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Introduction

The aim of this Master Thesis is to introduce and study unipotent algebraic group schemes over a
perfect or imperfect ground field.

The first chapter begins with the definition of unipotency, proves that such groups naturally identify as
subgroups of unipotent upper triangular matrices and deduces some fundamental properties.
The second chapter covers the theory of commutative unipotent algebraic groups over a perfect field,
having as aim to establish an equivalence of categories between them and the so called Dieudonné
modules.
Then, the texts proceeds further on with a brief discussion of the motivations leading to the study of the
theory of unipotent groups over arbitrary fields of nonzero characteristic, mainly developed by ]. Tits in
the 1960’s. In particular, the following very recent rigidity result by Z. Rosengarten (to appear, 2021) is
mentioned.

Theorem 1 (Rosengarten). Let G and H be group schemes of finite type over a field k of degree of imperfection 1.
Assume that G is unirational and that H is solvable and does not contain a k-subgroup isomorphic to G,. Then any
k-scheme morphism f: G — H such that f(1c) = 1y is a homomorphism of k-group schemes.

Finally, the last chapter develops Tits” theory in detail, from a preliminary study of subgroups of vector
groups, to the definition of the wound property, concluding with a result of triviality of actions by tori on
such groups:

Theorem 2. Let T be a k-torus and U a smooth connected unipotent algebraic group over k. If U is k-wound, the
only T-action on U is the trivial one.

I would like to thank my supervisor Matthieu Romagny for all the help and advice he has given me
during my first year in France.

Notations

Throughout this text, k denotes a field, which starting from the second chapter is assumed to be of

nonzero characteristic, and R denotes a commutative k-algebra. Given a field k, an algebraic closure kis
fixed and ks denotes the separable closure inside of k. Whenever it is not specified, tensor products are to
be considered over the base field k; analogously, fiber products are to be considered over Speck.
An algebraic group over k, or a k-group is a group scheme of finite type over k, and all algebraic groups
are to be considered affine. All constructions are to be included in the setting of scheme theory : the
Yoneda lemma is often used in order to describe a group scheme or a scheme in terms of its functor of
points and to work respectively with abstract groups or sets.

Comparison with the reductive case

In order to introduce the topic properly, it is natural to highlight the role of unipotent groups among
algebraic group schemes over a field : in particular, we compare two orthogonal families of groups,
reductive and unipotent ones. More precisely, orthogonal is intended in the sense of the following result:
over an algebraically closed field k, any smooth connected k-group G fits in an exact sequence of the form

1— Ru,k(G) — G — G/Ru,k(G) —1,
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where R, «(G) denotes its unipotent radical and the quotient G/R,, x(G) is a reductive group i.e. does not
contain any smooth connected unipotent normal k-subgroup.

Reductive groups “behave very well”: their structure is known and has been studied extensively, while
unipotent groups are harder to understand and classify. First, let us list, without proofs, a few results
that highlight the many differences between these two classes; next, we discuss a bit more in detail the
representability of the respective moduli spaces.

REDUCTIVE UNIPOTENT

Unirationality Yes Not in general
Rational points Form an open, Zariski-dense subscheme | Can be reduced to 1

Picard group Finite Can be infinite

Automorphism group Represented by an algebraic group Not algebraic

Moduli spaces

Let us consider a smooth connected k-group G and a property P of group schemes. Define the functor
Fp classyfying subgroups of G having property P as follows:

Fp: (k— Alg) — (Grp),
R +— Fp(R) := { smooth connected R-subgroups of Gg having property P }.

Looking at reductivity, the corresponding functor is representable by a k-scheme. Conversely, taking as
P the property of being unipotent, it is not representable in general : let k be a field of characteristic 0
and consider the k-group G = G, x Gy,. For any k-scheme X,

X(K[T]) = lim X (k[T] /T”“) ,
nelN
which gives a necessary condition for the representability of a functor, called the effectivity of formal
deformations. This is due to the fact that k[[T] is a local ring and that for a local ring A, there is a
bijection
Hom . _scn)(Spec A, X) ~ {(x,¢): x€ X, ¢: Ox» — A alocal morphism }.

However, we claim that

F(K[T]) — lim F (k[T]/T”“)
nelN

is not a bijection, hence F cannot be representable. To see this, let P, € (k[T]/T"*!) [X] be the polynomial

TX? " X"
P, (X) :=1+TX+T+...+

4

n!

so that its graph H, < Gyyrj s+ is isomorphic to the additive group Gg r)/r++1 S0 it is smooth connected
and unipotent, hence it can be seen as an element of F (k[T/T"*!). Moreover, the collection (Py)ueN is
compatible with projections, so it defines an element of the projective limit. However, this element does
not have any preimage in F(k[T]]), because there exists no P € k[[T][[X] such that Py pnr1 = Pa.
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This chapter is dedicated to illustrating in detail the definition of unipotent algebraic groups
and some of their fundamental properties. The reader will be assumed to be familiar with basic
algebraic geometry, for which the main reference is [GW]. Most fundamental results from the theory
of algebraic groups over fields, such as their definition, the existence of quotients, several properties
of tori and groups of multiplicative type, will be often used without explicitly stating nor proving
them. With respect to these topics, the main references are [Borg1] for what concerns the classical
theory (without modern algebraic geometry methods and working over an algebraically closed field)
and the first 12 chapters of [Mil17] for the group scheme point of view.

1.1 Definition

1.1.1 Preliminaries

To better understand the definition of unipotent algebraic groups, which is given in terms of their
representations, we shall give some preliminaries on linear representations, in particular on the
subspace of a vector space V fixed by a k-group acting on it.

Recall that a representation of G on a vector space V can be regarded as a morphism of group-
valued functors r: G — GLy: it is given by a the collection of group morphisms

rR: G(R) — GLv(R) = Autk(V®R)

for all k-algebras R, functorial in R. To simplify notations, for g € G(R) and w € V® R, we will
denote g - w instead of rr(g)(w).

Definition 1.1.1. Let G be an algebraic group over k and (V, r) a representation of G. The subspace
fixed by G is

Ve i={veV:g-(v®1)=v®1e VAR, for all k-algebras R and all g € G(R)}.

Since we will often be interested in working in functorial terms, it is useful to understand the
structure of the vector group associated to this subspace, which is the functor R — V¢ @ R.

Proposition 1.1.2. Let R be a k-algebra and (V, r) a representation of an algebraic group G. Then
VE@R={weV®R: g-w=wforall g e G(R'), for all R-algebras R'}.

Proof. Let w € V ® R a vector satisfying the above condition. Let us fix (¢;);c; a basis of R as a k-vector
space, and write w = 3, v;e; for some v; € V. To conclude that w € VC ® R, it suffices to prove that
all v; belong to VC. Let S be a k-algebra and g € G(S): by definition of V¢, we need to prove that
g(vi®1) = v;®1. Let us take as R’ the R-algebra S ® R. Consider the canonical k-algebra morphism
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S — S® R sending s to s ® 1, which induces a morphism G(S) — G(S® R). Let g’ be the image of g
under this morphism. By hypothesis, > ., v ® 1 ®¢; is fixed by g’, so we have

YoiRlee =g u01Re) = > gv;®1) @,

iel iel iel
and since the e; form a basis, we conclude that ¢(v; ®1) = v; ® 1. O

Corollary 1.1.3. Let G be an algebraic group over k, (V,r) a representation of G and N a normal algebraic
subgroup. Then VN is stable under G.

Proof. Let R be a k-algebra, v e VN ® R and ¢ € G(R), our aim is to prove that ¢ - v is still in VN @ R.
By 1.1.2,
VN®R ={we V®R: n-w=mw forall n e N(R’), for all R-algebras R'}.

Let R’ be an R-algebra and n € N(R’) and denote vgs the image of v by the morphism R — R’: then

n-(g-v)r = (ng) g = (gn') - vpr = g+ (n'-vg) = g+,
because n’ = ¢~'ng is in N(R’) hence fixes vg:. O

The following proposition reformulates the definition of V' in terms of the associated comodule,
which allows us to easily prove that the formation of V¢ commutes with extension of the base field.

Proposition 1.1.4. Let (V,r) be a representation of an algebraic group G and denote p: V — V ® O(G) the
associated O(G)-comodule. Then

Ve ={veV:p(v) =v®1e VRO(G)}. (1.1)
Proof. This follows from the correspondence between linear representations of G and O(G)-comodules:
see [Mil17, g.a]. O

Corollary 1.1.5. Let k'/k be a field extension and r: G — GLy a representation of a k-group G. Then
ty: Gy — GLygy is a representation of Gy on the vector space V ® k', satisfying

(VK)o ~VEQK.

Proof. The condition 1.1 is k-linear, hence it commutes with a field extension of k. ]

1.1.2 Definition in terms of representations

Definition 1.1.6. An algebraic group G over k is said to be unipotent if every nonzero representation
of G has a nonzero fixed vector.

This definition is equivalent to saying that its only irreducible representations are one-dimensional
vector spaces equipped with a trivial action of G. If we denote p: V — V ® O(G) the comodule
associated to any representation (V,r) of G, the definition of unipotent group is equivalent to the
existence of a nonzero vector v € V such that p(v) = v ® 1. Moreover, since every representation is
a directed union of its finite-dimensional subrepresentations ([Mil17], Corollary 4.8), it suffices to
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check its existence only for V finite-dimensional. Let us recall some basics notations : the general
linear group GL, is given as a functor by (k — Alg) — (Grp), R — GL,(R), where GL,(R) denotes
the invertible matrices of order n having entries in the k-algebra R. Its coordinate ring is

O(GLH) = k[X11, X192, -, Xun, 1/ det(Xij)]

and the comultiplication map is given by

n
AXy) = . Xin ® Xpj.
=

The algebraic group U, is the subgroup of GL,, whose functor of points is
Uni (k — Alg) — (Gl‘p), R~ UH(R) = {(az]) € GLn(R): b‘li]' =0fori> j,al-]- =1fori= ]},

i.e. the matrices of the form

1 = = *
1 = *

0 1 =«

1

Its coordinate ring is the quotient of O(GL;) by the ideal generated by the polynomials X;; for i > j
and Xj; — 1, while the comultiplication comes from the one in GL,:

O(U,) = k[Xjj,i <jl, AXyj) =X @1+1@Xij+ Y, Xi® Xy, (1.2)

i<h<j

Definition 1.1.7. A finite-dimensional representation (V,r) of an algebraic group G is a unipotent
representation if there exists a basis of V such that 7(G) < U,,.

Proposition 1.1.8. An algebraic group G is unipotent if and only if every finite-dimensional representation of
G is a unipotent representation.

Proof. Let us fix a finite-dimensional representation (V, r) of G: by definition of Uy, r is unipotent if
and only if there exist vector subspaces V = V; o --- © V; © 0 such that each V; is stable under the
action of G and this action is trivial on each of the successive quotients V;,1/V;. Let G be unipotent
and fix a composition series for V, i.e. a maximal subnormal series of V when seen as a G-module. By
maximality, each successive quotient must be simple, thus G acts trivially on it. The representation is
hence unipotent. Conversely, suppose that all finite-dimensional representations (V,r) are unipotent:
fix V and consider such a flag V = V; o --- © V; D 0 assuming that V; is nonzero. Since G acts
trivially on it, there exists a nonzero fixed vector in V, hence by definition G is unipotent. O

1.1.3 Embedding in U,

The aim of this pararaph is to prove that, for an algebraic group G, being unipotent is equivalent
to admitting an embedding in U, for some n. To prove this, one needs to introduce a technical
definition concerning Hopf algebras. Let us recall that a k-scheme of finite type G = Spec A is an
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algebraic group G if and only if A is a finitely generated Hopf algebra, i.e. it admits k-algebra
homomorphisms A: A — A® A (comultiplication), e: A — k (counit) and S: A — A (antipode)
satisfying the following diagrams:

ARA®A s A®A
A@idT AT

A®A<TA

k®A +— A®A 9% Agk

Aﬁm—A®Alﬁ»A
[ A [
k A— Sk

€

All properties and maps of Hopf algebras can be translated into geometric terms: for instance, the
comultiplication, counit and antipode in O(G) correspond to the multiplication, unity and inversion
maps in G. These are easier to understand intuitively but sometimes harder to manipulate than their
algebraic counterpart.

Definition 1.1.9. Let A be a k-algebra. A filtration of A is an increasing sequence of vector subspaces
(Fi)ien such that

e lekh,

* UieIN Fi = A,

i PiF]' = Pi+]' for all i, ]
Definition 1.1.10. A k-Hopf algebra A = (A,A,¢,S) is said to be coconnected is there exists a
filtration Cy < C; € C, < --- of A such that

r
Co=k and A(C)c Z C,®C,_; forall r€ N.
i=0

Theorem 1.1.11 (Characterisation of unipotent groups). Let G be an algebraic group over k. The following
assertions are equivalent:

(1) G is unipotent.
(2) There exists an integer n such that G is isomorphic to an algebraic subgroup of U,,.
(3) The Hopf algebra O(G) is coconnected.

In other words, the equivalence between (1) and (2) means that an algebraic group is unipotent if
and only if it admits a faithful unipotent representation.
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Proof. (1) = (2) : Suppose G is unipotent, and consider a faithful finite dimensional representation
of G, i.e. a closed immersion G — GL,,. By Proposition 1.1.8, this representation is unipotent : up
to a base change in V' = k", it factorizes as G — U, — GL,.

