
Algebraic stacks
Matthieu Romagny

These notes accompany my talk at the Séminaire RéGA (Paris) on Wed. 16th, November 2022.
The reader is expected to be familiar with schemes and sheaf theory (for the fppf and/or étale
topologies). Throughout, a base scheme B is fixed and most of the time absent from notation.

1 Moduli functors

1.0.1 Prehistory : classification problems. Algebraic stacks appeared with the needs of clas-
sification questions in algebraic geometry. Indeed, such questions were central from the very be-
ginnings of the discipline. To quote Hartshorne’s celebrated algebraic geometry textbook : ‘In any
branch of mathematics, there are usually guiding problems, which are so difficult that one never
expects to solve them completely, yet which provide stimulus for a great amount of work, and which
serve as yardsticks for measuring progress in the field. In algebraic geometry such a problem is the
classification problem. In its strongest form, the problem is to classify all algebraic varieties up to
isomorphism’ (Chapter I, § 8 in [Ha77]).

In algebraic geometry, such classification questions have a special flavour. In fact, in the earliest
beginnings of the discipline, when the notion of variety emerged, it was realized that geometric
objects of a given type could quite often be described by parameters (called ‘moduli’ by Riemann)
varying in an algebraic variety (called a ‘moduli space’). In some sense such moduli spaces had
been considered for a long time : indeed, lines in a vector space are classified by a projective space.
But for more sophisticated objects like abstract projective smooth connected curves of genus g, of
whose elusive moduli space Riemann himself found the dimension 3g−3, this was a truly fantastic
discovery. As it turns out, this idea that ‘nice’ objects should have ‘nice’ moduli spaces pervaded
algebraic geometry until the present day and helped shape the concept of moduli space : higher
and derived algebraic geometry, and the principle of ‘hidden smoothness’, testify to this.

1.0.2 History : moduli functors and sheaves. The first genuine definition of moduli space
was given by Grothendieck in the late 1950’s with the advent of scheme theory. In his talks
‘Techniques de construction et théorèmes d’existence en géométrie algébrique’ at the Bourbaki
seminar in the years 1959–1962 (known as ‘Fondements de la géométrie algébrique’), he claimed
that a classification problem should be defined by a functor of flat families of objects of a given
type and that a moduli space should be a a scheme representing this functor – provided such
a scheme exists. That is, there should exist a scheme M such that the functor F which to S
associates the set of isomorphism classes of objects C → S is isomorphic to Hom(−,M). Here
considering isomorphism classes is necessary in order for F (S) to be a set ; it appears a natural
thing to do at this stage.

Example 1. (Genus g curves) Throughout the notes we call curve over S a flat, proper, finitely
presented morphism C → S whose fibres are smooth, projective, geometrically connected curves.
Then the moduli functor of curves is defined by F (S) := the set of isomorphism classes of curves
of genus g.
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1.0.3 Why killing isomorphisms is a problem. At the same time, Grothendieck discovered
that being representable imposes a strong condition on a functor : namely, it should be a sheaf
for the fppf topology. Recall what this means : the functor of points Hom(−,M) of a scheme M
transforms sums into products, and for all faithfully flat, finitely presented morphisms S ′ → S,
the diagram

Hom(S,M) Hom(S ′,M) Hom(S ′ ×S S
′,M)

is exact. Shifting the focus to the objects classified by some moduli functor F , since isomorphisms
provide glueing data for objects relative to fppf coverings S ′ → S, it is not surprising that passing
to isomorphism classes in defining the values F (S) of a moduli functor tends to destroy the sheaf
property.

Example 2. (G-torsors) Here is an example where the map F (S) → ker(F (S ′) ⇒ F (S ′ ×S S
′))

is not injective. Let G → B be a flat, finitely presented group scheme. Write GS := G ×B S.
Recall that a GS-torsor is a flat, finitely presented scheme E → S with a free, transitive action
of GS, that is GS ×S E → E ×S E, (g, x) 7→ (x, gx) is an isomorphism. Let F (S) be the set of
isomorphism classes of GS-torsors on S. For any nontrivial torsor E → S, and S ′ := E, the torsor
classes [E], [G] ∈ F (S) have the same image in F (S ′).

