by a matrix of the
form

A =


π`1 a2

1 . . . an1

0 π`2
. . .

...
...

. . .
. . . ann−1

0 . . . 0 π`n

 .
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5.4 Comments. A glance at the dust we've been sweeping under the carpet

The construction is quite complicated for (at least) two reasons:

1) the construction of the exponentials is recursive, so starting from Ep which is a quite sophisticated
object, we obtain something which is really terrible. More precisely, we have:

Ep(a
n+1
1..n , λ1..n, T1..n) =

n∏
i=1

Ep

(
an+1
i , λi,

Ti
Ep(an1..n−1, λ1..n−1, T1..n−1)

)
.

2) the de�nition of Un and hence the construction of En+1 depends on all the parameters used to
construct E1, . . . ,En. This makes a lot of bookkeeping. In fact, by the choice of aji , there exists b

j
i such

that

U j−1

 aj1
...

aj−1
1

 = λj

 bj1
...

bj−1
1


and the inductive de�nition is

Un =



F λ1 −Tb21 −Tb31 . . . −Tbn1
0 F λ2 −Tb32 . . . −Tbn2
... 0

. . .
. . .

...

0 0
. . .

. . . −Tbnn−1

0 0 . . . 0 F λn


.

This is a matrix whose entries are endomorphisms of W (A) (with A = R/λn+1 in the present case):

- F λ := F − [λp−1],

- Tb : W (A) → W (A) is de�ned by Tb(x) =
∑∞

k=0 V
k([ak]x), for Witt vectors b, x ∈ W (A), where

V : W (A)→W (A) is the Verschiebung endomorphism.

6 Kummer group schemes

In this section, we present work of [MRT12] consisting of elaborations on the constructions of [SS99].
The construction of �ltered group schemes with successive choices of parameters aji gives a little

more: each n-dimensional �ltered group scheme E = En comes with a morphism of R-group schemes
α = αn : E→ (Gm)n which is a model map, that is, an isomorphism on the generic �bre. (Indeed, by
de�nition the group Gλ1 comes with a model map to Gm, and by induction if En comes with a model
map αn : En → (Gm)n then wee see that αn+1 = (αn, Dn + λn+1Tn+1) : En+1 → (Gm)n+1 is a model
map.) We would like to insert α into a commutative diagram with �nite �at G:

0 // G //

α

��

E //

α
��

E′ //

α′

��

0

0 // µpn,R // (Gm)n
Θ // (Gm)n // 0.

Remarks. Some easy remarks :
1) as usual the subgroup G and the isogeny E→ E′ determine each other up to isomorphism,

7



2) if they exist then they are unique, since G is the schematic closure of α−1(µpn,K) ⊂ EK inside E,
and E→ E′ is determined by it generic �bre which is Θ,
3) it is not hard to see that E′ is �ltered of type λp1..n where λ1..n is the type of E.

Theorem (n = 1). If E = Gλ then the �at closure G is �nite if and only if e := v(p) > (p− 1)v(λ).

In fact α−1
n (µp,K) is de�ned by the equation (1 + λx)p − 1 = 0 and G is de�ned by the equation

obtained by dividing by the highest possible power s of a uniformizer of R. Then G is �nite if and
only if the result is a monic polynomial, that is if s = pv(λ), i.e. pv(λ) 6 e+ v(λ), q.e.d.

For the inductive step, we start from �ltered group schemes En and E′n constructed from families
of Witt vectors aji , a

′
i
j , and we denote by Un and U ′n their associated endomorphisms.

Theorem (n > 2). Let λ1, . . . , λn+1 ∈ R have positive valuation (for simplicity). Let En be a �ltered

group scheme such that the �at closure Gn is �nite and let E′n = En/Gn. Then there exists a matrix

Υn : ker(U ′n)→ ker(Un), which is the matrix representation of the pullback

HomR/λn+1
(E′n,Gm)→ HomR/λn+1

(En,Gm),

such that for an+1
1..n ∈ ker(Un) de�ning En+1 we have: the �at closure Gn+1 is �nite if and only if

pan+1
1..n − (an1..n−1, [λn]) ∈ im(Υn) mod (λn+1)p.

Remarks. (1) An element a′n+1
1..n such that pan+1

1..n − (an1..n−1, [λn]) = Υn(a′n+1
1..n ) mod (λn+1)p de�nes

the group E′n+1 = En+1/Gn+1.

(2) In the expression pan+1
i − (ani , [λn]) we can recognize the map Θ.