(2) = (3) : Let G be a k-subgroup of U,: since all monomorphisms of algebraic groups are closed
immersions, this corresponds to the Hopf algebra O(G) being a quotient of O(U,,) by a Hopf ideal
I. First, let us prove that every quotient of a coconnected Hopf algebra is coconnected. Let A be a
coconnected Hopf algebra, I a Hopf ideal and consider the quotient 7r: A — A/I =: B. Fix a filtration
(Cr)r=0 of A satisfying the definition 1.1.10. Then D, := 71(C;) is the desired filtration for B, because

* 7 is a k-algebra morphism, hence Dy = 7(Co) = (k) =k,

* ZrZO D" = Zr20 T[(Cf) = H(A) = B/

* 7 is a k-coalgebra morphism, hence

Ap(D;) =Apomt(C) = (mM®7) 0 Ay (Cr) < (T® 1) (i Ci®Cri>
i=0

Zn@n (C;i®Cr_i) iDi®Dr—i-

i=0 i=0

By (2), this implies that it suffices to prove that O(U,) = k[Xjj,i < j] is coconnected. For this, let
us assign to each monomial Xij a weight j — i, and extend this to XZ.” having weight n;;(j — i) and
to any monomial [ | X ' having weight i j1ij(j — ). Now define C; as being the vector subspace
of O(U,) spanned by the monomials of Welght less or equal to r. Clearly Cyp = k and A is the
union of the C,. Moreover, if two monomials P and Q have weights r and s respectively, then PQ
has weight r +s. This implies that C,Cs < C,;s. Finally, we need to verify the condition on the
comultiplication on monomials. Let us proceed by induction on the weight of a monomial: by 1.2,
AXijeCii®Co+ Co®Cj_i+ 2ipe; Cni ® Cj_y. If we assume the condition satisfied by monomials
P, Q of weights r and s, then

A(PQ) = A(P)A(Q) € (Z CG® Cra> (Z G ® Cs_b> < CaCh®CraCop © . Cars ®Cris—(asn)

a=0 b=0 a,b ab

hence the condition is also satisfied for monomials of weights r + s.
(3) = (1) : Let A := O(G) be coconnected with filtration (C;),>0 and consider a comodule p: V —
V ® A: we want to prove that the corresponding representation of G has a nonzero fixed vector. For
all » € N, set

={veV:p(v) e VRC},

then V is the union of the V, and V = V© by Proposition 1.1.4. Thus, to conclude it suffices to show
that V, = 0 implies V,1 = 0. Let v € V,4, then by definition p(v) belongs to V ® C,;1. Using the
definitions of comodule and of coconnected Hopf algebra, we obtain

r+1
a(v) := (p®ida) o p(v) = (idy ®A) o p(v) € V® (Z Ci®Cr+1_i> . (1.3)
i=0
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Now, if V, = 0, then p gives an injective map V — V ® A/C,, hence a gives an injective map
V— (VRA/C)®A/C,.

By 1.3, this sends V,.; to zero, hence V,;; = 0 and we are done. O
Corollary 1.1.12.  (a) Subgroups, quotients and extensions of unipotent groups are unipotent.

(b) Every algebraic group G over k contains a largest smooth connected unipotent normal subgroup: this is
called the unipotent radical of G and denoted R, 1(G).

(c) Let G be an algebraic group over k and k' /k a field extension. Then G is unipotent if and only if Gy is
unipotent.

Proof. (a) : Let G be unipotent and H a k-subgroup of G. By 1.1.11, there exists an embedding
H—G-—TU,

for some 1, hence H is unipotent too. Let Q = G/H be a quotient of G and denote w: G — Q the
quotient map. Consider a representation of Q on a vector space V. By precomposing with the
quotient map,

G- Q—GLy

we obtain a representation of G, which has a nonzero fixed vector v € V because G is unipotent.
Therefore, v is also fixed by Q and we conclude that Q is unipotent. Finally, let us consider an
algebraic group G and a normal algebraic subgroup N such that both N and G/N are unipotent.
Let r: G — GLy be a nonzero representation of G. By 1.1.3, VN is stable under G, so we obtain
a representation of G on VV. Since it is an N-invariant morphism, by universal property of the
quotient it induces an unique representation of G/N as shown in the following diagram:

G ! GLvN
3

G/N

Now, V is nonzero and N is unipotent, hence VN is nonzero. Moreover, the equality Ve = (VN )G/ N
and the unipotence of G/N imply that VG is nonzero too. Hence G is unipotent as desired.

(b) : we use the following result, which is a consequence of the isomorphism theorems for algebraic
groups (see [Mil17], Proposition 6.42) : let P be a property of algebraic groups such which is preserved
by quotients and extensions. Then every algebraic group G contains a largest smooth connected
subgroup H having property P. Moreover, the quotient G/H contains no nontrivial subgroup with
property P. By (a), we can apply this proposition to the property P =unipotent and conclude the
existence and uniqueness of the unipotent radical.

(c) : Let G be unipotent, by 1.1.11 the Hopf algebra O(G) is coconnected: let us denote its filtration
as (Cr)r=0. By taking (C, ® k'),>0 as a filtration of O(G) ® k' we see that it is coconnected too, hence
Gy is unipotent. Conversely, assume Gy is unipotent and let (V, r) be a representation of G. Since
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Gy is unipotent, (VG QK )Gk’ is nonzero, while by 1.1.5 it is equal to VE®Kk, so VC is nonzero too
and we are done. O

1.2 Basic properties
1.2.1 Unipotent groups and groups of multiplicative type

The notion of unipotent algebraic group is orthogonal to the notion of group of multiplicative type,
in a sense that we will specify in the following section. Let us recall that an algebraic group over k is
of multiplicative type if and only if it becomes diagonalizable over an algebraic closure k, which is
equivalent to being diagonalizable over some finite separable extension of the base field (see [Mil17,
Ch. 12]).

Proposition 1.2.1. An algebraic group that is both unipotent and of multiplicative type is trivial.

Proof. Let G be such an algebraic group over k. Let us consider an embedding G < GLy for some
finite-dimensional k-vector space V. By extending scalars to a suitable finite field extension k’/k, we
can suppose G is both diagonalizable and unipotent, thanks to Corollary 1.1.12. Since an algebraic
group is diagonalizable if and only if all its linear representations are diagonalizable, V' is a direct
sum of simple representations V;. By unipotency of G, each of the V; has a nonzero fixed vector,
hence the action of G on it must be trivial. O

Corollary 1.2.2. ® Let G be an algebraic group over k. The intersection of a unipotent k-subgroup with a
k-subgroup of multiplicative type is trivial.

o Let U and M be algebraic groups over k which are respectively unipotent and of multiplicative type.
Then
Hom_grp)(M,U) =0 and  Homg_gp) (U, M) = 0.

Proof. Let U and M be such subgroups. Then their intersection is a k-subgroup of U, hence it is
unipotent by 1.1.12. Moreover, the property of being of multiplicative type is also inherited by
subgroups, so U n M is trivial by 1.2.1.
Now, let us consider a k-homomorphism ¢: U — M. By the homomorphism theorem, we can
factorize it as

p: U 4 U/ker g = @(U) LM,

with ¢ faithfully flat and i a closed immersion. This shows that the image ¢(U) can be realized both as
a quotient of U, which is unipotent by 1.1.12, and as a subgroup of M, which is of multiplicative type.
Thus, we conclude that the morphism ¢ is trivial. The same proof works for any k-homomorphism
Pp: M — U. O

1.2.2 Nilpotence and composition series

Another significant property of unipotent algebraic groups is that they are nilpotent : in order to
prove this, let us recall some terminology. A subnormal series for an algebraic group G over k is a
finite sequence

G=Gy oG o---2G, =1

of k-subgroups such that G; is a normal subgroup of G,_; fori =1,...,r. If each G; is normal in G, it
is called a normal series.



CHAPTER 1. GROUNDWORK ON UNIPOTENT GROUPS

Definition 1.2.3. Let G be an algebraic group over k. A composition series is a subnormal series
(Gi)i_, such that
dim Gy > dimGy > --- > dimG, =0

and which is maximal among subnormal series satisfying this property.
Finally, let us recall that an algebraic group is said to be :

* solvable if it admits a subnormal series whose successive quotients G;/G; 1 are commutative,
also called a solvable series;

e nilpotent if it admits a normal series such that each quotient G;/G;1 is contained in the center
of G/Gij,1, also called a nilpotent series.

In other words, a solvable group can be obtained by successive extensions of commutative algebraic
groups, while for a nilpotent group we can even assume those extensions to be central.

Lemma 1.2.4. For any integer n > 1, the algebraic group U,, admits a central normal series whose successive
quotients are isomorphic to G,.

Proof. Let us fix an n € IN and consider the pairs (i,j) with 1 < i < j < n, which we number as

follows:
Ci=(1,2) CG=(23) C=34) - Cupi=(n—-1n)
Cn = (1,3) Cn+1 = (2,4) cee C2n73 = (1’1 *2,1”1)
CN = (1,?1),

with N =n(n—1)/2. Fors =0,..., N, let us denote as G; the algebraic subgroup of U, having as
functor of points
Gs(R) := {(ajj) € Un(R): aj; = 0 for (i,j) = C, I < s}.

We claim that the (G;) SN: o give a central normal series for U,. The case n = 2 is trivial, since U, is
already isomorphic to G, and the second term of the series above is the neutral element. Let us
prove our claim for n = 3 in order to simplify notations : in this case,

* *

1 = 1
Go=U; = 01 , G = 0 Gy =1.
00 0

S = O

1
7 GZZ 0
0

(e )
_ O %

* *
1 1

With a straightforward calculation on the functor of points, one verifies that G; and G, are normal
algebraic subgroups of Us. Moreover, their successive quotients

Go/G1 2 Gy, G1/Gy 22 Gy, G2/Gs = Gy

are all isomorphic to G, as k-groups, where we denote as a;; the map assigning to a matrix its
coordinate (7, j). Finally, the series is easily seen to be central, so it is nilpotent. O

Proposition 1.2.5. Every unipotent algebraic group over k admits a central normal series whose siuccessive
quotients are isomorphic to algebraic subgroups of the additive group G,. In particular, every unipotent
algebraic group is nilpotent.
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Proof. First, we prove the following lemma on subnormal series : consider G = Go > G; > --- D
Gs; = 1 a subnormal series and let H be an algebraic subgroup of G. Then by setting H; := H n G;
foralli = 0,...,s we obtain a subnormal series for H, such that each H;/H;; is isomorphic to a
subgroup of G;/G;;1. By Theorem 1.1.11 every unipotent group H can be realized as a subgroup of
G = U, so we conclude by applying Lemma 1.2.4.

By definition of subnormal series, each G; is normal in G;;1. Moreover, H; n H; 1 = H;;1, so by the
isomorphism theorem (see [Mil17, Theorem 5.52]),

H;/Hjy1 = Hi/H; 0 Giy1 ~ H; - Gi41/Giqq,
and the last term is an algebraic subgroup of G;/G;1. O

Corollary 1.2.6. Let G be a smooth connected unipotent algebraic group over k. If k is algebraically closed,
then G admits a composition series whose successive quotients are isomorphic to G,.

Proof. By Proposition 1.2.5, there exists a central normal series (N;);_,, with successive quotients
isomorphic to algebraic subgroups of G,. If we remplace each N; by its identity component N?, this
gives a chain of connected normal subgroups of G having successive quotients of dimension less
than or equal to 1. If we eliminate all repetitions, all successive quotients will be one-dimensional
subgroups of G,, hence isomorphic to the additive group. O

1.2.3 Homomorphisms to G,

There is a useful characterisation of unipotent algebraic groups in terms of k-homomorphisms to
the additive group. This provides an alternative definition of unipotency, which does not need linear
representations : for example, it is the one given in [DG, IV, §2, 2.1].

Proposition 1.2.7. Let G be an algebraic group over k, then it is unipotent if and only if every nontrivial
k-subgroup of it admits a nontrivial homomorphism to G,.

Proof. Let G be unipotent, and consider a k-subgroup H of G. By 1.1.12, H is unipotent too, so
by 1.2.5 it admits a nontrivial algebraic subgroup of G, as a quotient. The quotient map gives a
nontrivial homomorphism H — G,.

Now, let us assume that all k-subgroups of G admit nontrivial homomorphism to the additive group.
In particular there exists a nontrivial k-homomorphism ¢;: G — G,. Let us set Gy := ker; : it is
either trivial or it admits a nontrivial i, : G; — G,. By repeating this process, we obtain a descending
series of algebraic subgroups G > G; o --- © G, D - - - such that each G, is normal in G;. Moreover,
algebraic subgroups satisfy the descending chain condition, hence this series must terminate in 1
and it gives a subnormal series for G. Its successive quotients are isomorphic to algebraic subgroups
of G4, so G is actually obtained by successive extensions of such subgroups, which are unipotent. By
Corollary 1.1.12, we conclude that G is unipotent. O
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The aim of this part is to give an overview of the structure of commutative unipotent groups over
a perfect field, following [DG]. First, the Frobenius and Verschiebung morphisms are introduced,
followed by the groups of Witt vectors and some results on their extensions. These elements allow to
define Dieudonné modules over a field and to establish an equivalence of categories between them
and unipotent commutative groups.

2.1 Frobenius and Verschiebung

This first subsection applies to any ground field k of characteristic p > 0, not necessarily perfect.

Our aim is to introduce for an affine algebraic k-group G a twisted version of the Frobenius
endomorphism of k, defining it in such a way that it is a k-group homomorphism.
Let X be any k-scheme of finite type. We will restrict to the affine case, which is enough for our
purposes, in order to simplify notations. The absolute Frobenius morphism of X is the scheme
morphism which acts as the identity on the topological space |X| and as & — h” on the sections of Ox
over any open subset of X. However, this does not define a k-scheme morphism, since the frobenius
F: k — k does not coincide with the identity in general. Therefore, we are led to introducing the
following definitions.

Definition 2.1.1. Let A be a k-algebra. We define A() as the tensor product A ®jr k.