Example 3. (the Picard functor) Here is an example where the map F (S) → ker(F (S ′) ⇒
F (S ′ ×S S

′)) is not surjective. Let X be a smooth projective curve of genus 0 over R with no
real point (e.g. the smooth plane conic with equation x2 + y2 + z2 = 0). Let F = PicX/R be the
(absolute) Picard functor ofX/R, defined by F (S) = Pic(XS). Set S = Spec(R) and S ′ = Spec(C).
Let L′ ∈ F (S ′) = Pic(XC) be a line bundle of degree 1. Since complex conjugation σ preserves the
degree of line bundles, there exists an isomorphism L′ ' σ∗L′. However, L′ is not the pullback of
a line bundle L over X. Indeed, for such an L we would have deg(L) = 1, hence h0(S, L) = 2 by
Riemann-Roch, so L ' O(D) for some effective divisor D (e.g. the divisor of zeroes of a nonzero
global section of L), a contradiction with the fact that X has no effective divisor of degree 1.

In special situations the sheafification of the functor of isomorphism classes is a better object
(especially when ‘being isomorphic’ is a flat equivalence relation), but most of the time it is not.

Example 4. (the sheaf of orbits) Here is an example where the sheaf of isomorphism classes is
not representable. Let G be a flat, finitely presented group scheme acting on a scheme X. Let

Orb(S) =
{
GS-equivariant maps ω : E → XS where E → S is a GS-torsor

}
/ ' .

Here an isomorphism ω → ω′ is a GS-equivariant morphism u : E → E ′ such that ω′ ◦ u = ω. The
objects ω ∈ Orb(S) are called ‘orbits’ because up to isomorphism ω is identified with its image
sheaf in X, which is a subsheaf with transitive G-action.

The sheaf of orbits F is the sheafification of Orb. It is of fundamental importance because it
gives the moduli interpretation of the quotient X/G in the category of sheaves. We sketch a proof
that indeed F satisfies the universal property of the quotient sheaf. For each G-invariant map
f : X → Y to a sheaf Y , define F → Y as follows. It is enough to define a map Orb → Y . Let
ω ∈ Orb(S), that is, ω : E → XS a G-equivariant morphism and E → S is a GS-torsor. Then
x := f ◦ ω : E → YS is G-invariant, i.e. the two pullbacks of x ∈ YS(E) in YS(G×S E) are equal.
Given the torsor property G ×S E ' E ×S E, this means that x ∈ ker(YS(E) ⇒ YS(E ×S E)).
Since YS is a sheaf, x descends to a uniquely defined S-point y ∈ Y (S). Then the map F (S) →
Y (S), ω 7→ y factors f .
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As a general rule the sheaf F = X/G is not representable by a scheme ( 1). Here is an example
from Brochard [Br14], 3.10.2. Working over the field of complex numbers k = C, let X = A1

be the affine line and G = Z/2Z act by x 7→ −x. We leave it as an exercise to verify that
the quotient map in the category of schemes is π : X → A1, x 7→ x2. On the other hand, the
quotient presheaf P is described by P (S) = Γ(S,OS)/{±1} (quotient of multiplicative monoids).
Assume that the quotient sheaf X/G is representable by a scheme. Then it satisfies the universal
property of the quotient in the category of schemes, hence X/G = A1 canonically. Thus π factors
as X → P → X/G = A1. We will derive a contradiction. Consider T = Spec(C[ε]/(ε2)) and the
points x0, x1 ∈ X(T ) defined by x 7→ 0 and x 7→ ε. Since π(x0) = π(x1), by construction of the
associated sheaf the images of x0 and x1 in P (T ) have equal restrictions to some fppf cover T ′ → T
which may be assumed affine. This implies that ε maps to 0 in Γ(T ′,OT ′)/{±1}, hence already in
Γ(T ′,OT ′). This is impossible, because by faithful flatness Γ(T,OT )→ Γ(T ′,OT ′) is injective.

