
Néron models of abelian varieties

Matthieu Romagny

Summer School on SGA3, September 3, 2011

Abstract : We present a survey of the construction of Néron models of abelian varieties,
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1 Introduction

Let S be a Dedekind scheme (a noetherian, integral, normal scheme of dimension 1) with
field of rational functions K, and let AK be a K-abelian variety.

A model of AK over S is a pair composed of an S-scheme A and a K-isomorphism
A×S Spec(K) ' AK . Usually, one refers to such a model by the letter A alone. If A is an
S-model of AK , we often say that its generic fibre ”is” AK . The nicest possible model one
can have is a proper smooth S-model, but unfortunately this does not exist in general. In
the search for good models for abelian varieties, Néron’s tremendous idea is to abandon
the requirement of properness, insisting on smoothness and existence of a group structure.
He was led to the following notion.

Definition. A Néron model of AK over S is a smooth, separated model of finite type A
that satisfies the Néron mapping property : each K-morphism uK : ZK → AK from the
generic fibre of a smooth S-scheme Z extends uniquely to an S-morphism u : Z → A.

Our aim is to prove that a Néron model exists. Note that once existence is established,
the universal property implies that the Néron model A is unique up to canonical isomor-
phism; it implies also that the law of multiplication extends, so that A is an R-group
scheme. Therefore it could seem that for the construction of the Néron model, we may
forget the group structure and recover it as a bonus. The truth is that things go the other
way round: the Néron model is constructed first and foremost as a group scheme, and
then one proves that it satisfies the Néron mapping property.

An important initial observation is that AK extends to an abelian scheme over the
complement in S of a finite number of closed points s, so one can reduce the construction
of the Néron model in general to the construction in the local case by glueing this abelian
scheme together with the finitely many local Néron models (i.e. over the spectra of the
local rings OS,s). Therefore it will be enough for us to consider the case where S is the
spectrum of a discrete valuation ring R with field of fractions K and residue field k. We
fix a separable closure k → ks and a strict henselisation R → Rsh; we have an extension
of fractions fields K → Ksh.

If A satisfies the extension property of the above definition only for Z étale, we say
that it is a weak Néron model. Alternatively, it is equivalent to require that A satisfies

1



the extension property for Z = Spec(Rsh), as one can see using the fact that Rsh is the
inductive limit of ’all’ the discrete valuation rings R′ that are étale over R. In contrast
with Néron models, weak Néron models are not unique since their special fibre contains
in general plenty of extraneous components, as we shall see. The Néron model will be
obtained as the rightmost scheme in the following chain (hooked arrows denote open
immersions):

A0

Any flat
proper model

Blowing-up
finitely

many times

A1

Smoothening
of A0

Taking
smooth
locus

A2

Weak
Néron model

Removing
non-minimal
components

A3

Birational
group chunk

Applying
Weil’s

theorem

A4

Néron model

2 Néron’s smoothening process

2.1 Proper flat models and smoothenings

One way to start is to use Nagata’s embedding theorem (see e.g. [Co]) in order to find
an open immersion of AK , viewed as an R-scheme, into a proper R-scheme B. Then
the schematic closure of AK inside B is a proper flat R-model A0. In fact, it follows
from the projectivity of abelian varieties (a classical consequence of the theorem of the
square) that one may choose B to be some projective R-space, but this will not be useful
in the sequel. Then, the valuative criterion of properness implies that the canonical map
A0(Rsh) → AK(Ksh) is surjective. Thus if A0 happened to be smooth, it would be
a weak Néron model of AK ; however, the special fibre A0 ⊗ k may be singular, even
nonreduced (note that it is proper and geometrically connected by [EGA] IV.15.5.9). In
order to recover smoothness at least at integral points, in subsection 2.4 we will produce
a smoothening of A0 as defined in the following.

Definition 2.1.1 Let A be a flat R-scheme of finite type with smooth generic fibre. A
smoothening of A is a proper morphism A′ → A which is an isomorphism on the generic
fibres and such that the canonical map A′sm(Rsh)→ A(Rsh) is surjective, where A′sm is the
smooth locus of A′.

In order to construct a smoothening, we will repeatedly blow up A along geometrically
reduced closed subschemes of the special fibre containing the specializations of the points
of A(Rsh) that are ”maximally singular”, in a sense that we shall define soon. This leads
to consider that the natural object to start with is a pair (A,E) where E is a given subset
of A(Rsh). Note that for any proper morphism A′ → A which is an isomorphism on the
generic fibres, the set E lifts uniquely to A′(Rsh) and we will identify it with its image.
The sense in which the singularity is maximal is measured by two invariants δ(A,E) and
t(A,E) which we now introduce.