Definition 2.1.2. The (relative) Frobenius morphism of a k-algebra A is the k-algebra homomorphism
Fu: AV — A

obtained via the following diagram by the universal property of the tensor product:

AP = A@Qrk «+—— A

ar—a®1
)\»—>1®/\T T

k%k

In other words, it is given by Fo(a® A) = Aa?, so it is the one that makes the Frobenius into a
k-algebra morphism.

10
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Now let us consider X = Spec A and denote X(") = Spec A(?) its base change with respect to the
Frobenius morphism. We denote the k-scheme morphism associated to F4 as

Fx: X — X,
It is called the relative Frobenius morphism of X.

Now, let us restrict to the case of an algebraic group over k.

Proposition 2.1.3. Let G = Spec A be an algebraic group over k. Then GP) is an algebraic group and the
morphism Fg: G — GP) is a k-homomorphism.

Proof. Tt suffices to prove that the functor of points of G() is group-valued. Let us consider a
k-algebra R and denote pR the k-algebra given by k Lrk—R By the following diagram,

there is a bijection
Homy_ag)(A, FR) — Homg_a1g) (A%, R), ¢+— 9

hence the functor of points of G() is G(P)(R) = Hom _sch)(Spec R, Gy = Hom(k,Alg)(A(P),R) =
Hom_a1g)(A, FR) = G(pR) so it takes values in the category (Grp). O

Remark 2.1.4. Since it is defined by the universal property of the fiber product, the Frobenius
morphism is functorial : for all k-scheme morphisms ¢: X — Y, the following diagram commutes

We will now introduce with a bit more work a dual notion to the Frobenius, called the Verschiebung
morphism: the word means ”shift” in English, while it is often called ”"décalage” by French authors.
This section mainly follows [DG, IV, §3, 4].

Let B be a k-algebra and X := Spec B. The symmetric group §, acts on the p-th tensor product
®X'B:=B®---®B by

0'(7)1®"‘®Up) 200(1)®"‘®UU(’9), foralerSp

defining an action of 8, on the k-scheme X? := Spec(®)" B), which is not to be confused with the
Frobenius twist X(P) that we introduced above. Let TS?(B) be the k-algebra of symmetric tensors of
order p over B and set

SPX := Spec(TSP(B)).

11
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Remark 2.1.5. Since TS”(B) is by definition the greatest k-subalgebra of * B on which 8, acts
trivially, it is the ring of invariants under the action of §,. Thus, the corresponding canonical
morphism

gx: XV — SPX

realizes SPX as the quotient of XP by the symmetric group 8,. By the universal property of the
quotient, for all affine k-schemes Y and all §,-invariant k-scheme morphism ¥: X? — Y there exists a
unique P: SPX — Y such that the following diagram commutes.

Y

j
X‘ . ¢

SPX

XP Y

The following lemma allows us to see X(P) as a closed subscheme of 57 X.
Lemma 2.1.6. Let B be a k-algebra and denote s the symmetrizing operator
P
S: ®B—>TSP(B), Ul®~-'®0p'—> 200(1)(@"'@05@).
esy,

The canonical map
BP) = B&rk — TS’(B), v@A+— A(0®---®0)

induces an isomorphism of k-algebras
|4
BP) ~ TSP(B)/s((X) B).

We will denote as vP the image of v® - - - ® v in the quotient, so the isomorphism is given by v @ A — AvP.

Proof. Let (e;)ic; be a basis of B as a k-vector space. For any | = (ji,...,jp) € IF, denote as ¢j :=
¢j, ® - ®e;j, and call w(]) = I¥ the orbit of | under the action of 8, given by (¢, ]) = (jo(1), - - -+ Jo(p))-
If w = w(]) is such an orbit, set e, 1= X/, €y- The collection (ey)w give a k-basis of TSP(B) and

s(ef) =s(e, ® - ®ej,) = N-e,() forsome N eN.

In particular, N is the cardinality of the stabilizer of | in §,. Hence, TSP(B) is the direct sum of
s(®" B) and of the k-vector subspace having as basis {e;: j1 = ... = j}. O

Having identified B(P) with a quotient of TS?(B), the corresponding k-scheme morphism
ix: X — sPX

is a closed immersion.

12
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Lemma 2.1.7. Let B be a k-algebra and X = Spec B. The following diagram

XP 9% X

qx lFx

SPX X
Ix

commutes, where 6: X — XP denotes the diagonal morphism.

Proof. Indeed, it corresponds to the diagram of k-algebras

I

TS’ (B) —— B

with (01 ®---®vp) =01 -... vy, F(v®A) = AvP and the quotient map on the bottom is given by
Lemma 2.1.6. Hence, it is commutative by definition of s. O

Now, let G = Spec A be a commutative algebraic group over k. Denote as 71,: GF@ — G the
multiplication by p, i.e. the morphism given by

mp: G(R) x -+ x G(R) — G(R), (g1,---,8p) &1+ ...+ &p,

for all k-algebras R, where the group law on G is written additively. It corresponds to the k-algebra
morphism AP = A®---QA: A — AP.
For a k-scheme morphism f: X — G, corresponding to a k-algebra morphism f*: A — B, let
fP: XP — GP be the morphism given by
p |4
®A—>®B, al@"'@‘lp'—>f*<al>®"'®f*<ap)~

By commutativity of G, the map 71, o fF is §,-invariant, so by Remark 2.1.5 there exists a unique
fP: SPX — G factorising it.

Definition 2.1.8. With the above notations, the morphism
V= froix: XV — G

is called induced by Verschiebung by f. In other words, f" is defined by the following commutative

diagram
X x SPX : X(®)
1x
l © N L"” o
T e .

Lemma 2.1.9. Let f: X — G as above.

13
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(a) For all affine k-schemes Y and all k-scheme morphisms g: Y — X,
(fog)V =f"ogW.

(b) We have
fYoFx=p-f: X —G,
where for all k-algebras R, p- f: X(R) — G(R), x+—p-f(x) = f(x)+...+ f(x).

Proof. (a) : The following diagram is commutative

yr X gry Y
y
lgn lgpg lg(p)
xXp T gpx X

Ix

so together with the diagram in Definition 2.1.8, by uniqueness of the construction we obtain
(fog) = f"ogW.

(b) : As seen in Lemma 2.1.7, ix o Fx = gx oJ. Hence, f¥ o Fx = fP oix o Fx = fF oqx o6, which by
the diagram in Definition 2.1.8 is equal to f, 06 = p - f. ]

Definition 2.1.10. Let G be a commutative algebraic group over k. Using the above notations, the
morphism (idg)V is called the Verschiebung morphism of G and is denoted V.

In particular, Vi is equal to (idg)? o ig. Notice that, by applying Lemma 2.1.9 to f = idg, we get
hY = Vg o h(P) for all k-scheme morphisms h: X — G.

Example 2.1.11. Let G = G, = Speck[T]. The morphism 71,: G} — G, corresponds to

p
AP K[T] — QK[T], Tr—1® - Q18T+1®-TQR1+...+T®1®...Q1

1 4
:(p_l)!s(l®---®1®T)es (@k[T]),

hence in particular (idg)? is zero, so Vg, = (idg)? oig, = 0.

Let us state a few fundamental properties, which justify the fact that the Verschiebung is seen
as a dual of the Frobenius. Finally, we conclude this subsection with a lemma showing that the
Verschiebung morphism behaves very differently for unipotent groups compared to the case of
groups of multiplicative type.

Proposition 2.1.12. Let G and H be commutative algebraic groups over k.
(i) The Verschiebung morphism Vg: G\P) — G is a k-homomorphism.

(ii) (functoriality) Let ¢: G — H be a k-homomorphism, then

(pOVGZVHogo(p).

14
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(iii) The formation of the Verschiebung commutes with extensions of the base field : for any extension k' /k,
we have Vg, = Vi @ k.

(iv) (duality) The following equalities hold :

VGOFG = p-idG, and FGOVG = p'idc(p) .

Proof. (i) : See [DG, 11, §1, 1.5].

(ii) : By Lemma 2.1.9 (a), ¢ = (idg o)V = (idg)" 0 ¢(P) = Vi 0 ¢P). On the other hand, ¢ o Vg
verifies the suitable diagram in Definition 2.1.8, so by uniqueness it must coincide with ¢V.

(iii) : All morphisms involved in the definition of V; commute with extensions of the base field.
Actually, the construction works on any base ring and automatically commutes with any base change,
see [DG, IV,83, 4.6].

(iv) : By Lemma 2.1.9 (b) applied to f = idg, we have Vo F; = (idg)Y o Fg = p-idg. Now,
the Frobenius morphism is functorial as seen in Lemma 2.1.4 : by applying it to ¢ = V;, we get
Fg o Vg = (V)W) o F5). Moreover, by (iii), taking as base change the Frobenius endomorphism
F: k — k, the map (V) equals V), hence by (ii) we obtain

FcoVg = Ve oFgw = p-idgop

and conclude. u
Lemma 2.1.13. Let G be a commutative algebraic group over k. The following are equivalent:

(1) The Verschiebung Vi is an isomorphism,

(2) The Verschiebung Vi is an epimorphism,

(3) The group G is of multiplicative type.

Moreover, the group G is unipotent if and only if for every quotient H of G there exists an integer n such that
Vi =0.

Proof. (1) = (2) : trivial.

(2) = (3) : Let f: G — G, be a k-homomorphism, then by Proposition 2.1.12 and Example 2.1.11,
foVe=Vg,of (P) = 0, hence f is trivial. By [Mil17, 12.18], this shows that G is of multiplicative
type.

(3) = (1) : By Proposition 2.1.12, we can extend scalars and assume that the group G is diagonalizable,
i.e. of the form Spec(k[M]) for a suitable abelian group of finite type M. In this case, M identifies
with the group of characters of G and the morphism 7, corresponds to the k-algebra homomorphism

p
AP k[M] — QR k[M], mr—mQ@---Qm.

In particular, this implies that the Verschiebung morphism is an isomorphism (see [DG, IV, §3, 4.11]).
Now, let us suppose that G is unipotent: since every algebraic quotient is unipotent too, it suffices
to prove the claim for H = G. Let us consider (G;);_, a composition series of G having successive
quotients isomorphic to algebraic subgroups of G, and proceed by induction on s. If s = 1, we
conclude that Vg = 0 by Example 2.1.11. If s > 1, by induction there exist integers n,m such that

15
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Vgl =0and Vg/cl = 0. This last assertion means in particular that V'G”(G(P"’)) < Gji. Moreover, for all
i the diagram

Ggf’i) G (G/Gy)®) ~ G(pi)/(;y’i)
| v Vs,
G1 y G ” G/Gl

commutes. Hence, we can factorise Vg*m as

n

my(p") n \%
YDA U I BN

G

so we obtain V2" = 0. O

2.2 Witt groups

Throughout the rest of this chapter, k will denote a perfect field of characteristic p > 0. We will
now define the group of Witt vectors, which play a fundamental role in classifying commutative
unipotent groups over k. The main reference other than [DCG] is [Rab14].

2.2.1 Definition

Definition 2.2.1. Let n € IN. The n-th Witt polynomial is the element of Z[Xy, X1, X>...] = Z[X]
given by
L pn pnfl 2 pnfz n
wy(X) =Xy +pX] +p X, +...+p" X

Let us denote as A% the scheme SpecZ[X]. Then each w, defines a scheme morphism, still
denoted as wy,: AL — A}, given on the functor of points by the set-theoretic maps

RN — R, x+— (wn(2)),
for all rings R. Let us call @ the scheme morphism having w,, as its n-th component, i.e.
®: AY — AL, x+— (wa(x))nen.
Remark 2.2.2. Notice that we can express all variables X,, as polynomials
X, € Z[p_l][wo, wy, ... Wy_1] C Z[p_l,wo, Wy, ..., Wi,
For instance, Xo(w) = wy. If we suppose the statement to be true for all X; with j < n, then the
equality

n+

Wai1 = Xo@)""" + pXa @) + ..+ pXa(@)? + p" Xy

allows us to express X,,;1 in the desired form. For example,

1 1

X1 == (w1 — X)) = = (w1 —wf)), (2.1)
p p
1 1 1 2 2

X =— <w2—_wp—_w P —wh > (2.2)
p? prto 00

16
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In other words, the map
Dy AN @z Z[p ' — AN @z Z[p']

is a scheme isomorphism.

Now, let us denote as ¢ the scheme A}, together with its canonical ring scheme structure. The
aim is to use @ to define a new ring structure on AY.

Definition 2.2.3. The ring of Witt vectors is the ring scheme having as underlying scheme AY,
equipped with the addition and multiplication laws given on the functor of points by

xHy =P @(y)), (2.3)

@(y)), (2.4)

LoL
—~~
e ©
—~~
=

— ~—

xHy =

for all x,y € RN, for all rings R, where the operations on the right hand side are done componentwise,
i.e. using the ring structure of &™N. For any element x € RN, the coordinates x; are called its Witt
components and the coordinates w, (x) its ghost components.

Proof. By Remark 2.2.2, these operations are well defined after a base change to Z[p~!] : it suffices to
transport the ring structure by means of the Z[p~!]-isomorphism ®z,-17- Hence, for all i € IN, there
exist unique polynomials S;, P; € Z[Xy, ... X;, Yo,...,Yi] € Z[X, Y] such that

), 51X Y),...) = wn(X) + wn(Y),

wn(So(X,
X ) (X Y) ) Wy (X) * Wy (X)

Y
wn(Po(X, Y

It remains to show that those polynomials actually have integer coefficients, so the ring structure is
defined over Z. Let us discuss in detail the case i = 0 and i = 1, for the general case see [DG, V, §1,
1.1]. For instance,

O ((x0,x,..) + (Yo, yh,---)) = (xo +Yo,...) and D ((xo,x,...) - (o, yh,---)) = (xo¥0,--.),
hence So(X,Y) = Xo + Yy and Py(X,Y) = XoYp. Moreover, by 2.1
(x0,x1,0,...)H (o, ¥1,0,...) = D ((x0, x5 + px1,...) + (o, yh + py1,...)) =

1 17 o
(x0 + Yo, E(xg + Yo + px1+pyr— (Xo+yo)P), ) = (X0 + Yo, X1 +y1 — v > <l:> oyb ),
i=1

so we get

Analogously, we find that

Pi(X,Y) = Pi(Xo, X1, Yo, Y1) = XY + XEYq + pXaYs.