2 How not to kill isomorphisms : prestacks and stacks

2.1 Prestacks

As early as 1963, Grothendieck’s ideas on descent and topologies prompted Mumford to in-
troduce stacks, see [Mu63]. From a categorical point of view, the basic novelty is to allow moduli
functors to take values in categories rather than sets.

2.1.1 Definition. A prestack (in groupoids) is given by three collections of data :
(i) categories F (S) where all morphisms are isomorphisms (a.k.a. groupoids), for all schemes S,
(ii) functors f ∗ : F (S)→ F (S ′) for all morphisms f : S ′ → S,
(iii) isomorphisms of functors cf,g : (fg)∗ → g∗f ∗ satisfying an ‘obvious’ condition of compati-

bility for triple compositions.
A morphism of prestacks is a collection of functors F (S) → G (S) compatible with the pull-
backs f ∗.

2.1.2 Remarks.
1. In practice the f ∗ will be obvious pullbacks and the cf,g will be obvious canonical isomor-

phisms.
2. Sometimes it is convenient to package {F (S)} as a single big category F whose objects

are pairs (S, x) with x ∈ F (S), and whose morphisms (S ′, x′) → (S, x) are morphisms
x′ → f ∗x in F (S ′). In this case there is a functor pF : F → (Schemes), (S, x) 7→ S and one
calls F (S) the fibre category of F at S. A synonym for prestack in groupoids is category
fibred in groupoids. In this guise, a morphism of prestacks is a functor u : F → G such that
pF = pG ◦ f .

3. Since any set can be viewed as a category all whose morphisms are identities, any fonctor
F : (Schemes)→ (Sets) can be viewed as a prestack.

4. There is a 2-Yoneda lemma which is just as useful and flexible as the classical one :
for all schemes S and prestacks F , the natural functor is an equivalence of categories
Hom(S,F ) ∼−→ F (S).

1. Or even by an algebraic space, if the reader knows what this is. In this talk we will stay silent about algebraic spaces.
For readers wo don’t know about this notion, it will be only a mild distortion of reality to consider that they are the same
thing as schemes.
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2.2 Stacks

In order to define stacks, the categorically enhanced analogues of sheaves, we need to add a
condition meaning that objects and morphisms glue. For this we introduce :

• for objects x, y ∈ F (S), the presheaf of (iso)morphisms IsomF (x, y),
• for an fppf covering map S ′ → S, the category of S ′-objects with descent data F dd(S ′ → S).

The former is the functor S ′ 7→ IsomF (S′)(xS′ , yS′). The latter is the category of pairs (x′, α)
where x′ ∈ F (S ′) and α : p∗1x

′ ∼−→ p∗2x
′ is an isomorphism such that p∗13α = p∗23α ◦ p∗12α. Here

pi : S ′ ×S S
′ → S ′, pij : S ′ ×S S

′ ×S S
′ → S ′ ×S S

′ are the projections.

2.2.1 Definition. F is a stack if it transforms sums into products and the following conditions
hold :

(i) for each x, y ∈ F (S) the presheaf IsomF (x, y) is a sheaf ;
(ii) for each fppf covering S ′ → S the natural functor F (S)→ F dd(S ′ → S) is an equivalence.

A morphism of stacks, or 1-morphism of stacks, is a morphisms of prestacks. An isomorphism of
stacks is a morphism which is an equivalence of categories. (One can show that this is the same
thing as a functor which is fully faithful and locally essentially surjective.)

Warning : we see that the notion of isomorphism of stacks which is in use is not the categorical
notion.

2.2.2 Examples. All the examples of Section 1 have enhanced stack versions :
1. The stack of curves of genus g > 2 is the stack Mg with objects the curves C → S of

genus g.
2. The classifying stack of G is the stack BG with objects the G-torsors E → S.
3. The Picard stack of X/B is the stack PicX/B with objects the line bundles L→ XS.
4. The quotient stack of X by G is the stack [X/G] with objects the pairs (E,ω) where E → S

is a GS-torsor and ω : E → XS is a GS-equivariant morphism.
In each case, the isomorphisms in the fibre categories are the obvious ones.

