Connected and irreducible components in families

Pisa (SNS) Sept. 14th, 2009 Bordeaux (Sakura workshop) Jan. 26th, 2010

1 Motivation

Let $g \geq 2$ and G be a finite group. Let \mathscr{M}_g be the algebraic stack over \mathbb{C} of smooth curves of genus g and $\mathscr{M}_g(G)$ the (closed) locus of curves whose automorphism group contains a copy of G. This is reducible and any irreducible component W has a *field of definition* which is a finite extension of \mathbb{Q} .

Question (Pierre Lochak) : in fact \mathcal{M}_g and $\mathcal{M}_g(G)$ are defined over \mathbb{Z} . Does W have a ring of definition which is a finite extension of \mathbb{Z} ?

Answer: the stack $\mathscr{X} = \mathscr{M}_g(G)$ has a functor of relative irreducible components $\operatorname{Irr}(\mathscr{X}/S)$, and if we restrict to the base $S = \operatorname{Spec}(\mathbb{Z}[1/30|G|])$ then this functor is represented by a finite étale algebraic space. The connected component of the point of $\operatorname{Irr}(\mathscr{X}/S)$ corresponding to W is finite étale over S, its function ring deserves the name of a ring of definition.

If the residue char. p is a factor of |G|, the fibre of $\mathcal{M}_g(G)$ is not reduced and this causes some trouble (we'll see why). The reason for the factor 30 = 2.3.5 is that for some (finitely many and known) groups, generic curves in $\mathcal{M}_g(G)$ have $[\operatorname{Aut}(C) : G] > 1$ with prime factors in $\{2, 3, 5\}$.

The topic of the talk is to describe functors of connected and irreducible components and to explain the "answer" above.

2 Open components

Definitions. $\mathscr{X} :=$ a fixed algebraic stack of finite presentation (f. p.) over S.

Wish that a relative connected component $\mathscr{C} \subset \mathscr{X}$ be determined by its support \Rightarrow require $\mathscr{C} \subset \mathscr{X}$ to be open (N.B. the fibres \mathscr{C}_s are open and closed but it is really too strong to require this for \mathscr{C}). Leads to :

1) Definition : an OCC = open (relative) conn. comp. is an open substack \mathscr{C} flat finitely presented over S such \mathscr{C}_s is a conn. comp. of \mathscr{X}_s , for all geometric points $s \in S$. The functor $T/S \mapsto \{OCC's \text{ of } \mathscr{X}_T/T\}$ is denoted $\pi_0(\mathscr{X}/S)$.

2) Definition : if $k = \overline{k}$ alg. closed field then an *open irreducible component* is the interior of some irred. comp. W, or the complement of all irred. comp.'s $W' \neq W$.

3) Definition : OIC's and the functor $\operatorname{Irr}(\mathscr{X}/S)$.

 π_0 and Irr are fppf sheaves, quasi-compact over S, with open diagonal. By construction they are étale over S.

Representability. Easy : π_0 and Irr are representable by alg. spaces over an open subscheme $U \subset S$ containing generic points. E.g. it is ok if S is the spectrum of a field.

For general S (one reduces easily to S affine of finite type over \mathbb{Z}) we use Artin's criteria asserting that a locally finitely presented functor F is an alg. space iff it has an obstruction theory \mathcal{O} and satisfies the following conditions :

1) F is an fppf sheaf,

2) The diagonal of F is representable and of finite type,

3) The deformation theory D satisfies Schlessinger's conditions S1 and S2,

4) For a complete local ring R with residue field of finite type over S the map $F(R) \rightarrow F(R) = F(R) - F(R)$

 $\lim_{n \to \infty} R(R/m^n)$ is injective with dense image,

5) D and \mathcal{O} satisfy various compatibilities.

For us the only issue is point 4) of approximation of formal elements : boils down to proving that $F(R) \to F(k)$ is bijective, where k = R/m. We must have a procedure for constructing components. This works if \mathscr{X}/S has geometrically reduced fibres. In the following we let $\mathscr{U} \subset \mathscr{X}$ denote the unicomponent locus i.e. the locus of points that belong to a single irred. comp.

Proposition. \mathscr{X} f. p. with geometrically reduced fibres, $g: S \to \mathscr{X}$ a section. If \mathscr{X} is flat then the union of the conn. comp.'s containing g(s) is open in $|\mathscr{X}|$. If $g(S) \subset \mathscr{U}$ then the union of the irred. comp.'s containing g(s) is open in $|\mathscr{X}|$.

Theorem. \mathscr{X} flat f. p. with geometrically reduced fibres.

- The functor $\pi_0(\mathscr{X}/S)$ is representable by a quasi-compact étale algebraic space and there is a morphism $\mathscr{X} \to \pi_0(\mathscr{X}/S)$ that induces an isomorphism $\mathscr{X}/\mathscr{R} \simeq \pi_0(\mathscr{X}/S)$.

- The functor $\operatorname{Irr}(\mathscr{X}/S)$ is representable by a quasi-compact étale algebraic space and there is a morphism $\mathscr{U} \to \operatorname{Irr}(\mathscr{X}/S)$ that induces an isomorphism $\mathscr{X}/\mathscr{S} \simeq \operatorname{Irr}(\mathscr{X}/S)$.