17
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Definition 2.2.4. Let A be a ring. The A-group of Witt vectors, which we will still denote as Wy, is
the underlying group scheme, having as commutative group law the one defined by the polynomials
S; above.

Definition 2.2.5. Let n € IN. The ring scheme W, is defined as having as underlying scheme A7,
while addition and multiplication are obtained by truncating the ones in W :

(ﬂo, s /an—l)(bOI v /bn—l) = (SO(a()/ bO)/ s /Sn—l (aOr s IaVl—llbOI ceey bn—l))r
(a()r oo /anfl)m(bOI v /bi’lfl) = (PO(a()/ bO)/ v /Pnfl(a()/ e /al’lflrbO/ oo /bi’lfl))'

This is called the scheme of Witt vectors of lenght 7 and for a ring A an element in W, (A) is called
a Witt vector of length n with coefficients in A.

In particular, notice that Wi ~ &, hence as group scheme it is isomorphic to the additive group G,.

Let us introduce two collections of morphisms between Witt groups: the first shows that the group
W has a natural projective limit structure, while the second will correspond to the Verschiebung
morphism in this particular case.

For all n € IN, let us denote as 7, the canonical projection

Tt Wy — Wy
(aO/' . ~/an) = (a()/' . '/anfl)/

which are in particular morphisms of ring valued functors. Moreover, they induce projections
Tum . Wiem — Wiy, for all n,m € IN, hence a projective limit structure

W = lim W,,.
—
nelN

Now, let us consider the collection of the shifting maps

ji’l: Wn I Wn+1

(Cl(),. . .,an_l) = (0, ap, - - .,an_1).

Since these maps are compatible with the projections, they induce by passing to the projective limit a
morphism

J: im W, = W — lim W, = W = W
nelN nelN

(ao,ﬂll, .. ) — (0,5[0, ai,.. )

Let us denote as J;,,,: W, — Wy, the shifting morphism obtained by iterating J and truncating,
ie. Jym(ao,...,ay-1) = (0,...,0,40,...,a,—1). The following sequence of group-valued functors is
exact:

jn,m Th,m

0—>Wn_>Wn+m—)Wm—)0.

Lemma 2.2.6. Let us consider the ring W(k). For all elements w = (ag,a1,az,...), the following equality

18
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holds
pEw = (0,1,0...)(ap,a1,az,...) = (0,ah,al,ab,...).

Proof. We have explicit expressions for Py and P; above in Definition 2.2.3: this gives Py(p, w) =
0-ap=0and Py(p,w) =a,-0+1- a’f + p2a1 = af. For the general calculation, see [DG, V,81,1.7]. [

Remark 2.2.7. Let A be a ring of characteristic p. The following commutative diagram made up of
cartesian squares

wip) W Wg,) ——— W

| | | |

Spec(A) BN Spec(A) —— Spec(IF,) —— SpecZ

shows that Wl(f ) = W, and analogously we have Wéf’ f)‘ = Wy, 4 for all n.
Lemma 2.2.8. Let A be k-algebra. The Verschiebung morphism Vi, : W4 — Wa is equal to Jyy,.

Proof. By functoriality, it suffices to prove it for A = [Fj,. In this case, the Frobenius map Fwg, is
a homomorphism of commutative IF,-groups. Since both Vg, © Fwg, and Jwy, o Fiy, are equal to
p- idw]Fp by Remark 2.2.6, then

(VWJF,, - jW}Fp> © FW]Fp =0
and we are done because F, is an epimorphism of algebraic groups over IF, because the corre-

sponding IF,-algebra homomorphism is injective. O

2.2.2 Extensions of Witt groups

Let us consider the following exact sequence:

0 — Wy 2% Wiyg 24 Gy — 0

and denote as &, the element of Ext! (Gg, Wy k) corresponding to the isomorphism class of this
extension.

Lemma 2.2.9. Let us consider the morphisms J,,: Wy, — Wyi1x and 7110 Wyq x — Wi, k, which induce
maps

(Tn)w: Ext'(Ga, Wyi) — Ext!(Ga, Wy ),
(7t1,0)%: Ext (G, Wog1x) — Ext' (Ga, Wip)-

Then
(J0)«€n =0 and (714)xEny1 = En.

Proof. Let H be an extension obtained by pushforward of W, along the morphism J,: it is given
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by the following diagram

jn 7'[7,,
1 W}’l,k Wn+1,k ! Gg 1
Js ! H
1 —— Wyqx —— H G, 1
u

o

In particular, H is the quotient of W), ;1 x x W11 ; by the anti-diagonal action of W, t, i.e. we have the
following equivalence relation: for all x,y € W,,,1r and all x € W,

(x,y) ~ (x +Iu(2),y = In(2))-
The morphisms i and j are then given by
it x— (x,0), jiy— (0,-y)
and there is a canonical well-defined section of i,
oc:H— Wy (x,y) — x+y,

which splits the sequence, hence the extension is trivial.
The second statement follows from the definition of £,41 and &, as the isomorphism classes of
W12k and W, 1 respectively and from the fact that the following diagram is cocartesian.

Tln4+1,1

jn+1
1 —— Wypip —— Wigok G, 1

lnl,n l”l,rwl H

7,1
1 —— Wy —— Wik " G, 1.

O]

Let us make a few remarks on endomorphisms of the additive group and apply them to our study
of extensions of Witt groups.

Definition 2.2.10. The ring k[F] is the noncommutative ring of polynomials in the variable F, with
multiplication given by
FA = APF, forall A ek

Lemma 2.2.11. The ring of endomorphisms of the additive k-group G, is isomorphic to k[F].

Proof. Let us denote as A the comultiplication map of O(G,) = k[T] : an endomorphism of G,
corresponds to giving an element P = Y, ;T € k[T] such that AP = P®1 + 1 ® P. This means that
for all ],

(T'®1+10T) =a(T®1+1xT)

and this condition is satisfied if and only if P is of the form

boT+ by TV +...+ b, TV, biek.
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Now, let us denote as F the Frobenius endomorphism of G,: this gives an isomorphism

K[F] ~ End(G,), Y bF v > 5TV,
j j

O

Let G be a commutative algebraic group over k. Then Ext'(G,G,) is a left k[F]-module by
considering the operation of pushforward along an endomorphism of G,; analogously Ext!(G,, G) is
a right k[F]-module considering pullbacks.

Proposition 2.2.12. Let H be a k-subgroup of G, and n > 1. Then
(a) The map (7t,_11)«: Ext'(H, W, ;) — Ext'(H,G,) is bijective.

(b) Leti: H — G, be the inclusion morphism, then the induced map
i*: Ext'(G,, W) — Ext'(H, W, ;)

is surjective.
(c) The left k[F]-module Ext'(G,, W) is free with basis {E,}.

Proof. The proof is by induction on n, see [DG, V, §1, 2.2]. The proof shows that the assumption that
the base field k is perfect is sufficient. O

Corollary 2.2.13. Let
0o—L-LbmELg,
be an exact sequence of commutative k-groups and f: L — W, a k-homomorphism. Then there exists a

k-homomorphism g: M — Wy, 1 x such that the following diagram is commutative

L—1 M

I Js

9
Wi ———— Wik

Proof. Let H be the k-subgroup of G, generated by the image of ¢ and see M as an extension of H
by L. By functoriality of the pushforward of extensions, the following diagram commutes

(=)
Hom(k—Grp) (L/ Wn,k) — Eth (H/ Wn,k)

Jonet) l(:m*

Hom_Grp) (L, Wyi1x) ——— Ext(H, Wy11x).-

We claim that (J,), is trivial: if this holds, then in particular the extension obtained by pushforward
of M along J,, o f is trivial. Thus, there is a diagram of the following form, which gives the desired
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homomorphism g.

0 L M

lﬂnOf lcp xg

0 — Wyp1p —— Hx Wy — H —— 0

H 0
|

It remains to show that (J,)s« = 0. By Proposition 2.2.12, i* is surjective so it suffices to prove the claim
for H = G,. Moreover, Ext! (Ga, Wy, k) is free with basis {£,}, so we are done because (J,).€, = 0 as
seen in Lemma 2.2.9. O

The following lemma will be a key results in the proofs of the next sections.

Lemma 2.2.14. Let m,n > 1 and consider a commutative algebraic group G over k such that V2: GP") — G
is zero. For all k-homomorphisms f: G — W4, k, there exists a unique k-homomorphism g: G — W,, ;. such
that

f=Twmog.

Proof. As seen in Lemma 2.2.8, w?

wimk = Wanimk. By functoriality of the Verschiebung (see Proposi-

tion 2.1.12),
foVd =V, uof

which is trivial because V! = 0. Thus, we obtain a factorisation of f(*") by
G 1, ker v ={(0,...,0,a0,...,a4-1)} = Tuu (Wi ).

n
Moreover, J,, ; is an isomorphism between W), and ker V/}, ok and W, ; is isomorphic to W,(f;{ ), so h
n+m, 4 7
)

can be seen as a morphism G*") — Wﬁﬁ: .
Now, since the base field k is perfect, the functor H — H() from commutative algebraic k-groups
into the same category is an equivalence. In particular, there exists a homomorphism g: G — W,
such that i = ¢(P"). Thus, we obtain

f(P”) = ()P o = (T )P Og(p") = (Jum Og)(p")

and we are done. ]

The following result makes a first link between Witt vectors and general commutative unipotent
groups, showing that such a group fits into a specific exact sequence involving Witt vectors.

Proposition 2.2.15. Let U be a commutative unipotent algebraic group over k. There exists integers n,r,s € IN
and an exact sequence of k-groups
0—G— Wy — Wi

Proof. First, let us show the existence of a k-group monomorphism a: G — W}';. We will proceed by
Noetherian induction: the statement is clearly true for U = 1 and we suppose it to be true for all
proper algebraic subgroups of G. By Proposition 1.2.7, there exists a nontrivial k-homomorphism
f: G — G,. By applying the inductive hypothesis to H := ker f < G, there exists a monomorphism
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v: H — W}, for some m. By Corollary 2.2.15 applied to the components of f there exists a
k-homomorphism a: G — W7, ; | such that the diagram

H——M

[, L

m m
‘/\7 -
m,k Wm +1 ,k

commutes. This allows to take as monomorphism the map G — W, | ; x Wy, 11, having as compo-
nents « and Jy ;0 f: G/H — Wy, 1.

Now, let us consider such a monomorphism a: G — W, and denote as Q its cokernel. By the above
consideration, there exists also a monomorphism a’: Q — Wy | for some integers m,s. By composing
it with the quotient map 7r: Wy, — Q, one obtains an exact sequence of the form

0—GSwr Lows,

If m = n we are done, if m < n it suffices to remplace B by J,;, ,—n © B, if m > n we can apply Lemma
2.2.14 to get a k-homomorphism g': W), — Wy, such that g = 35 ,,_, o B’ and remplacing p by p’
still gives an exact sequence. O

2.3 Dieudonné modules

Let us fix some notations for the rest of this chapter : for w = (ag,a1,...) € W(k) and n € Z, we
will denote as w(P") the element
w(P") = Fiy iy (w) = (a ,ab,...).

The hypothesis of having a perfect base field allows us to take as n a negative integer.
Let us also recall that p identifies with (0,1,0,...) in W(k) and that p - w = J(w(P)).

Definition 2.3.1. The Dieudonné ring over k is the ring ID generated by W (k) and two indeterminates
F and V together with the relations

Fw = wPF, wV =Vw?), FV=VF=np.

By definition, D is a free W(k)-module, either for the right and for the left module structure,
having as basis
.., F' ... ,F,1,V,....V" ...

In other words, every element of ID has a unique expression as a finite sum of the form

Db F' +a+ ) Ve, a,bycn€ W(k).

n=0 n=0
Whenever needed we will denote it as Dy in order to specify the base field we are considering.

Definition 2.3.2. A Dieudonné module over k is a left ID,-module.
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Let us consider a perfect field extension K/k. The canonical map
W(K) ®w ) Dy — Dk

is given by

w (Z b,F" +a+ Z V”Cn> — Z wb, F" + wa + Z V”w(P")Cn’

n=0 n=0 n=0 n=0

so it is an isomorphism because the Frobenius endomorphism of k is surjective.
Let M be a Dieudonné module over k. Then

W(K) ®w ) M = W(K) ®w k) Dx ®p, M ~ Dk ®p, M

so it has a natural structure of Dieudonné module over K, which is said to be the extension of scalars
of M associated to K/k.

Let A be a k-algebra. For an element w € W(k), we will denote as w4 the corresponding element
in W(A) obtained via the morphism k — A. Moreover, for u € W,(A), we will denote as w - u the
element obtained by truncating w, and taking the product 7t,(w,)u in W,(A).

Lemma 2.3.3. Let A be a k-algebra and n > 1.