2.2.3 Two useful notions.
1. There is a stackification process analogous to sheafification.
2. A stack F has a sheaf of isomorphism classes F = F /' and this construction is left

adjoint to the inclusion of sheaves into stacks. A stack ‘is’ a sheaf iff objects have trivial
automorphism groups, iff the map F → F /' is an isomorphism.

2.2.4 The 2-category of stacks. A crucial point is that prestacks and stacks do not form a
category but rather a 2-category. This is simply because ‘equality’ of objects is not a natural notion
and should be replaced by the datum of an isomorphism. That this is natural and necessary for the
theory to work well can be seen in a zillion ways (and is in fact the reason why we left the world
of functors of isomorphism classes). Here is one. Consider the projective line X = P1

k = U0 ∪ U1

and its standard covering by affine lines. Then glueing of sheaves should result in an equivalence
of categories

PicX/k
∼−→PicU0/k ×PicU0∩U1/k

PicU1/k.

Of course this is possible only if the indicated fibred product is the category of triples (L0, L1, α)
with an isomorphism α : L0|U0∩U1

∼−→ L1|U0∩U1
rather than an equality (what would ‘equality’

mean anyway ?).
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We collect in one single definition two concepts of 2-category theory relevant to stacks.

2.2.5 Definition.
1. Let u, v : F → G be 1-morphisms between prestacks. A 2-morphism α : u→ v is a natural

transformation of functors. (Since all morphisms in G are isomorphisms, such a 2-morphism
is necessarily an isomorphism.)

2. Let u : F → H , v : F → H be 1-morphisms of prestacks. The (2-)fibred product
F ×H G is the prestack whose S-points are triples (x, y, α) with x ∈ F (S), y ∈ G (S)
and α : u(x) ∼−→ v(y) an isomorphism in H (S). Note that if F ,G are stacks then so is
F ×H G .

3 How to do geometry : algebraic stacks

3.1 Algebraic stacks

The algebraic structure on a scheme is given by the existence of coverings in the Zariski topology
by affine schemes. A stack will be declared algebraic if it has such a covering in the étale or the
smooth topology. In order to make sense of this we need the following notion.

3.1.1 Definition. A morphism of stacks u : F → G is called representable (by schemes, resp. by
algebraic spaces) if whenever v : S → G is a morphism from a scheme S (viewed as a stack), the
fibred product F ×G S is representable (by a scheme, resp. by an algebraic space).

3.1.2 Examples.
1. Mg,n →Mg. Let Mg,n be the stack of n-pointed curves, i.e. tuples (C, σ1, . . . , σn) composed

of a curve C → S together with fibrewise disjoint sections σi : S → C. There is an obvious
forgetful map u : Mg,n →Mg which is representable. Indeed, given a morphism S →Mg,
which by Yoneda is a curve C → S, the fibred product (the ‘fibre of u at C’) is representable
by the scheme Cn\∆ where ∆ is the fat diagonal, where at least two components are equal.

2. Let f : G → H be a morphism of flat group schemes of finite presentation. Then to any
GS-torsor E → S we can attach the HS-torsor E ×GS HS, the contracted product, which
is the quotient of E × HS by the G-action g · (e, h) = (f(g)h, g−1e). This gives rise to a
morphism of stacks BG → BH which is representable only when f is a monomorphism
(exercise left to the reader).

3. n : PicX/k → PicX/k. For each n ∈ Z there is an n-power map L 7→ L⊗n on the Picard
stack. This map is not representable. Indeed, let S →PicX/k be a map, i.e. a line bundle L
on XS. The fibred product n−1(L) := PicX/k ×n,PicX/k,L S is the category whose T -points
are pairs (M,α) whereM ∈Pic(XT ) and α : M⊗n ∼−→ LT is an isomorphism. An automor-
phism of (M,α) is an automorphism of line bundles ϕ : M →M such that u◦ϕ⊗n = u. Since
automorphisms of line bundles are just sections of Gm,XT

we find that ϕ should be a root
of unity. Finally Aut(M,α) = fT,∗µn where f : X → Spec(k) is the structure morphism. In
particular, the stack n−1(L) has fibre categories which are not equivalent to sets.