2.2 Néron’s measure for the defect of smoothness

Definition 2.2.1 Let A be a flat R-scheme of finite type with smooth generic fibre and
let E be a subset of A(Rsh). For each a : Spec(Rsh)→ A in E, we set
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δ(a) = the length of the torsion submodule of a∗Ω1
A/R.

The integer δ(A,E) = max{δ(a), a ∈ E} > 0 is called Néron’s measure for the defect of
smoothness.

It is easy to see that δ(a) remains bounded for a ∈ E, so that δ(A,E) is finite (see
[BLR] 3.3/3). Moreover, this invariant does indeed measure the failure of smoothness:

Lemma 2.2.2 We have δ(A,E) = 0 if and only if E ⊂ Asm(Rsh).

Proof : Let a ∈ E and let dK = dimaK (AK) and dk = dimak(Ak) be the local dimensions
of the fibres of A. By the Chevalley semi-continuity theorem, we have dK 6 dk. If
δ(a) = 0 then a∗Ω1

A/R is free generated by dK elements. Then, at the point ak, Ω1
Ak/k

can
be generated by dK elements, hence also by dk elements, so that Ak is smooth according
to [EGA] IV4.17.15.5. Being R-flat, the scheme A is smooth at ak and a ∈ Asm(Rsh).
Conversely, if a ∈ Asm(Rsh) then Ω1

A/R is locally free in a neighbourhood of ak and hence

δ(a) = 0. �

2.3 The length of the canonical partition

Starting from a pair (A,E) as above, we define geometrically reduced k-subschemes
Y 1, U1, . . . , Y t, U t of Ak and the canonical partition

E = E1 t E2 t · · · t Et

as follows:

(a) Y 1 is the Zariski closure in Ak of the specializations of the points of E,

(b) U1 is the largest k-smooth open subscheme of Y 1 where Ω1
A/R|Y 1 is locally free,

(c) E1 is the set of points a ∈ E whose specialization is in U1.

Note that Y 1 is geometrically reduced because it contains a schematically dense subset
of ks-points (see [EGA] IV3.11.10.7) and U1 is dense by generic flatness. For i > 1, we
remove E1 t · · · tEi from E and we iterate this construction. In this way we define Y i+1

as the Zariski closure in Ak of the specialization of the points of E \ (E1 t · · · tEi), U i+1

as the largest smooth open subscheme of Y i+1 where Ω1
A/R is locally free, and Ei+1 as

the set of points a ∈ E with specialization in U i+1. Since Ak is noetherian, there is an
integer t > 0 such that Y t+1 = U t+1 = ∅ and we end up with the canonical partition
E = E1 t E2 t · · · t Et.

Definition 2.3.1 We write t = t(A,E) > 1 for the length of the canonical partition.

The crucial ingredient of the smoothening process is given by the following lemma, due
to Néron and Raynaud.

Lemma 2.3.2 Let a ∈ E be such that ak is a singular point of Ak. Assume that a ∈ Ei, let
A′ → A be the blow-up of Yi, and let a′ be the unique lifting of a to A′. Then δ(a′) < δ(a).

Proof : This is an ingenious computation of commutative algebra, which we omit. We
refer to [BLR] 3.3/5. �
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2.4 The smoothening process

For E ⊂ A(Rsh), we denote by Ek the set of specializations of the points of E in the
underlying topological space of Ak. We now make a definition that is tailor-made for an
inductive proof of the theorem below.

Definition 2.4.1 Let A be a flat R-scheme of finite type with smooth generic fibre and
let E be a subset of A(Rsh). We say that a closed subscheme Y ⊂ Ak is E-permissible if
it is geometrically reduced and the set F = Y ∩ Ek satisfies:

(1) F lies in the smooth locus of Y ,

(2) F lies in the largest open subscheme of Y where Ω1
A/R|Y is locally free,

(3) F is dense in Y .

We say that the blow-up A′ → A with center Y is E-permissible if Y is E-permissible.

Theorem 2.4.2 Let A be a flat R-scheme of finite type with smooth generic fibre and
let E be a subset of A(Rsh). Then there exists a morphism A′ → A, a finite sequence of
E-permissible blow-ups, such that each point a ∈ E lifts uniquely to a smooth point of A′.