Corollary. Functoriality : an S-rational map $\mathscr{X} \dashrightarrow \mathscr{Y}$ induces $\pi_0(\mathscr{X}/S) \to \pi_0(\mathscr{Y}/S)$.

3 Closed components

When \mathscr{X}/S has reduced fibres, approximation of formal elements does not work.

Example : $X = \operatorname{Spec}(R[x]/(x^2 - \pi x))$ over a dvr R.

former open subspace, along the latter closed subspace.

But when \mathscr{X}/S is proper it is natural to look at *closed* substacks $\mathscr{C} \subset \mathscr{X}$ and $\mathscr{I} \subset \mathscr{X}$. The definitions of CCC's and CIC's are the same as the open versions with just open replaced by closed. We also consider one more notion : a RCC = reduced (closed) connected component is a CCC whose geometric fibres are reduced. Accordingly we have functors $\pi_0(\mathscr{X}/S)^c$, $\pi_0(\mathscr{X}/S)^r$, $\operatorname{Irr}_(\mathscr{X}/S)^c$.

Example : X_0 proper geometrically connected over a field k and $X = X_0[\epsilon]$. Then any closed subscheme $Z = V(I) \subset X_0$ gives rise to a CCC, namely $Z' = V(\epsilon I) \subset X$. This gives an isomorphism of functors $\operatorname{Hilb}(X_0) \simeq \pi_0(X/k)^c$. So in this case $\pi_0(X/k)^c$ is huge !

Theorem. \mathscr{X} proper f. p.

- $\pi_0(\mathscr{X}/S)^c$ is representable by a formal algebraic space locally f.p. and separated. - $\pi_0(\mathscr{X}/S)^r$ is representable by a finite, separated formal scheme.

The proof relies on the Hilbert space of \mathscr{X}/S . Inside the Hilbert space, the connected components are the closed substacks $W \subset \mathscr{X}$ whose support is open (open condition), that are geometrically connected (closed condition). So $\pi_0(\mathscr{X}/S)$ is the completion, in the

Theorem. \mathscr{X} proper flat, f.p. with geom. reduced fibres. Let $\mathscr{X} \to \operatorname{St}(\mathscr{X}/S) \to S$ be the Stein factorization. Then :

$$\operatorname{St}(\mathscr{X}/S) \simeq \pi_0(\mathscr{X}/S)^c = \pi_0(\mathscr{X}/S)^r = \pi_0(\mathscr{X}/S)$$

and $\operatorname{Irr}(\mathscr{X}/S)^c$ is open in $\operatorname{Irr}(\mathscr{X}/S)$ and is an étale separated scheme.

Counter-example. Let X be the universal plane conic over the moduli space of plane conics which is $S := \mathbb{P}^5_k$ with $char(k) \neq 2$. One can show that $Irr(X/S)^c$ is not representable by a formal algebraic space. Roughly, the problem is that you can do successive specializations $s_0 \rightsquigarrow s_1 \rightsquigarrow s_2$ in S with X_0 irreducible, X_1 reducible and X_2 irreducible again. This phenomenon is an obstacle to representability.

4 Application to $\mathcal{M}_q(G)$

Proposition.

1) The locus $\mathscr{M}_g(G) \subset \mathscr{M}_g$ is closed, and the corresponding reduced substack over $\mathbb{Z}[1/|G|]$ is flat, f.p. with geometrically reduced fibres.

2) Over $\mathbb{Z}[1/30|G|]$, the scheme $\operatorname{Irr}(\mathscr{M}_g(G))$ is finite étale.

Introduce the stack \mathscr{H} classifying pairs (C, ρ) of a curve and a faithful action of G on C. The schematic image of the obvious map $\mathscr{H} \to \mathscr{M}_g$ is $\mathscr{M}_g(G)$ and its formation commutes with base change. Since \mathscr{H} is smooth over $\mathbb{Z}[1/|G|]$, point 1) follows.

The group $\operatorname{Aut}(G)$ acts on \mathscr{H} by $\theta(C, \rho) = (C, \rho \circ \theta^{-1})$. Set $\mathscr{N} := \mathscr{H} / \operatorname{Aut}(G)$. The map $\mathscr{H} \to \mathscr{M}_g(G)$ induces $\psi : \mathscr{N} \to \mathscr{M}_g(G)$.

Claim : the normalization of $\mathscr{M}_g(G)$ is a disjoint sum of stacks similar to \mathscr{N} . Indeed, to compute the normalization we may assume $\mathscr{M}_g(G)$ irreducible. Let C_η be the generic curve. Replacing G by $G' = \operatorname{Aut}(C_\eta)$ we may assume that $\operatorname{Aut}(C_\eta) = G$. Then ψ is birational and is the normalization.

By normality and functoriality we have $\pi_0(\mathscr{N}/S) \simeq \operatorname{Irr}(\mathscr{N}/S) \simeq \operatorname{Irr}(\mathscr{M}_g(G))$. Moreover there exists a smooth S-compactification $\overline{\mathscr{N}}$. Then $\pi_0(\mathscr{N}/S) \simeq \pi_0(\overline{\mathscr{N}})$. By the theorem, the latter is finite étale hence point 2).