(3) There is an inductive construction of Υn, like for Un... I skip this.

(4) The congruences in the theorem imply, for instance, that if Gn is �nite then v(λ1) > . . . > v(λn).

(5) We shall write down the congruences for n = 3 in the end of the next lecture.

Let us come back to the models of µpn,K . Assume that we construct a �ltered group scheme En

with parameters aji and write

αn : En → (Gm)n , (t1, . . . , tn) 7→ (1 + λ1t1, D1 + λ2t2, . . . , Dn−1 + λntn)

where Dj = Dj(t1, . . . , tj) = Ep(a
j+1
1..n , λ1..j , t1..j) are the exponentials. Provided it exists, the �nite �at

model G is described as the closed subscheme of a�ne n-space de�ned by the equations:

(1 + λ1T1)p − 1

λp1
,

(D1 + λ2T2)p(1 + λ1T1)−1 − 1

λp2
, . . . ,

(Dn−1 + λnTn)p(Dn−2 + λn−1Tn−1)−1 − 1

λpn
.

Lecture 3 : Breuil-Kisin modules of models of µpn

In this lecture, we shall use the classi�cation of �nite �at group schemes due to Breuil [Br00] and
Kisin [Ki09] for our models of µpn,K .

In the sequel, we assume that R is complete and that the residue �eld k is perfect. We denote by
W = W (k) the ring of in�nite Witt vectors of k, K0 its fraction �eld, φ : W → W the Frobenius and
Wn = W/pn. We write S = W [[u]] and Sn = Wn[[u]] the rings of power series in u. The Frobenius φ
on W extends to an endomorphism φ of S such that φ(u) = up, and similarly for Sn. Finally we �x
a uniformizer π ∈ R and we denote by E = E(u) its minimal polynomial over K0.
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7 The Breuil-Kisin classi�cation

7.1 Finite �at group schemes and Breuil-Kisin modules

We are interested in the category Grn of �nite �at commutative R-group schemes killed by pn. On
the other hand let Modn be the category of �nite Sn-modules without u-torsion M endowed with a
φ-semi-linear map φM : M→M such that E(u)M ⊂ 〈φM(M)〉 ⊂M. (Note that a semi-linear map is
the same thing as a linear map φ∗M→M.) In the sequel we write φ instead of φM.

There is on the syntomic site of the formal scheme Spf(R) a certain abelian sheaf Ocris
∞,π that plays

the same role as the functor of Witt covectors plays in the Dieudonné-Fontaine theory.

Theorem (Breuil, Kisin) For each G ∈ Grn there is a unique sub-S-module M in Hom(G,Ocris
∞,π)

such that E(u)M ⊂ 〈φ(M)〉 ⊂M. The functor G 7→M induces an anti-equivalence of categories from

Grn to Modn.

It is more convenient to work with an equivalence (i.e. a covariant functor). We do this by
composing the anti-equivalence with the Cartier dual functor.

Then one proves that a group G is a model of µpn,K if and only if its module M is such that
M[1/u] is isomorphic to the Wn((u))-module Wn((u)) itself endowed with its usual Frobenius. Since
M has no u-torsion, the map M → M[1/u] is injective and the outcome is that we may view M as
a lattice inside Wn((u)) (a �nitely generated sub-Sn-module such that M[1/u] = Wn((u))) satisfying
E(u)M ⊂ 〈φ(M)〉 ⊂M where now φ is the ambient Frobenius.

Remark. Such a φ-stable lattice is necessarily included in Wn[[u]], because if x ∈ M has negative
u-valuation then valu(φnx)→ −∞, in contradiction with the �nite generation of M.

7.2 Breuil-Kisin modules and matrices

Let us extend the Teichmüller map [−] : k → Wn to power series by [
∑
aiu

i] =
∑

[ai]u
i. For a lattice

M, let us say that a system of generators e1, . . . , en is a T -basis if vp(ei) = i − 1 and each element
x ∈M can be written in a unique way x = [x1]e1 + · · ·+ [xn]en with xi ∈ k[[u]].

Lemma. Let M be a sublattice of Wn[[u]]. Then there exists a unique T -basis of M of the form

ei = ulipi−1 + [ai,i+1]pi + · · ·+ [ain]pn−1

with li > 0, ai ∈ k[u] and deg(aij) < lj.