4. [X/G]→ BG. The forgetful map which given a GS-equivariant morphism ω : E → XS with
source E → S remembers only E → S and forgets the map to X, is representable. Indeed,
the fibre at some torsor E → S is representable by the functor HomG(E,X), which is a
scheme (or rather an algebraic space in general).
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3.1.3 Lemma. Let F be a stack and ∆ : F → F ×F its diagonal mapping. The following are
equivalent.

1. The morphism ∆ is representable.
2. Each morphism U → F from a scheme is representable.
3. For any two morphisms U → F , V → F from schemes, the fibred product U ×F V is

representable.
4. For any two objects x, y ∈ F (U), the sheaf of isomorphisms IsomF (x, y) is representable.

The main point of the proof is to observe that when the objects in 4. are seen as morphisms
x, y : U → F then the stack U ×F U is isomorphic to the sheaf IsomF (x, y). We omit the proof,
which is playing with the definitions. The reason why the lemma is important comes from the
following meaningful definition.

3.1.4 Definition. Let u : F → G be a representable map of stacks. Let P be a property of
morphisms of schemes which is stable by base change. We say that u has property P if for all
morphisms U → G from a scheme, the morphism F ×G U → U has property P . (Note that
F ×G U is a scheme !)

F ×G U U

F Gu

We are in position to define algebraicity.

3.1.5 Definition. We say that a stack F is algebraic if the following conditions are satisfied :
(i) The diagonal ∆ : F → F ×F is representable.
(ii) There exists a scheme U and a smooth, surjective morphism U → F .

The map U → F is called a smooth atlas or a smooth presentation for F .

3.1.6 Examples. Under appropriate conditions, our four preferred examples are algebraic stacks.
We review them in an order adapted to our arguments.

4. Let G be a flat, finitely presented group scheme acting on a scheme X. It is easy to see
that the fibre of the map X → [X/G] at a point S → [X/G] incarnated by ω : E → XS

is isomorphic to E. From this follows that if G is smooth over the base (so each GS-torsor
E → S is smooth also), then X → [X/G] is smooth thus we can take U = X as a smooth
atlas. (If G si only assumed flat, then similarly X → [X/G] is flat ; and a theorem of Artin
shows that if a stack has an fppf atlas, then it is algebraic.)

2. The stack BG is [X/G] with X = B, the base scheme : a special case of the previous point.
1. Let g > 2. Then for any genus g curve f : C → S the cube ω⊗3C/S of the canonical sheaf is very

ample. Hence the canonical map C → P(f∗ω
⊗3
C/S) is a closed embedding. Locally over S there

exist isomorphisms P(f∗ω
⊗3
C/S) ' P5g−6 and any two such isomorphisms differ by an element

of PGL5g−5. Now building on the Hilbert scheme, there is a schemeHg which classifies curves
inside P5g−6. Assembling these remarks, we have an isomorphism [Hg/PGL5g−5]

∼−→ Mg.
Hence Mg is a quotient stack by a smooth group, which is algebraic.

3. Assume that X is flat, projective, of finite presentation over the base B. Then a theorem
of Brochard [Br09], building on deep results of Artin giving criteria for algebraicity, states
that PicX/B is algebraic.
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3.2 Line bundles on algebraic stacks

In this section F is an algebraic stack. We present a simplified version of the sheaf theory
on F which is enough for our needs. For a more complete account we refer to Olsson [Ol16].

3.2.1 Definition. A quasi-coherent sheaf M = {MU} on F is given by the following data :
(i) a collection of quasi-coherent sheaves MU on U , for each smooth morphism U → F ,
(ii) a collection of isomorphisms ρV,U : f ∗MU

∼−→ MV , for all morphisms f : V → U , satisfying
the transitivity condition ρW,V ◦ g∗ρV,U = ρW,U for compositions W g−→ V

f−→ U .
We say that M is locally free of rank r (resp. an invertible sheaf, or line bundle) if each MU is.