(1) The group M := W, (A) together with the Frobenius and Verschiebung morphisms F = Fy, 4y and
V = Vi, (a), equipped with the operation

weu=wy-ui=wP )4, forall u e W,(A),we W(k) (2.5)
is a Dieudonné module over k.
(2) The map J,: Wy(A) — W,,_1(A) is a morphism of Dieudonné modules.
Proof. See [DG, V, §1,3.2] 0

The operation defined just above gives for all k-algebras A a morphism
Dy — Enda(W,(A)) = End(W,x)(A)
and it is by definition natural in A, hence induces a morphism of group-valued functors
Dy — End(Wy,x) = Homyy_Grp) (Wi k, Wir)-
Moreover, the morphism V&,n,k is zero, so this actually defines a morphism
prn: D/DV" — End(W,, k)

Lemma 2.3.4. For all n > 1, the homomorphism p,, is an isomorphism.

Proof. Let us proceed by induction on n. For n = 1, there is a canonical isomorphism ID/ID;V — k[F]
which sends V to 0 and w = (A, Aq,...) to Ag for all w € W(k). Hence, the assertion is true by
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Lemma 2.2.11. Now, let us assume that p, is an isomorphism and consider the following diagram:

B
0—— H0m<Ga/ Wn+1,k) — Hom(WnJrl,k/ Wn+1,k) — Hom(wn,kr Wn+1,k) — 0

i p"-HT PnT

00— DVY/DV"*+l — D/DV"! D/DV" —— 0.

The bottom row is exact, so let us consider the top one. The first map is give by a« = (—) o 71,1 so it is
injective because 71, ; is an epimorphism. The second map is given by = (—) o J,, so in particular
Boa = (=) omy,1 07, is equal to 0. It remains to prove the surjectivity of 8, which follows from
Lemma 2.2.14 applied to j = Jj,.

By Lemma 2.3.3, J, is a morphism of Dieudonné modules hence the square on the right is commuta-
tive. Thus, there is a well-defined morphism

i: DV"/DV"*! — Hom _Gup) (Ga, Wys1)

which makes the square on the left commute. By the inductive hypothesis, p, is an isomorphism,
while B is an isomorphism by Lemma 2.2.13. Therefore, it suffices to prove that i is bijective to
conclude that p,,+1 is an isomorphism too.

Let A be a k-algebra, u € W,,11(A) and w = (Ag, Aq,...) € W(k). Then

H(F0V") 0 (70,1) (1) = s (Fo V") (),

so by 2.5 and using the relation wV' = Viw®), it is equal to

B ((w(pin)) 4 W) (“))) = B, a) © Vi, () (wa - 1) =

F{;VHH(A) o jl,ﬂ O 7ty 1 (ZUA . M) = jl,n o Féﬂ ()\0 . nnll(u)).

Hence, i(FFwV") = 71 ,01(F"Ag). Now, the map
DV"/DV"™!, FuwV" — FAg

is a bijection, p; is bijective as we remarked above, and finally J; ,, o (—) is bijective again by Lemma
2.2.14. Finally, we can conclude that i is an isomorphism. ]

2.4 Structure Theorem

In this section, the aim is to apply the preceeding results in order to associate to a commutative
unipotent group, which is rather a geometric object, a specific Dieudonné module which is purely
algebraic. Let us start by introducing this correspondence, whose definition and properties rely
heavily on the theory of Witt groups and their extensions.

2.4.1 Definition of the functor

Let us start by considering the inductive system

W, := {Wn,k/ In: Wy — Wn+1,k}nelN'
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By Lemma 2.3.3, this system is compatible with the ID;-module structures.

Definition 2.4.1. Let U be a commutative unipotent k-group. The Dieudonné module of U is the
left IDy-module
MU) = h_n} Hom(k—Grp)(u/ Wn,k)'
nelN
We will denote is as My (U) whenever it is necessary to take the base field into account. Moreover,
let us notice that the transition functions of W, are all monomorphisms so we can identify each

Mn(u) = Hom(karp)(ur Wn,k)

with its image in M(U).
Let f: U — U’ be a k-homomorphism between commutative unipotent k-groups. The collection of
the natural maps

Ma(f): M (U') — Mu(U), gr—gof

for all n € IN is compatible with the inductive limit structure, hence induces a morphism which we

will denote as
M(f): MU") — M(U).

Notice that for all n, the map M, (f) is a ID/V"-module morphism, hence in particular a ID-module

morphism. In particular, the limit M(f) is a morphism of Dieudonné modules.

Remark 2.4.2. Since U is algebraic, there exists an integer n such that V]; = 0, as seen in Lemma
2.1.13. All maps
Inm o (=) Mu(U) — My (U)

are bijective, so in particular, the limit M(U) identifies with M, (U) = Homg_gp) (U, Wiy t)-
Actually, notice that for all n, M,,(U) identifies with {m € M(U): V"m = 0}. Indeed, if f: U — W,
is a k-homomorphism, then Vi o f = 0. Conversely, let m € M(U) such thath V" = 0 : such an
element descends to a finite level to a k-homomorphism h: U — W, 1,4, such that VV’@HM oh =0.
Thus, the exact sequence

Vi
jn,q Wn+q,k
0 ’ Hn,k ’ “n+1,k ’ Wn+q,k

shows that /1 actually factorizes by W, ; hence m descends to an element in M, (U).
In particular, the Dieudonné module associated to an algebraic group satisfies the following definition.

Definition 2.4.3. A Dieudonné module M is said to be erasable if for all m € M, there exists an
integer n > 1 such that V"m = 0.

Example 2.4.4. Let us fix n > 1: applying the above remark to U = W, ;, we get an isomorphism
¥u: D/DV" 5 Homgrp) Wi s W) = Mo (Wa) = M(Wii)

of Dieudonné modules.

The discussion above defines a functor

M: {commutative unipotent algebraic groups}/k — {erasable Dieudonné modules of finite type} /k.
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2.4.2 Equivalence of categories

The final result of this chapter is the following theorem, which we now prove, that establishes
the equivalence of categories we aimed for. Actually, it holds in a general setting without having to
consider the groups to be algebraic : for a more general discussion, see [DG, V, §1].

Theorem 2.4.5 (Structure theorem of commutative unipotent algebraic groups). The contravariant
functor M is an anti-equivalence of categories between commutative unipotent algebraic groups over k and
Dieudonné modules of finite type over k erasable.

Proof. Exact : the functor M is left exact since all M,, = Hom i _g:p)(—, Wy k) are. It suffices to prove
that it is right exact i.e. that it sends monomorphisms to epimorphisms. Let j: U’ — U be a closed
immersion of algebraic k-groups and consider a composition series of the unipotent quotient U/U’
having successive quotients isomorphic to algebraic subgroups of G,, which exists by Proposition
1.2.5. By taking their inverse images in U’, one obtains a sequence of k-subgroups

u/:GQCCqC”-CGr:U

such that G;/G;_; is isomorphic to a k-subgroup of G, for all i. Let us proceed by induction on the
length r of the composition series: if r = 1, setting

Q: u-—s LI/U’ = Gl/Go — Ga,
we obtain an exact sequence of the form
0—u L u-2sa,

Now, let us consider M(j): M(U) — M(U’) and take an element in M(U’), which descends to a
k-homomorphism f € M, (U’) for a sufficiently large n. By Lemma 2.2.13 there exists g € M,,1(U)
such that goj = J, o f, which gives a preimage of f in the inductive limit M(U). Thus, M(j) is
surjective. Now, let r > 1 and assume the statement to be true for any k-subgroup admitting such a
composition series of length » — 1. In particular, decomposing the morphism j as

"

w6 L,
by the inductive hypothesis both M(j") and M(j") are surjective, hence the same holds for
M(j) = M(j" o j') = M(j") o M(j")-
Fully faithful : let us fix a commutative unipotent k-group U and consider the map
ow,,: Homu_grp) (U, Wy k) — Homp_mod (M(Wy, 1), M(U)),  f — M(f).

First, Hom_grp) (U, Wy, k) identifies with {m € M(U): V"m = 0} as seen in Remark 2.4.2. On the
other hand, by Example 2.4.4 we have

Homp _mod (M(Wik), M(U)) = Homp_mea (D/DV", M(U)) = {m € M(U): V'm = 0}.
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Now, let us take H to be any commutative unipotent k-group and fix an exact sequence of the form
whose existence is given by Proposition 2.2.15. This induces a commutative diagram with exact rows

0—— Hom(k_Grp)(U, H) _— Hom(k_Grp)(U, W;,k) e Hom(k_Grp)(U, Wz,k)

lq)H l(Pwr’l/k J/(PW’S'/"

0 —— Homp(M(H),M(U)) —— Hom]D(M(W;,k),M(U)) —_ Hom]D(M(WZ,k),M(U)).
Since Pwr and Pws, are both bijective, we obtain that ¢y is bijective too.

Essentially surjective : Let M be a Dieudonné module of finite type and erasable. In particular,
there exists an integer n > 1 such that V"M = 0, so it has a natural structure of ID/DV"-module.
Since the ring ID/IDV" is noetherian (see [DG, V, §1, 3.2]), a module of finite type is of finite
presentation, hence there exist integers r,s and an exact sequence

(D/DV")° -& (D/DV") — M — 0.

By full faithfulness of the functor M, there exists a k-homomorphism f: W}, — Wy, such that
® = M(f), so by exactness of M, the exact sequence

0 — kerf — W?Z,k i) Wfl,k

implies that M ~ M(ker f). O

Proposition 2.4.6. Let K/k be a perfect field extension of k and U a commutative unipotent k-group. Then
there exists a canonical isomorphism

W(K) @) M(U) — M(Uk).

Proof. See [DG, V, §1, 4.9] O

Example 2.4.7. Let us see what the above equivalence of categories looks like in some of the simplest
commutative unipotent groups.

e Example 2.4.4 shows that M(W, ;) identifies with ID/IDV", the simplest case being
M(G,) = My(G;) = D/DV = k[F] = End(G,).
* Setting Wy, ,, := ker(F{;vn/k: Wik — Wy k), the theorew gives
MWy,n) = D/ (DF" + DV");
again, the easiest case is obtained by setting n = 1:

M(Wy1) = M(apn) = D/ (DF” + DV) = k[F]/(F").
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* By using the Artin-Schreier exact sequence
0 — (Z/P"Z), — Wig —S Wy — 0
one concludes by exactness of M that

M(Z/p"Z) = D/ (DV" + D(F - 1)).
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This short chapter constitutes a link between the theory over perfect field and arbitrary, most of
the time imperfect, ones: first, it shows that the vanishing of the unipotent radical is not a geometric
property. It continues by illustrating Rosengarten’s rigidity result, which gives an interesting
motivation to the study of wound unipotent groups.

3.1 Preliminaries : Weil restriction

The restriction of scalars is an elementary construction in the theory of algebraic groups, playing
at the same time a fundamental role, because it gives rise to interesting examples and it is used to
construct the so called standard pseudo-reductive groups. Here, it will be used in some proofs and
examples.

Throughout this subsection, let K denote a finite k-algebra : the notation K is due to the fact that in
most cases this is applied to a finite field extension K/k. Also, recall that we are restricting to the
affine case.

Proposition 3.1.1. Let G be an algebraic group over K. The functor
fRK/k(G)I (k—Alg) — (Set), R+— G(K®R)

is group-valued and represented by an affine scheme of finite type over k, hence it is an algebraic group.

Proof. Let G = Spec A. Since it is of finite type, there exists suitable integers 4, m € IN and polynomials
fi€ K[Xy, ..., Xy] such that

A~K[X1,...,Xd/(fi,- o) fu)-

Let ey, ..., e, be a basis of K as a k-vector space and set
Xi:=Yner+ ...+ Yye, = ZYijej'
j
fh =gmer +...+ Shnen = Zghlel.
1

foralli=1,...,dand h =1,...,m. An element of Rg;(G) = G(K® R) = Hom_a1g) (A, K®R) is
given by a morphism

@: K[X1/~~/Xd]/(f1/~~-/fm) —>K®R

Xi— ) ei®r,
j
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where X; denotes the image ot X; in A. This induces a k-algebra homomorphism

¢': B:=klY;

pl<i<dl<j<n]/(gnl1<h<ml1<l<n)—R

Yij | — 1”1']'.

The map ¢ +— ¢’ gives a bijection Hom_41g) (A, K® R) ~ Hom_a1) (B, R), so we have proved
that Ry x(G) is represented by Spec B. For a more general statement and proof, see [BLR12,7.6]. [

Definition 3.1.2. Let G be an algebraic group over K. The algebraic group R (G) over k is called
the Weil restriction or the restriction of scalars of G.

This defines a functor
Rkt (K= Grp) — (k—Grp), G+— Ri/k(G).

Now let us consider the homomorphism defined on the functor of points as the natural transfor-
mation
ic: G — Rgu(Gk)
G(R) — G(K®R),
induced by the k-algebra morphism R — K®R, r — 1®r, for all k-algebra R. This is a monomor-

phism of algebraic groups, hence a closed immersion (see [Mil17, Theorem 5.34]). This canonical
mapping has the following universal property.

Proposition 3.1.3. Let G be an algebraic group over k and H an algebraic group over K. For every k-
homomorphism
w: G — RK/k(H)z

there exists a unique K-homomorphism B: Gx — H such that the following diagram commutes:

G ——— Ryu(Gk) Gk
: R (B) f!ﬁ
Rk (H) H

Remark 3.1.4. The universal property above can be expressed by an adjunction as follows : for all
algebraic group G over k and H over K, there is a bijection

Hom _Gp) (G, Rk (H)) — Homk_grp)(Gx, H).

The functor Ry is therefore right adjoint to the base change functor G — Gg. An important
consequence is that it is left exact, thus it preserves inverse limits, such as kernels, products and fiber
products.

Proof. Giving an adjunction between two functors F: A — B (on the left) and G: B — A (on the
right) is equivalent to giving a couple of natural transformations

n:14y — GF, &:FG — 13,
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called respectively unit and counit of the adjunction, such that the following triangle identities hold
foral Ac Aand Be B:

SF(A) ¢} F(T]A) = idF(A), G(E‘,B) o 77G(B) = idG(B) . (31)

For more details, see [Lei14, §2.2].