It is easy to see why this is so. Let us introduce the submodules M[i] = ker(pn+1−i : M → M)
forming a �ltration 0 = M[n+ 1] ⊂M[n] ⊂ · · · ⊂M[1] = M. We have the following sublemma whose
proof is easy and omitted:

Sublemma. Consider the natural inclusion M[i] ⊂ pi−1Wn((u)). The induced map

M[i]/M[i+ 1] −→ pi−1Wn((u))/piWn((u)) ' k((u))
pi−1x 7→ x

is an injection that identi�es M[i]/M[i+ 1] with a lattice of k((u)).

Thus M[n] is isomorphic to a lattice of k((u)) hence has a unique generator of the form uln ,
with ln > 0 because of the remark above (stability under Frobenius). The preimage of uln in M is
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en = pn−1uln . Now similarly M[n− 1]/M[n] has a unique generator of the form uln−1 with ln−1 > 0,
whose preimage in M may be written in p-adic expansion:

en−1 = uln−1pn−2 + [an−1,n]pn−1.

Of course, we may alter en−1 by a multiple of en. Writing the euclidean division an−1,n = ulnq+ r and
changing en−1 into en−1− qen allows to ful�ll the condition deg(an−1,n) < ln and is the unique way to
do it. The construction of en−2, . . . , e1 proceeds similarly. End proof lemma.

Thus to each lattice we can associate an upper-triangular matrix:

A =


ul1 a12 . . . a1n

0 ul2
. . .

...
...

. . .
. . . an−1,n

0 . . . 0 uln

 .

We can translate inclusions of lattices in terms of matrices as follows. To each n-tuple L = (a1 . . . an) of
elements ofWn((u)), associate the n-tuple L′ = (a′1 . . . a

′
n) where a1 +pa2 + · · ·+pn−1an = [a′1]+p[a′2]+

· · ·+ pn−1[a′n] is the p-adic expansion. To each square matrix A with entries in Wn((u)), associate the
matrix A′ obtained by replacing each of its lines L by the line L′. Finally if A,B are two matrices
with entries in k((u)), let A ∗ B = ([A][B])′ be the result of taking the Teichmüller representatives of
the elements of the matrices, multiplying them as matrices with entries in Wn((u)) and then applying
(−)′. Then, we have:

Lemma. If M1 and M2 are lattices with matrices A1 and A2 then M1 ⊂M2 if and only if A1 is right

divisible by A2, that is, there exists a matrix B such that A1 = B ∗A2.

This allows to translate the conditions E(u)M ⊂ 〈φ(M)〉 ⊂M in terms of matrices and �nally in
terms of congruences (modulo powers of u) on the entries of A. These congruences are quite messy
and in the end of the lecture, we shall restrict to the case n = 3.

7.3 The case n = 3

Here, we will compare the matrices associated to Breuil-Kisin lattices and the matrices arising from
the Sekiguchi-Suwa construction. The main di�culty is that the former, resp. the latter, have entries
in truncations of a dvr of equal characteristics, resp. unequal characteristics. Just for fun, the upshot
of the comparison might be called the KASWSSBK theory, where

KASWSSBK := Kummer-Artin-Schreier-Witt-Sekiguchi-Suwa-Breuil-Kisin.

In the article Models of group schemes of roots of unity, we compared the two sides only under the ad-
ditional assumption that l1 > pl3 because without this assumption, the computations on the Sekiguchi-
Suwa side are really scary. Thus we make this assumption here also.

7.3.1 Breuil-Kisin. Recall that R ' W [u]/(E) where E = E(u) is the minimal polynomial of a
chosen uniformizer π ∈ R, an Eisenstein polynomial. We can write a p-adic expansion E = [E0] +
[E1]p + · · · + [En−1]pn−1 where Ei ∈ k[u]. We saw that each �nite �at model of µp3,K is determined
by a lattice of W3((u)), itself described by a matrix

A =

 ul3 a12 a13

0 ul2 a23

0 0 uln
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satisfying some conditions. These conditions are expressed by congruences on the entries that we sort
in �ve sets:

A: ap12 ≡ 0 mod ul2 , ap23 ≡ 0 mod ul3

B:

{
uea12 + ul1E1 − ue−(p−1)l1ap12 ≡ 0 mod upl2

uea23 + ul2E1 − ue−(p−1)l2ap23 ≡ 0 mod upl3

C: a12 − ul1−l2a23 ≡ 0 mod ul3

D: ul2ap13 − a
p
12a23 ≡ 0 mod ul2+l3

E: uea13 +a12E1 +S1(uea12, u
l1E1)+ul1E2−ue−(p−1)l1ap13−

uea12+ul1E1−ue−(p−1)l1ap12
upl2

ap23 ≡ 0 mod upl3

In the last equation is used the two-variable function S1(x, y) = [1
p(xp + yp − (x+ y)p)]1/p.