Proof : We proceed by induction on the integer δ(A,E) + t(A,E) > 1. If δ(A,E) = 0,
then E lies in the smooth locus of A and no blow-up is needed at all; this covers the initial
case of the induction. If δ(A,E) > 1, we consider the canonical partition E = E1t· · ·tEt.
Let A′ → A be the blow-up of the closed subscheme Y t ⊂ Ak, which is Et-permissible by
construction. By lemma 2.3.2, we have δ(A′, Et) < δ(A,Et). By the inductive assumption,
there exists a morphism A′′ → A′ which is a finite sequence of Et-permissible blow-ups
such that each point of Et lifts uniquely to a point in the smooth locus of A′′. If t = 1,
we are done. Otherwise let E′′ ⊂ A′′(Rsh) be obtained by looking at E as a subset of
A′′(Rsh) and removing Et, and for 1 6 i 6 t − 1 let (E′′)i be the set Ei viewed in E′′.
Since A′′ → A is a sequence of Et-permissible blow-ups, it does not affect E1 t · · · tEt−1.
In this way one sees that E′′ = (E′′)1 t · · · t (E′′)t−1 is the canonical partition of E′′,
therefore t(A′′, E′′) < t(A,E). Applying the inductive assumption once again, we obtain
a morphism A′′′ → A′′ which is a finite sequence of E′′-permissible blow-ups such that
points of E′′ lift to smooth points of A′′′. Then A′′′ → A is the morphism we are looking
for. �

3 Weak Néron models

3.1 Reminder on rational maps

Let X,Y be flat, finitely presented schemes over a scheme S. We recall that an open
subscheme U ⊂ X is S-dense if Us is schematically dense in Xs for all points s ∈ S. An S-
rational map u : X 99K Y is an equivalence class of morphisms U → Y with open S-dense
domain, where U → Y and V → Y are equivalent if they agree on an S-dense sub-open
subscheme W ⊂ U ∩V . An S-birational map is an S-rational map that can be represented
by a morphism U → Y inducing an isomorphism with an S-dense open subscheme of Y . If
Y → S is separated, there is a maximal S-dense open subscheme U ⊂ X with a morphism
U → Y representing u, called the domain of definition of u. Its reduced complement is
called the exceptional locus of u.
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3.2 The weak Néron mapping property

We started Section 2 with the schematic closure A0 of our abelian variety AK inside some
proper R-scheme B. According to theorem 2.4.2 applied with E = A0(Rsh), there exists
a proper morphism A1 → A0 which is an isomorphism on the generic fibre, such that the
smooth locus A2 = (A1)sm is a weak Néron model. We now prove that weak Néron models
satisfy a significant positive-dimensional reinforcement of their defining property.

Proposition 3.2.1 Let A be a weak Néron model of AK . Then A satisfies the weak
Néron mapping property : each K-rational map uK : ZK 99K AK from the generic fibre
of a smooth R-scheme Z extends uniquely to an R-rational map u : Z 99K A.

Note that conversely, if the extension property of the proposition is satisfied for a
smooth and separated model A of finite type, then one sees that A is a weak Néron model
by taking Z = Spec(R′) for varying étale extensions R′/R.

Proof : Since A is separated, we can first work on open subschemes of Z with irreducible
special fibre and then glue. In this way, we reduce to the case where Z has irreducible
special fibre. Then removing from Z the scheme-theoretic closure of the exceptional locus
of uK , we may assume that uK is defined everywhere. Let ΓK ⊂ ZK ×AK be the graph of
uK , let Γ ⊂ Z×A be its scheme-theoretic closure, and let p : Γ→ Z be the first projection.
On the special fibre, the image of pk contains all ks-points zk ∈ Zk: indeed, since Z is
smooth each such point lifts to an Rsh-point z ∈ Z(Rsh) with generic fibre zK , and since
A is a weak Néron model the image xK = uK(zK) extends to a point x ∈ A(Rsh), giving
rise to a point γ = (z, x) ∈ Γ such that zk = pk(γk). Since the image of pk is constructible,
containing the dense set Zk(k

s), it contains an open set of Zk.
In particular, the generic point η of Zk is the image of a point ξ ∈ Γk. Since the

local rings OZ,η (a discrete valuation ring with the same uniformizer as R) and OΓ,ξ are
R-flat and OZ,η → OΓ,ξ is an isomorphism on the generic fibre, one sees that OΓ,ξ is
included in the fraction field of OZ,η. Given that OΓ,ξ dominates OZ,η, it follows that
OZ,η → OΓ,ξ is an isomorphism. The schemes Z and Γ being of finite presentation over R,
the local isomorphism around ξ and η extends to an isomorphism U → V between open
neighbourhoods U ⊂ Γ and V ⊂ Z. By inverting this isomorphism and composing with
the projection Γ→ A, one obtains an extension of uK to V . �

4 The Néron model

In the final step of the construction, we make crucial use of the group structure of AK
and in particular of the existence of invariant volume forms.