In our case, F: (k— Grp) — (K— Grp) is the base change functor, G: (K- Grp) — (k— Grp) is
the Weil restriction. The morphism ic described above is functorial in G and defines the unit of
the adjonction. Now, let us consider a K-algebra R’ and denote it as Rj, when it is regarded as a
k-algebra via the morphism k — K — R’. There is a natural K-algebra morphism K® R}, — R/,
sending A @ r — Ar, which induces a morphism

EH: (:RK/k(H))K — H, H(K®R6) — H(R/)

This is functorial in H and defines the counity of the adjunction. Since the triangle identities hold,
the morphism Ry (B) is given by the following diagram.

. Re(B)=G(B) ...

= GF(x) G(en) T
Rijk(Gk) ——— Rgp(Rgjx(H)x) ——— Rgyr(H)

. . id
ZGT ZG(H)T /

G . Rk (H)

The left hand square commutes by functoriality of i, while the right hand triangle expresses the
second identity in 3.1. ]

The intuition behind the idea of Weil restriction might lead to think that, for a finite extension
k'/k, the k-group structure of Ry x(Gy)(R) is similar to the one of GIK': K. This holds for the additive
group, but in general it is far from being true, as illustrated by the following example.

Example 3.1.5. Let k be an imperfect field of characteristic p = 2 and t € k\k?>. Consider the
purely inseparable extension k' = k(v/t) and the algebraic group G := Ry 4 (G, i), obtained by Weil
restriction of the multiplicative group. For any k-algebra R,

G(R) := R (G )(R) = G (K ®R) = (K ®R)* = {x +yvt, x> —ty* € R*},

because an element x + yv/t € K ® R = R@+/fR is inversible if and only if the R-linear map

(Z) ~a+ bVt (a+bVH)(x +yVt) = ax + byt + (bx + ay)V/t ~ (; tj) (Z)

which is true if and only if its determinant x> — ty? is invertible. As a set, the abstract group G(R)
identifies with G, ((R) = {(x,y) € R*: x* — ty* € R*}. However, the group law in G(R) is given by

(x,y)* (X, y) = (x + yVH( +y'VE) = (xx’ + tyy' + (xy + xX'y)VE),
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hence it is not the same as the one in sz,k(R). Moreover, this group is one of the simplest examples
of a pseudo-reductive group which is not reductive, as we will see in Example 3.2.3 below.

In the case of a separable field extension, the process of Weil restriction behaves in a much simpler
way : it is analogous to the idea of viewing a complex manifold of dimension # as a real manifold of
dimension 2n. More precisely, we have the following result.

Proposition 3.1.6. Let k'/k be a finite separable field extension and K/k a finite Galois extension that splits
k' /k. For an algebraic group G over k', there is an isomorphism

(Rk’/k(G»K . H G X Speck’,o SpeC K,
o: k'—K

where o runs over all embeddings k' — K.

Proof. See [Mil17, 2.61]. O

3.2 Pseudo-reductivity

As mentioned before, the first reason behind the study of unipotent groups over imperfect fields is
that pseudo-reductivity cannot be verified on the algebraic closure, because the unipotent radical of
a smooth connected algebraic group can become larger after a purely inseparable extension of scalars
on the base field. Let us start by giving precise definitions reductivity and pseudo-reductivity.

Let G be a smooth connected algebraic group over k. Let us recall that its unipotent radical R, x(G)
is defined to be its largest smooth connected unipotent normal k-subgroup (see Corollary 1.1.12).

Definition 3.2.1. A smooth connected k-group G is reductive if its geometric unipotent radical
R, 7(Gy) is trivial, and it is pseudo-reductive if R, x(G) is trivial.
The following key result states that the unipotent radical commutes with a separable extension of

scalars : in particular, over a perfect field the notion of reductive and pseudo-reductive coincide.

Theorem 3.2.2. Let K/k be a separable field extension and G a smooth connected affine k-group. Then
Ry, (G)k = Ruk(Gk).

In other terms, the formation of the unipotent radical commutes with separable extensions of the ground field.
In particular, G is pseudo-reductive over k if and only if it is pseudo-reductive over K.

Proof. Since R, x(G)k is a smooth connected normal unipotent subgroup of Gk, the inclusion
R, x(G)x < Ryuk(Gk) always holds. First, we claim that we can restrict to the case of a separa-
bly closed base field k. For that, let us start by considering a Galois extension k’/k: by Galois
descent, R, 1 (Gy) descends to a smooth connected unipotent normal k-subgroup H < G, which is
by definition contained in R, x(G). Hence R, v (Gy) = Hp < R, x(G)r and we are done. Now let k;/k
and K;/K be separable closures, chosen such that ks < K;. Both ks/k and K, /K are Galois, hence

a: Ryp(G)r, — Ryx,(Gg,)
B: Rux(G)k, — Ruk.(Gk,)

are isomorphisms. If we denote by i the inclusion R, x(G)x — R, k(Gk), the following diagram
commutes:
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Rll,kg(Gks)Ks 0% RM,kS(GKS)

x®Ks

N
=

(Ruk(Gh )k, = Rux(G)x, — =

If «y is an isomorphism, then the same is true for i ® K;. By Galois descent, this implies that i is an

Ry, x(Gk)k,

isomorphism. Therefore it suffices to prove the theorem for k a separably closed field.

Now, the inclusion we want to prove is R, x(Gkx) < R, x(G)k. Since they are both smooth and
connected subgroups, it suffices to prove an inequality on dimensions. Actually, we will prove the
following more general fact : let U < Gk be a smooth connected unipotent normal K-subgroup with
dim U = d, then from U we can construct a smooth connected unipotent normal k-subgroup of G
having dimension d. For this, we express K as the direct limit K = lim F of all its subfields k € F < K
which are finitely generated over k Since K/k is separable, let us note that each F is necessarily
separable over k. Based on descent of closed subschemes and morphisms between them, as in [EGA 4,
Prop 8.6.3 and 8.9.1], there exists such an F for which U descends to an F-subgroup of Gr. Let Uy
be such a subgroup: since (Up)x = U, by faithfully flat descent Uy is necessarily smooth, connected,
unipotent and normal in Gr (to prove it we do not need the results on inductive limits). By replacing
K by F, this allows to suppose that the extension K/k is finitely generated. Therefore it must be of
the form

k— k(X1,...,Xm) — K

where the first is purely transcendental and the second is finite and separable, hence by the primitive
element theorem it is monogeneous: there exists « € K such that it is an extension of the form
K=k(Xy,...,Xm)(a) =k(X1,..., Xn)[T]/(P), where P € k(Xy, ..., X)[T] is a separable polynomial.
By replacing a by a suitable fa with f € k[Xj, ..., X;;] we can suppose that P is a polynomial with
coefficients in k[ Xy, ..., X;u]. Hence

K=k(Xy,...,Xm)[T]/(P) = Frac (k[ Xy, ..., Xu]/(P)) =: Frac(A).
Now, let us express K as the following direct limit

K =FracA=Aq = lim A[l/a]
acA\{0}

By separability of P, we can obtain that the morphism Spec A — Speck is smooth, i.e. A is a k-smooth
domain, after replacing Spec A by some open subscheme Spec A[1/a]. Again by standard results
on limits, there exists a suitable localisation A[1/a] such that U descends to a closed subscheme of
Gapi/a: by replacing A with this localisation, there exists a closed subscheme % < G4 such that
% = U < Gg.

Now we want to prove that, by further remplacing A by a localisation, we can suppose that % is
a unipotent normal A-subgroup of G4. This is done by ”spreading out” these properties from the
generic fiber Spec K. The normality of U in Gk is equivalent to saying that the map

GkxU— Gk, (g u)— gug_l
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factors through U. Therefore it suffices to apply descent of morphisms from K = lim A[1/4] to
obtain that % is an A-smooth normal A-subgroup of G4, having geometrically connected fibers of
dimension d, because Uk is the generic fiber of % — Spec A. Geometrically, remplacing A by A[1/a]
corresponds to shrinking Spec A by taking out the hypersurface (2 = 0). Concerning the unipotence
of Uk, by Corollary 1.2.6 it can be expressed as follows: there exists a finite extension K’'/K such that
Uk, admits a composition series whose successive quotients are isomorphic to G, x. Let vy, ..., 2, a
K-basis of K’ and set A’ := Alay,...,a,]. Then A’ is an A-finite domain such that A} = K'. Let us
consider the following commutative diagram, which is by construction made up of cartesian squares

given by fiber products:
qu %A’
SpecK’ Spec A’
SpecK Spec A

The field extension K — K’ is faithfully flat, so up to restricting A to a localization we obtain that
A — A’ is faithfully flat too. Moreover, the diagram shows that the generic fiber of Spec A" — Spec A
is Spec K. Since it is true for Uks, by spreading out of properties as before, from this diagram we
can suppose that %4 admits a composition series by A’-smooth normal closed A-subgroups, having
successive quotients isomorphic to G, 4.

As a final step, we claim that all fibers of % — Spec A are unipotent. Suppose this is true: since A is
k-smooth and k separably closed, A(k) is dense in A, hence there exists a k-point of Spec A. The fiber
of 7% over such a point is a normal k-subgroup of G which is smooth, connected, unipotent and of
dimension precisely 4.

To prove it, let us fix a point s € Spec A, which corresponds to a morphism Specx(s) — Spec A. Since
Spec A’ — Spec A is faithfully flat, in particular it is surjective, so there exists s’ € Spec A’ a preimage
of s. Let us consider the following commutative diagram :

U / wU
(%A’)s’ l OZ/S
Spec A’ Spec A
— —
Specx(s’) Spec(s)

where we denote the fibers over s and s’ as
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Us := U R@ax(s)
(Unr)s = (W) ®ar k(")

The commutative square in the front tells us that (%a)s = % ®y(s) k(s'). Since being unipotent
commutes with extensions of the base field (Corollary 1.1.12), this implies that % is unipotent. []

Theorem 3.2.2 fails when purely inseparable field extensions are taken into account, as illustrated
by the following example : it is the simplest case of a pseudo-reductive nonreductive algebraic group
and it is a generalization of Example 3.1.5 above.

Example 3.2.3. Let k be an imperfect field of characteristic p > 0 and k’/k a purely inseparable field
extension of degree [k": k] = p". Let us consider the smooth k-group G, obtained by Weil restriction
of the multiplicative group:

G 1= Ry (G )

The group G, x embeds as a k-subgroup of G, as we have seen in Defintiion 3.1.2. Hence, we can
consider the quotient U := G/G,,. The smoothness of G comes from the following general property
of Weil restriction : if Y is a smooth k’-variety, then R (Y) is smooth over k. First, we claim that
there exists an integer n such that UP" = 1. By smoothness of U, it suffices to verify that this is true
for U(k,), because k,-rational points are schematically dense. Thus, we compute

n

Uk = (Gu(K @ ks)/Gm(ks))” = (K @xks)*/kY) =1,

because k' /k is purely inseparable and k;/k is separable, so their tensor product over k is a field.
Next, we claim that if a k-group H is not unipotent, then it contains a one-dimensional torus T.
(- need borel subgroups...?)

Now, we want to apply this in order to show that U is unipotent. If this is not true, then it must
admit a one-dimensional torus T as a k-subgroup, which we can assume to be split by extending
scalars to k. Hence, forallm =1, T = TP" because the sequence

1—>‘upm<—>GmL>Gm—>1

is exact. This contradicts the fact that U?" = 1, hence the quotient U is unipotent. In particular, the
k-group G is not reductive.
On the other hand, we have

G(ks) = (K' ®ks)*

which has no p"-torsion for any n since k' ® ks is a field. In particular, it does not contain any
unipotent subgroup (normal or not), so by density of the rational points the same holds for the
algebraic group Gy,. Thus, R, i (Gy,) is trivial, hence the unipotent radical R, x(G) is trivial too and
we have shown that G is pseudo-reductive.

The above argument can be generalized as follows : if k’/k is a finite purely inseparable extension
and G’ is a smooth connected nontrivial reductive k’-group, then the Weil restriction

G = :Rk’/k(G,)
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is not reductive, even though it is pseudo-reductive (see [CGP15, Example 1.6.1]).

3.3 Rigidity for Unirational Groups

Throughout the preceding sections it has been shown that, when working with unipotent or

pseudo-reductive groups, purely inseparable extensions lead to many complications that do not
take place in the separable case. Moreover, in the last chapter we have established and explained an
equivalence of categories, which only holds in the commutative case and over a perfect field. So,
why the need to study groups over imperfect fields?
The first reason is that, whenever one does algebraic geometry over a perfect field k of nonzero
characteristic, the fiber over the generic point of any smooth k-variety, its function field, is always
imperfect. The simplest class of imperfect fields are those such that [K'/7: K] = p, also called of
degree of imperfection 1. Geometrically, such a field K is the function field of some smooth k-curve.
Some examples include FF,(t), IF,((t)) and more generally all global and local fields of nonzero
characteristic (for basics on global and local fields see [Neu13, I, §5]).

However, interesting stimuli exist already within the theory of algebraic groups : over an imperfect
field, groups have a more rich and complex structure, and this is particularly true for unipotent ones.
Let us mention and give a few comments on a rigidity result which is an application of Tits” theory.

First, over a perfect field k, each smooth connected nontrivial unipotent group U contains a copy
of the additive group. Notice that this makes it impossible to have a rigidity theorem for scheme
maps f: G — U satisfying f(1g) = 1y, analogous to the usual fundamental rigidity theorem for
abelian varieties. For example, one can define a counterexample as

fiGy —25 G, ¢ u,

where g(x) = x —1: clearly, f is a k-scheme morphism satisfying f(1g, ) = 1y, but it is not a k-group
homomorphism.