7.3.2 Sekiguchi-Suwa. It will be enough to restrict to matrices A like in 5.3 whose entries are
Teichmüller representatives, that is aji = [aji ]. Thus

A =

 π`1 [a2
1] [a3

1]
0 π`2 [a3

2]
0 0 π`3

 .

Here again, the entries must satisfy congruences that can be sorted in �ve sets:

A: (a2
1)p ≡ 0 mod πl2 , (a3

2)p ≡ 0 mod πl3

B:

{
pa2

1 − πl1 −
p

π(p−1)l1
(a2

1)p ≡ 0 mod πpl2

pa3
2 − πl2 −

p

π(p−1)l2
(a3

2)p ≡ 0 mod πpl3

C: ???

D: πl2(a3
1)p ≡ a3

2(a2
1)p mod πl2+l3

E: p

π(p−1)l1
(a3

1)p ≡ pa3
1 − a2

1 − (a3
2)p

pa21−πl1−
p

π(p−1)l1
(a21)p

πpl2
mod πpl3

7.3.3 Comparison. Since R is complete with perfect residue �eld, its elements have π-adic expansions
and we can de�ne a map:

k[[u]] −→ R
c =

∑
ciu

i 7−→ c∗ =
∑

[ci]π
i.

This is a bijection, which is neither additive nor multiplicative in general. It is an isometry, in the
sense that for each l the ideals (ul) and (πl) are mapped onto each other, and it induces bijections
k[[u]]/(ul) → R/(πl). (In fact we shall need only the maps on the truncations; these can be de�ned
without the assumption that R is complete. Note that the Teichmüller representative k → R/(πl)
exists since R/(πl) is complete, see e.g. Serre, Corps Locaux.) The map (−)∗ can be used to associate
to a matrix

A =

 ul1 a12 a13

0 ul2 a23

0 0 ul3


with entries in k[[u]] the matrix

A∗ =

 [πl1 ] [a∗12] [a∗13]
0 [πl2 ] [a∗23]
0 0 [πl3 ]

 .
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with entries Teichmüller elements in W (R). The basic thing we want to do is to check that if A is
a matrix satisfying the Breuil-Kisin congruences, then A∗ is a matrix satisfying the Sekiguchi-Suwa
congruences. Although we do not really know if the map (−)∗ computes the Breuil-Kisin equivalence
(or its inverse), if we pretend it does, then this will show that all models of µp3,K satisfying l1 > pl3
are those we have constructed.

There seems to be an extra condition C on the Breuil-Kisin side, but in fact its image C∗ holds on
the Sekiguchi-Suwa side because it can be proved easily that it is a consequence of the others.

Checking the compatibility of the conditions A is immediate; for B we will indicate how it works;
for C there is nothing to say, as we indicated; checking conditions D and E is more tedious but can
be done.

Thus we just have a glimpse on B, in order to see what the whole computation looks like. If we
take the image under (−)∗ of the �rst of the congruences in B:

uea12 + ul1E1 − ue−(p−1)l1ap12 ≡ 0 mod upl2 ,

we obtain
πea∗12 + πl1 [E1](π)− πe−(p−1)l1(a∗12)p ≡ 0 mod πpl2 .

Since E is Eisenstein, we have E(u) ≡ ue + [E1(u)]p mod p2 with deg(E1(u)) < e and E1(0) 6= 0.
Since E(π) = 0, we obtain πe + p[E1](π) ≡ 0 mod p2. Given that p2 ≡ 0 mod πpl2 , we can replace
πe by −p[E1](π) in the above congruence. Working a little bit, one �nds that this is exactly the �rst
congruence B on the Sekiguchi-Suwa side satis�ed by the parameters aji := a∗ij .

In order to conclude, it is important to emphasize that we do not know if the map (−)∗ really
computes the functor Grn → Modn of Breuil and Kisin. This is why we write almost sure instead
of true in the following statement. Recall that the Kummer group schemes are the models of µpn,K
constructed using the Sekiguchi-Suwa theory in section 6.

Theorem. It is almost sure that for l1 > pl3, all models of µp3,K are Kummer group schemes.

However, the formalism for the comparison has been settled for all n and the evidence for the
following conjecture seems quite solid.

Conjecture. For all n > 1, all models of µpn,K are Kummer group schemes.
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