4.1 Invariant differential forms and minimal components

Quite generally, if S is a scheme and G is a smooth S-group scheme of relative dimension d,
it is known that the sheaf of differential forms of maximal degree Ωd

G/S = ∧dΩ1
G/S is an

invertible sheaf that may be generated locally by a left-invariant differential form (see
[BLR] 4.2). This implies that on the Néron model of AK , provided it exists, there should be
a left-invariant global non-vanishing d-form, also called a left-invariant volume form, with
d = dim(AK). It is the search for such a form that motivates the following constructions.
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We start by choosing a left-invariant volume form ω for AK , uniquely determined up to a
constant in K∗.

Lemma 4.1.1 The left-invariant differential form ω is also right-invariant.

Proof : We must prove that for each K-scheme T and each point x ∈ AK(T ), we have
ρ∗xω = ω where ρx : AK × T → AK × T is the right-multiplication morphism. The
argument will be functorial in T so for notational simplicity we may just as well restrict
to T = Spec(K) and assume that x is a K-rational point. Consider the left-multiplication
morphism λx : AK → AK and the conjugation cx = λx ◦ ρx−1 . Using the left-invariance
of ω, we see that c∗xω = ρ∗x−1ω. Moreover since cx is a group scheme automorphism, the
form c∗xω is a left-invariant differential form, hence there exists a constant χ(x) ∈ Gm(K)
such that c∗xω = χ(x)ω. Using the fact that c : AK → Aut(AK) is a morphism of group
schemes, one sees that in fact χ defines a character AK → Gm. Since AK is proper, this
map must be trivial i.e. χ = 1. Finally ρ∗x−1ω = c∗xω = ω, as desired. �

If A is a model of AK which is smooth, separated and of finite type, then all its fibres
have pure dimension d and the sheaf of differential d-forms Ωd

A/R = ∧dΩ1
A/R is invertible.

Moreover, if η is a generic point of the special fibre Ak, its local ring OA,η is a discrete
valuation ring with maximal ideal generated by a uniformizer π for R. Then the stalk of
Ωd
A/R at η is a free OA,η-module of rank one which may be generated by π−rω for a unique

integer r ∈ Z called the order of ω at η and denoted ordη(ω). If W is the irreducible
component with generic point η, this is also called the order of ω along W and denoted
ordW (ω). Moreover, if ρ denotes the minimum of the orders ordW (ω) along the various
components of Ak, then by changing ω into π−ρω we may and will assume that ρ = 0. A
component W with ordW (ω) = 0 will be called minimal.

In the previous sections, we saw that blowing up in a clever way finitely many times
in the special fibre of a model of AK , and removing the non-smooth locus, we obtained
a weak Néron model A2. Now, we consider the open subscheme A3 ⊂ A2 obtained by
removing all the non-minimal irreducible components of the special fibre.

Lemma 4.1.2 The section ω extends to a global section of Ωd
A2/R

and its restriction to

A3 is a global generator of Ωd
A3/R

.

Proof : Since A2 is normal and ω is defined in codimension 6 1, it extends to a global
section of Ωd

A2/R
. Now, recall that the zero locus of a nonzero section of a line bundle on

an integral scheme has pure codimension 1. Thus since the restriction of ω to A3 does
not vanish in codimension 6 1, it does not vanish at all and hence extends to a global
generator of Ωd

A3/R
. �

4.2 The Néron model

Now we denote by mK : AK ×AK → AK the multiplication of the abelian variety AK .

Theorem 4.2.1 The morphism mK : AK × AK → AK extends to an R-rational map
m : A3 ×A3 99K A3 such that the R-rational maps Φ,Ψ : A3 ×A3 99K A3 ×A3 defined by

Φ(x, y) = (x, xy)

Ψ(x, y) = (xy, y)

6



are R-birational. In other words, m is an R-birational group law on A3.