On the other hand, over imperfect fields there exist several smooth and connected unipotent
groups that do not contain any copy of G, (the simplest one being Example 4.1.2 below): this makes
a big difference, as the following recent result, which is still to appear in the literature, shows.

Theorem 3.3.1 (Rosengarten). Let G and H be group schemes of finite type over a field k of degree of
imperfection 1. Assume that G is unirational and that H is solvable and does not contain a k-subgroup
isomorphic to G,. Then any k-scheme morphism f: G — H such that f(1g) = 1y is a homomorphism of
k-group schemes.

Let us recall that a k-variety is said to be unirational if there exists an integer N > 1 and a rational
map PN --» X; essentially, this is a useful property to guarantee the existence of many rational
points. In characteristic 0, and more generally over a perfect base field, all affine algebraic groups
are unirational, hence the first assumption is non tautological only when working over an imperfect
field.

What about the second assumption? It involves solvable groups not containing a copy of G,: in
particular, in this text we will study the case of unipotent groups, which Tits calls k-wound.

In order to state the theorem, the precise definition of this notion is not needed; however, it is heavily
used in the proof given by Rosengarten. Again, if the base field is perfect, this condition is not
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satisfied by any nontrivial smooth connected unipotent group, hence the rigidity theorem actually
makes sense only over an imperfect base field.

An important consequence is given by the following corollary, which follows directly from the
theorem by taking G = H a unipotent wound group and applying the statement to the inversion
map, as one does in the case of abelian varieties.

Corollary 3.3.2. Let k be a field of degree of imperfection 1. Then any unirational wound unipotent k-group
is commutative.
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4.1 Subgroups of vector groups . . . . ... ..o e 39
4.2 Wound unipotent groups . . . . . . .. L 47
43 Thecckp-kernel . . ... ... . .. . . e 51
4.4 Toriacting on unipotent groups. . . . . . ... ... o o o e 56

This last chapter follows [CGP15, Appendix B], and [Con11]. Even though a complete exposition of
Tits” results has only been published in [CGP15], most of the material can be found in his unpublished
Yale lecture notes from 1967.

The intent is to survey Tits” work on the structure of smooth connected unipotent groups over an
arbitrary field, in particular concerning the imperfect case. This involves introducing and studying
the k-wound property, concluding with some results on the actions of tori on unipotent groups,
which are useful to proceed further on with the study of general solvable groups. Particular attention
is paid to illustrate a few examples in detail, in order to highlight the differences with the perfect
case and the pathologies which might arise.

Henceforth, k will denote an arbitrary field of characteristic p > 0.

4.1 Subgroups of vector groups

Recall that a smooth solvable k-group is k-split if it admits a composition series having successive
quotients isomorphic to G, or G,. For k-tori, this notion behaves in a very convenient manner: all
subgroups and quotients of a k-split torus are k-split. Moreover, the notion of k-anisotropicity is
orthogonal to the k-split property, as in the following result (see [Borg1, 8.14 and 8.15]).

Proposition 4.1.1. Let T be a torus over k. Then there exist a unique maximal k-split subtorus Ts and a
unique maximal k-anisotropic subtorus T,, such that the mapping

T,xTs — T, (a,s)— as
is an isogeny.

What changes when we move on to the unipotent case? First, the following example shows that a
smooth connected normal k-subgroup of a k-split unipotent group is not necessarily k-split.

Example 4.1.2. Let k be imperfect and a € k\kP. Consider the k-split unipotent group G2 and the
k-subgroup U = G2 defined on the functor of points as

U(R) := {(x,y) € R*: y¥ = x —axF}

for all k-algebras R, i.e.

K[X, Y]
U = Spec ((YP - X+aXP)> '

Now let k' := k(a/?): if we extend scalars to k', the group Uy is isomorphic to G, hence in particular
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it is k’-split:

KX, Y KX, Y
uk’ZUXSpeckSpeCk/ZSpeC< [X,Y] [X, Y] >

/ j—
(Y? — X + aXP) ®kk) = Spec <(yp X+ (a/PX)P)

KIX, Y] KV, T] ,
= Spec (((Y —ax)r - x)) > Spec <(TPV>> > SpecklT] = (Gelr

However, U is not isomorphic to G, as a k-scheme, hence in particular it is not k-split as a k-group.
Let us assume that O(U) = k[X,Y]/(YP — X + aXP) and k[T] are isomorphic as a k-algebras. Let
us denote x and y the images of X and Y in the quotient O(U): the isomorphism gives x = Q(T),
y = R(T) for suitable polynomials Q, R € k[T] of degree strictly larger than 1. Moreover, the equality
yP = x —ax? implies that Q and R have same degree. Thus, we obtain

QF(T) = R(T) — aR(T)? € k[T].

Considering the highest degree term on both sides, this gives a € k¥, which is absurd.

This example also shows that the k-split property for unipotent groups can be sensitive to purely
inseparable extensions, unlike what happens in the case of groups of multiplicative type (see [Mil17],
Corollary 12.20).

Carrying on the comparison with the case of tori, we wish to define and study an analogue for
unipotent k-groups of the notion of k-anisotropicity. Let us start by a preliminary study of subgroups
of vector groups, which are in particular unipotent, commutative and p-torsion. The aim of this first
section is to show that any such unipotent group embeds into a vector group, and to establish the
conditions under which the embedding can be realized in codimension 1.

4.1.1 p-polynomials
Definition 4.1.3. A polynomial f € k[Xj, ..., Xy] is a p-polynomial if every monomial appearing in
f is of the form cl-ij] for someie {1...n}, je N and c; € k.

In particular, remark that f = Y7, fi(X;) where f;(X;) = 2 (:Z-]-Xf7 " € k[X;]. The polynomials f; are
uniquely determined if we add the condition f;(0) = 0 for all i.

Lemma 4.1.4. A polynomial f € k[Xy, ..., X, ] is a p-polynomial if and only if the associated map of k-schemes
G} — G, is a k-homomorphism.

Proof. We associate to f in a natural way the map G} — G, given on the functor of points by
G;(R) =R" — R =Gs(R), x=(x1,...,%n) — f(x1,..., %)

for all k-algebras R.

e Let f be a p-polynomial, then it is of the form f = }] cinfj. For all x = (x1,...,x4),

ij
Y= (y1,...,yn) € R", we clearly have

Fary) =N+ =2+ = F0 + F),
ij ij

i,j

hence the map is a k-homomorphism.
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* We proceed by induction on the number #n of indeterminates. For n = 1, the polynomial
g(X,Y) == f(X+Y)— f(X)— f(Y) is zero in k[ X, Y]. Write f as f = > j"; ;X' for some a; € k.
Then

0=2g(X,Y) i a(X+Y) = x =Y
1=0

thus whenever a; # 0 it must be (X +Y)! = X' + Y/, which is true if and only if [ = p/.
We conclude by setting ¢; := a,;. Now suppose the statement true for n and consider f €
k[Xj ..., Xy, T] which is additive. Write it as

FX,T) = g0(X) +g1(X)T + ... + gm(X)T™ € k[X1, - . ., Xu][T]

In particular, go(X+Y) = f(X+Y,0) = f(X,0)+ f(Y,0) = go(X) + go(Y), hence by induction
Qo is a p-polynomial. It suffices to prove that g1,...,gm € k[X —1,..., X,,] are constant : this
implies (X, T) = go(X) + h(T) with h € k[T| additive hence a p-polynomial, thus we conclude
by applying to h the case n = 1. Let us fix x € k. Then by additivity f(x,T) + f(0,0) =
f(x,0)+ f(0,T) € k[T]. By developing both terms, we get

)T+ ...+ gm(x)T" =g1(0)T +...+gm(0)T" € k[T],

hence gi(x) = gi(0) is constant for all 7.

Definition 4.1.5. A nonzero polynomial f € k[Xjy,...,X,] is a separable polynomial if A :=
k[Xi,...,Xn]/(f) is a separable k-algebra, that is, geometrically reduced.

Proposition 4.1.6. Let f € k[ Xy, ..., Xy] be a nonzero polynomial such that f(0) = 0. Then the subscheme
f~1(0) < G is a smooth k-subgroup of G if and only if f is a separable p-polynomial.

Proof. Let f be a p-polynomial: the subscheme f~1(0) is the kernel of the associated map G — G,,
which is a k-homomorphism by 4.1.4, hence f~1(0) is a k-subgroup. By definition of separable
polynomial, it is also generically smooth, thus being a k-group, it is smooth.

Conversely, let G := f~1(0) € G” be a smooth k-subgroup. The smoothness implies by definition
that f is separable. Again by 4.1.4, it suffices to prove that the associated map of schemes is a
k-homomorphism, i.e. that f is additive. Since it suffices to verify this after extending scalars to
k, and smoothness being a geometric property, we can suppose that k is algebraically closed. Let
a € G(k): since G < G} is a k-subgroup, x + a belongs to G if and only if x does, thus f(X + «) and
f(X) both have G as zero scheme in affine space. Hence there exists a unique constant A(«x) € k* such
that f(X 4+ a) = A(a)f(X). By considering a monomial of highest degree of f we obtain A(x) = 1.
Now let us fix B € k". Since f(a + p) = f(B) for all « € G(k), the polynomial f(X + B) — f(X)
vanishes on G(k). The group G being smooth and k algebraically closed, G is the only reduced
subscheme of G/ having as underlying topological space the Zariski closure of G(k), which allows to
conclude that f(X + B) — f(B) vanishes on all G. Therefore there exists a unique y(B) € k such that
f(X+B)—f(B) = u(B)f(X). Considering a monomial term of highest degree we obtain y(p) = 1,
hence f(x + B) = f(x) + f(B) for all x, B € k" and f is additive. O
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Corollary 4.1.7. Let G = G]} be a smooth k-subgroup of codimension 1. Then G is the zero scheme of a
separable nonzero polynomial in k[ X, ..., Xy].

Proof. Being a smooth closed subscheme of codimension 1, G is the zero scheme of a separable
nonzero polynomial f € k[X3, ..., X;,]. By 4.1.4, the fact that G = f~1(0) is a k-subgroup implies that
f is a p-polynomial. O

Definition 4.1.8. Let f = Y./ ; fi(X;) be a p-polynomial over k in n variables with f;(0) = 0 for all i.
The principal part of f is the sum of the leading terms of the f;.

Lemma 4.1.9. Let V be a vector group of dimension n > 1 over k and let f: V — G, be a k-homomorphism.
The following are equivalent.

1. There exists a nonconstant k-scheme morphism f': Al — V such that f o f' = 0.

2. For every k-group isomorphism h: G} ~ V, the principal part of the nonzero p-polynomial f o h has a
nontrivial zero in k".

3. There exists a k-group isomorphism h: G} ~ V such that ker(f o h) contains the first factor of G, i.e.
f oh only depends on the last n — 1 coordinates.

Remark 4.1.10. In the second condition, the existence of such an isomorphism is not sufficient: let k be
imperfect and consider a € kK\k?, f(X,Y) = YP — (X +aX?). Then f is a nonzero p-polynomial whose
principal part Y? — aX? has no zeros on k?\{0}. However, by composing it with the k-automorphism
of G2 given by h: (x,y) — (x,y + x”) one gets the p-polynomial foh = YP + X" — (X + aX?), whose
principal part is Y? + X?* which has (1, —1) as nontrivial zero.

Proof. (1) = (2) : Let ¢ := h=! o f’ and write it in components as ¢ = (@1, .., pn), with ¢; € k[t]. Let
s; = 0 whenever ¢; = 0 and denote 4;t% the leading term of ¢; otherwis_e. Since f’ is not constant, the
same holds for ¢, hence for some i we have s; > 0. Let f = 3./ ; ;X! be the principal part of f o h.

By (1),0=fof' =(foh)o (™o f') = fohog, hence
0= f(h(e(t))) = Z ci(ait )" 4+ .. = Z cal" P 4
i=1 i=1

Now let N := max;{s;p™} > 0 and define b; := a; when s;p™ = N (so in particular b_i is nonzero)
and b; := 0 otherwise. The coefficient of the term of degree Nin foho@is 3/ c;b! ' and it must
vanish, hence (by, ..., b,) is the desired nontrivial zero of the principal part of f o h.

Ay

YA

o] LN o /NN
\Qol Jf
G,

(2) = (3) : Let h: G ~ V be a k-group isomorphism. The case f = 0 is trivial, hence we may

assume f # 0 so the principal part of f o h is nonzero: we denote it as > ; ¢;X! . Let d be the
sum of the degrees of its nonzero terms and let us proceed by induction on d, the case d = 0 being
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f = 0. If ¢, = 0 for some r, the principal part does not depend on X, hence the same holds for the
whole p-polynomial f o, so we are done by composing with the k-automorphism interchanging
X1 and X,. Thus, let us assume that all ¢; are nonzero and, up to a coordinate permutation, that
my > ...>my, = 0. By (2), there exists (a1, ...,a,) € k"\{0} such that > ; c;al "= 0. Letr > 0be
minimal such that a, # 0 and define the k-automorphism h': G ~ G} given by

p'”"7"’7+1 My —mp
W1r-ooyn) — (X1, Xn) 2= (Y1, Yr— 1, @Y, Y1 + Ar1Yr soee o Yn t AnY; )
By composing the principal part of f o h with i’ we get
n r—1 le m; n m; m
2 cz-XlP Z clYp + crar Yp + Z Ci (Y + a;Y, ) chYp Zciaf y?
i=1 i=1 i=r+1 i#r i=r
which since a; = ... = a,_1 = 0, equals
m; n m; m m;
2 YD+ Z cal | Y = 2 oY)
i#r i=1 i#r

because (ay,...,a,) is a zero. Finally, the sum of the degrees of the nonzero terms of the principal
part of f ohol' is strictly smaller than d (because ¢, # 0) and we conclude by applying the induction
hypothesis.