There is a Picard group (Pic(F ),⊗) and also a Picard stack PicF/B (see [Br09]).

3.3 Gerbes

Finally we introduce a kind of stack which is somehow the opposite example of a sheaf : this is
the notion of gerbe. Loosely speaking, a gerbe is a kind of twisted form of a classifying stack BG.

3.3.1 Definition. A stack F is called a gerbe if the following two conditions hold :
(i) F is locally nonempty, that is, for any scheme S there exists a cover in the fppf topology

S ′ → S such that F (S ′) 6= ∅. (Clearly it suffices to find some S ′ = B′ for the base scheme
S = B.)

(ii) F is locally connected, that is, for any scheme S, any two objects x, y ∈ F (S) are locally
(over S) isomorphic.

A morphism of stacks u : F → G is called a gerbe if it is representable by gerbes, that is, if for
all morphisms S → G from a scheme, the fibred product F ×G S is a gerbe over S. Equivalently,
the fibres of u are locally nonempty and locally connected.

There is a related notion of G-gerbe where a group scheme is part of the data. We give two,
nonequivalent variants which appear in the literature.

3.3.2 Definition. Let G be a flat, finitely presented group scheme.
1. ([EHKV01], § 3) A G-gerbe is a gerbe F such that there exists a faithfull flat locally finitely

presented map S ′ → S and an isomorphism F ×S S
′ ∼−→ BG×S S

′.
2. (see [Ol16], § 12.2) A G-gerbe is a gerbe F together with isomorphisms ιx : GS

∼−→ AutS(x),
for all S and x ∈ F (S), such that cf ◦ ιx = ιy for all morphisms f : x → y (here cf :
AutS(x)→ AutS(y) is conjugation by f).

The prototypical example of a gerbe is BG, because any two torsors are locally isomorphic
(to the trivial torsor). Or rather, to make the local nonemptiness condition (i) nontrivial, the
prototypical example of a gerbe is a twisted form of BG as in the first example below.

3.3.3 Examples.
1. (Gerbes of models of a torsor) Let k∗/k be a field extension ; for each k-scheme X write
X∗ := Xk∗ . Let G be a finitely presented k-group scheme and P → Spec(k∗) a G∗-torsor.
Let F (S) be the category of pairs (E, u) where E → S is a GS-torsor and u : ES∗

∼−→ PS∗

is an isomorphism of torsors (note that ES∗ is a base change from S while PS∗ is a base
change from k∗). Then F is a gerbe. For a more complete treatment see Giraud [Gi71],
V.3.1.6.
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2. (Root stacks) Let Pic = Pick/k be the Picard stack of the point, a particular case of
the Picard stack PicX/k. Then we saw that given a line bundle L ∈ Pic(S), i.e. a point
S →Pic, the fibre of the morphism n : Pic→Pic at L is the ‘stack of n-th roots of L’
composed of pairs (M,α) where M ∈Pic(T ) and α : M⊗n ∼−→ LT . This is a µn-gerbe.

3. (Elliptic curves) Let E ll/k be the Deligne-Mumford compactification of the moduli stack
of elliptic curves, over a field k of characteristic prime to 6. Then one can show that E ll is
isomorphic to the stacky projective line P1(4, 6), the stack quotient [A2\{0}]/Gm where Gm

acts with weights 4 and 6 on the coordinates. Note that gcd(4, 6) = 2, which is related to
existence of the elliptic involution. The natural morphism E ll = P1(4, 6)→ P1(2, 3) makes
E ll a Z/2Z-gerbe over P1(2, 3). For more details see e.g. [Be13], 4.1.3.

4. More examples can be found on the MathOverflow post
https://mathoverflow.net/questions/263832/phenomena-of-gerbes.

5. Even more examples in Siddharth Mathur’s talk to come ! (Indeed my talk was followed by
a talk by Siddharth Mathur.)
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