Proof : Applying the weak Néron mapping property (proposition 3.2.1), we can extend
mK to an R-rational map m : A3×A2 99K A2. We wish to prove that m induces a rational
map A3 × A3 99K A3. Let D ⊂ A3 × A2 be the domain of definition of m. We define a
morphism ϕ : D → A3×A2 by the formula ϕ(x, y) = (x, xy) and we view it as a morphism
of A3-schemes in the obvious way. Denote by the same symbol ω′ the pullback of ω via
the projection pr2 : A3 × A2 → A2 and its restriction to D. We claim that ϕ∗ω′ = ω′:
indeed, this holds on the generic fibre because ϕ is an A3-morphism of left translation, so
this holds everywhere by density. Now let ξ = (α, β) be a generic point of the special fibre
of A3 × A3 and η = (α, γ) its image under ϕ. Let r = ordγ(ω) = ordη(ω

′) > 0. Then ω′

is a generator of Ωd
D/A3

at ξ and π−rω′ is a generator of Ωd
A3×A2/A3

at η. It follows that

ϕ∗(π−rω′) = bω′ for some germ of function b around ξ. Since ϕ∗(π−rω′) = π−rω′, this
implies that r = 0 hence η ∈ A3 ×A3. This shows that the set of irreducible components
of the special fibre of A3 × A3 is mapped into itself by ϕ. Setting U = D ∩ (A3 × A3) we
obtain morphisms ϕ : U → A3 × A3 and m = pr2 ◦ϕ : U → A3 that define the sought-for
rational maps. Proceeding in the same way with the morphism ψ : D → A3 ×A2 defined
by ψ(x, y) = (xy, y), we see that it also induces a morphism ψ : U → A3×A3. In this way
we obtain the R-rational maps m,Φ,Ψ of the theorem.

In order to prove that Φ induces an isomorphism of U onto an R-dense open subscheme,
we show that ϕ : U → A3 ×A3 is an open immersion. We saw above that the map

ϕ∗Ωd
A3×A3/A3

→ Ωd
U/A3

takes the generator ω′ to itself, so it is an isomorphism. This map is nothing else than the
determinant of the morphism

ϕ∗Ω1
A3×A3/A3

→ Ω1
U/A3

on the level of 1-forms which thus is also an isomorphism. It follows that Eϕ is étale,
and in particular quasi-finite. Since it is an isomorphism on the generic fibre, it is an
open immersion by Zariski’s Main Theorem ([EGA] IV3.8.12.10). One proves the required
property for Ψ in a similar way. �

If follows from Weil’s extension theorem for birational group laws that there exists a
smooth separated R-group scheme of finite type A4 sharing with A3 and R-dense open
subscheme A′3 and whose group law extends m. We refer to our previous lecture for an
exposition of this theorem. Note that it can be shown easily that in fact one may choose
A′3 = A3, that is, A3 embeds as an R-dense open subscheme of A4 (see [BLR] 5.1/5). The
last thing we wish to do is to check that A4 is the Néron model of AK :

Proposition 4.2.2 The group scheme A4 is the Néron model of AK , that is, each K-
morphism uK : ZK → AK from the generic fibre of a smooth R-scheme Z extends uniquely
to an R-morphism u : Z → A4.

Proof : Let us consider the K-morphism τK : ZK × AK → AK defined by τK(z, x) =
uK(z)x. Applying the weak Néron mapping property, this extends to an R-rational map
τ2 : Z ×A2 99K A2. In a similar way as in the proof of 4.2.1, one proves that the induced
R-rational map Z × A2 99K Z × A2 defined by (z, x) 7→ (z, τ2(z, x)) restricts to an R-
rational map Z × A3 99K Z × A3. Since A3 is R-birational to A4, the latter may be seen
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as an R-rational map Z × A4 99K Z × A4. Composing with the second projection, we
obtain an R-rational map τ4 : Z × A4 99K A4 extending the map τK . By Weil’s theorem
on the extension of rational maps from smooth R-schemes to smooth and separated R-
group schemes ([BLR] 4.4/1), the latter is defined everywhere and extends to a morphism.
Restricting τ4 to the product of Z with the unit section of A4, we obtain the sought-for
extension of uK . The fact that this extension is unique follows immediately from the
separation of A4. �

Remark 4.2.3 Raynaud proved that the Néron model A4 is quasi-projective over R. In
fact, one knows that there exists an ample invertible sheaf LK on AK . Raynaud proved
that there exists an integer n such that the sheaf (LK)⊗n extends to an R-ample invertible
sheaf on A4, see [Ra], theorem VIII.2.
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Mathematik und ihrer Grenzgebiete (3) 21, Springer-Verlag, 1990.

[Co] B. Conrad, Deligne’s notes on Nagata compactifications, J. Ramanujan Math. Soc.
22 (2007), 205–257.
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