(3) = (1) : Let h: G} — V be a k-group isomorphism such that ker(f o h) contains the first factor
of GJl. Define ¢: G, — G as ¢(t) = (£,0,...,0) and let f’ := ho¢. Then f(f'(t)) = f(h(¢(t))) =
f(h(t,0,...,0)) hence fo f' =0. O

Lemma 4.1.11. Let V be a vector group of dimension n > 1 over k, K/k a Galois extension, and let f: V — G}
be a k-homomorphism. The equivalent conditions of 4.1.9 hold over K if and only if they hold over k.

Proof. First, we prove the following : if f is a p-polynomial of the form f(X) = >, cinMi over k,
then if f has a zero in K"\{0}, then it has a zero in kK"\{0}.

We proceed by induction on n: if n = 1, by hypothesis there exists a; € K* such that c;a " =0, then
c1 = 0 and we conclude. If n > 1, we can suppose up to permutmg the coordinates that m; > ... > m,
and consider (ay,...,a,) € K”\{O} such that 3, c;a? o0 If a, = 0, then we can apply the

mn n;

induction hypothesis to >/} cin . Otherwise, we can divide each a; by a}, and thus assume
that a, = 1. Now let 0 € Gal(K/k) : both a and ¢ (a) are zeros of f, and since it is a p-polynomial,
b :=a—o(a) is a zero too. If all 4; belong to k already, we are done; if not, since the extension is
Galois, there exists a ¢ such that a # o(a) hence b # 0. Moreover, b, = a, —oc(a,) =1—1=0, so we
can again apply the induction hypothesis.

Now let us go back to the conditions in 4.1.9. If (1) is true over k, then it is also true over K. Moreover,
we just proved that if the principal part of a nonzero p-polynomial has a nontrivial zero in K", then
it has a nontrivial zero in k", which means that if (2) holds over K, then it also holds over k. O

4.1.2 Embedding into a vector group and consequences

Theorem 4.1.12. Let G be a smooth p-torsion commutative k-group. Then

(a) G embeds as a k-subgroup of a vector group over k,
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(b) G admits an étale isogeny onto a vector group over k,
(c) If G is connected and k = k, then G is a vector group over k.

Let us recall some notations and basic facts on the Lie algebra of a vector group, which we
will need in the proof : for any finite dimensional k-vector space V, the associated vector group
V ~ Spec(Sym(V")) represents the functor (k — Alg) — (Grp), R — V ®R. A choice of a basis for
V determines an isomorphism V ~ G} for some integer n. Let W = V be a vector group. Then

OW) =0(V) =Sym(V¥) = P(V")®"o@w-w@v|v,we V)

n=0

has augmentation ideal I = kere = @,o;(V")®", hence I/I* = (VV)®! = V" and
Lie(W) ~ Homy(I/I%,k) = Homi(V",k) ~ V,

so W=V ~ Lie(W).

Proof. (a) : Let us start by constructing the embedding into a vector group over k. First, we want to
show that we can assume k = k.
Let k'/k be a finite extension and consider the canonical inclusion ig: G < Ry x(Gy) defined in

Proposition 3.1.3. By definition of Weil restriction,
Rer k(G pr)(R) = Gy (ROK) = ROK ~ RIK:H,

for all k-algebras R, i.e. Ry (Gopr) ~ G,[lk,: . Now if Gy embeds as a k’-subgroup of G/}, by
applying the functor Ry, which is right adjoint to base change hence left exact hence preserves

kernels, we get
G «— Rpu(Gr) — Rpr(Ga'ty) = Gy 17

This allows us to replace k with a finite extension k. Now suppose there exists an embedding of G
as a k-subgroup of some G,l%l . Using standard arguments on limits of schemes, since k is the direct
limit of its finite subextensions k c k' c k, the embedding descends to a finite extension k/, i.e. there
exists k' such that the following diagram commutes.

G — G,

Therefore we can assume that k is algebraically closed.
Next, we want to prove that we can assume G is connected. For this, let us consider the component
group G/G°. It is étale, hence since k = k it must be a constant discrete commutative group. Moreover,
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G is p-torsion hence it must be the constant group over k associated to the abstract group (Z/pZ)"
for some n. Now let us consider the connected-étale sequence on rational points:

1— G%k) — G(k) — (Z/pZ)" (k) — 1.

Let us fix x1,...,X, a (Z/pZ)- basis of G/G°(k): then any choice of liftings x1, ..., x, in G(k) generates
a subgroup isomorphic to (Z/pZ)" because G is p-torsion. This splits the sequence over k-points,
which actually gives a splitting of algebraic groups, because (Z/pZ)" is a constant group hence
a sum of k-points. Thus there exists an isomorphism G ~ G° x (Z/pZ)", and since (Z/pZ) is a
k-subgroup of the additive group, G embeds into G° x G. Therefore we can conclude that, for the
purpose of finding an embedding of G into a vector group, we can assume that G is connected.
Our aim is actually to prove that, under these two assumptions, G is a vector group. By Corollary
1.2.6, G being connected and unipotent over k, it admits a composition series with successive quotients
isomorphic to G,, which we denote as G = Gy © G; © --- © G; = 1. In particular each G; is a
commutative extension of G, by G, 1. By induction on the dimension of G, it suffices to prove that a
commutative extension U of G, by G, is k-split if it’s p-torsion.

For this, consider the group W, of Witt vectors of order 2 and the canonical short exact sequence

J 7,1
0 — G, — Wy — G, — 1.

By Proposition 2.2.12, the element &; € Extl(Gu,Ga) corresponding to the isomorphism class of
this extension is a basis of the left kK[F]-module Ext!(G,, G,). In other words, there exists a k-group
endomorphism ¢ of the additive group such that U is given by the following cartesian diagram:

1 G, .G, 1
| bk
1 G, Wor —4 G, 1.

Since U is smooth and p-torsion, the same is true for the subgroup ¢(U). Moreover,
p-(x,y) = (0,xP) forall (x,y) € Wy,

hence in particular, if we denote H the p-torsion subgroup of W, we have 711 (H) = a,. It follows
that 7117 o (U) is a smooth subgroup of &}, hence it is trivial. By commutativity of the pullback
diagram above, 7111 09 = @ o g vanishes hence ¢ = 0 because g is an epimorphism. Thus, we
conclude that the extension must be split i.e. U ~ G2.

Having proved (a) and (c), we can go back to the general setting of an arbitrary base field k in
order to construct the étale isogeny. Let us fix an embedding of G into a vector group V, having
codimension m. Consider the vector subspace Lie(G) < Lie(V): once we have fixed an isomorphism
V ~ G! for some n, the map W — Lie(W) gives a bijection between linear k-subgroups of V and
vector subspaces of Lie(V), so we can choose such a W such that Lie(G) @ Lie(W) = Lie(V) and
consider the map p: G — V — V/W. The associated linear map

Liep: Lie(G) — Lie(V/W)
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is an isomorphism of Lie algebras. Let N := kerp : since G is smooth and connected, the equality
0 = ker(Lie p) = Lie(ker p) = Lie N implies that N is smooth of dimension 0, hence étale. The closed
immersion G/N — V /W given by universal property of the quotient must hence be also an open
immersion, so it is an isomorphism because the vector group V /W is connected. In conclusion, p is
surjective with finite étale kernel, hence it is the desired étale isogeny of G into a vector group. [

We will now state and prove some consequences of the embedding of a smooth p-torsion commu-
tative group into a vector group. In particular, the following result will be useful later, when we will
need to consider k-scheme morphism from the affine line.

Proposition g4.1.13. Let Vi, ...,V be k-groups isomorphic to G, and let V := Vj x --- x V,, ~ GII. Let
U be a smooth k-subgroup of V such that Uy, is the ks-subgroup of Vi generated by a family of ks-scheme
morphisms @: A,t — Vi, passing through 0. There exists a k-group automorphism h of V such that h(U) is
the direct product Vix-xV, for some r < n. In particular this shows that

(i) U is a vector group over k,
(ii) U is a k-group direct factor of V.

Proof. Let us proceed by induction on n. If n = 1, it suffices to take the identity morphism A}(S — Vi,
to conclude that Uy, = V;;, and so U = V;. Now let n > 1. If dim U = dim V = n, then being smooth
and connected we conclude that U = V, so we can suppose dimU < n —1. If dimU = n — 1, then by
4.1.15 U is the zero scheme of a p-polynomial, i.e. the kernel of some homomorphism f: V — G,.
Since we assumed that U has dimension n — 1 > 0, there exists a nonconstant scheme morphism
f' A,{s — Vi, such that Uy, = f~1(0)k, contains the image of f’. In particular, f'o f = 0 over k; :
by applying Lemma 4.1.11 to the extension k;/k and the equivalence (1) < (3) in Lemma 4.1.9, we
conclude the existence of a k-group automorphism 4’: V — V such that ker(f o /') contains V;. The
group U being the zero scheme of f, this is equivalent to saying that V; is contained in /'(U). Let us
denote as U’ the projection of /' (U) onto V' := V; x --- x V,,, then we have I'(U) = V; x U, so we
can apply the induction hypothesis to U’ and V' to conclude. Finally, let us suppose that dim U is
strictly smaller than n — 1 and let U’ be the projection of U onto V' = V, x --- x Vj,. By the inductive
hypothesis, there exists a k-group automorphism h: V/ — V' such that h(U’) = V5 x - -+ x V, for
some r < n. If we set ' :=idy, xh: V ~ V, we obtain h’'(U) < V; x --- x V, and we can again apply
induction as before. 0

Corollary 4.1.14. Let G be a smooth p-torsion commutative k-group. Then any smooth k-subgroup of G
which is a vector group is a k-group direct factor.

Proof. By 4.1.12, the group G embeds as a k-subgroup of some vector group V of dimension n over k.
Let us consider a smooth k-subgroup W which is isomorphic to G/, for some r < n. The vector group
W is generated by k-homomorphisms

Gi— G, WGV,

hence in particular by k-scheme morphisms A; — V, so we can apply Proposition 4.1.13 to conclude
that W is a k-group direct factor inside of V, hence in particular by restriction a direct factor of G. [

Another important consequence of Theorem 4.1.12 is the following : in the case of an infinite base
field, we can actually find an embedding into a vector group having codimension equal to 1.
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Proposition 4.1.15. Let U be a smooth p-torsion commutative k-group over an infinite field k. Then U is
isomorphic to a k-subgroup of codimension 1 of a k-vector group. In particular, it is isomorphic to the zero
scheme of a separable nonzero p-polynomial over k.

Later we will see that if k is perfect and U is connected then it is a vector group (see Corollary
4.2.5 below) : this proposition is thus true also over finite fields if U is connected.

Example 4.1.16. Actually, this result is not tautological : in the case of a finite base field k, a
nonconnected U with the properties above does not admit an embedding of codimension 1 in general.
Let k = IF,: then G, x consists of p rational points. Hence, for n > 1 the constant group U := (Z/pZ)"
has dimension 0 but it cannot admit an embedding into the additive group because it is a disjoint
sum of p" rational points.

Proof. By Theorem 4.1.12, there exists an embedding of G into a vector group V over k. Let us proceed
by induction on m := dimV —dim U. If m = 1, then we conclude using Corollary 4.1.7. Let us
assume m > 1 : if we prove that U can be embedded into a vector group W over k of dimension equal
to dim V — 1, then we are done by induction. By smoothness of U, the linear subspace Lie(U) has
codimension m in Lie(V). Let us fix an isomorphism V ~ G, with its corresponding linear structure
on V, and consider the schematic image of the multiplication map G, x U — V, which we denote as
Y. Since m > 2, the closed subscheme Y has nonzero codimension in V. Now let us consider the
vector group Lie(U) < V associated to the linear subspace Lie(U): since V is irreducible, the union
Lie(U) u Y must be a proper closed subscheme of V. Moreover, k is infinite and the underlying

scheme of V is the affine space A7, so the set of rational points V (k) is dense in V. Thus, let us take
v a rational point not belonging to Lie(U) U Y and denote L < V the k-subgroup corresponding to
the line (v) = V(k). Consider 71: V — W := V/L the canonical quotient map and set ¢ := 7y it is
enough to prove that kery = 1, so U embeds as a k-subgroup of W. For this, let us consider the
induced Lie algebra homomorphism

Liey: Lie(U) — Lie(W) = Lie(V)/ Lie(L).

Its kernel is given by L n Lie(U), which is trivial because v ¢ Lie(U). Hence we obtain 0 =

ker(Lie i) = Lie(ker ¢). Since the group U is smooth and connected, ker ¢ is étale, i.e. of the form
Spec A with A a finite étale k-algebra. By extending scalars to an algebraic closure, (ker¢); =
Spec(A ®k) is a disjoint union of 1 copies of Spec k, where 1 denotes the dimension of A as a k-vector

space. Thus, it suffices to prove that ¢ is injective on U(k) : if this holds, then n = 1 hence A = k

and ker 1 is trivial. Now, if ¥ is not injective on U(k), then there exists a nonzero A € k such that

Av € U(k). Since Y is stable under the action G, x V' — V, this would imply (v) = L(k) < Y(k).
However, by definition v belongs to L(k) but not to Y, so we conclude that i, is injective. O
4.2 Wound unipotent groups

Let us recall that a torus over k is k-anisotropic, i.e. X(T) = Hom_gp)(T,Gn) = 1, if and only
if Hom_Gp)(Gm, T) = 1: if we consider a nontrivial character x: T — Gy, the image x(T) is a
smooth connected nontrivial k-subgroup of G, hence it coincides with G,,. By setting T’ := ker x,
the following sequence is exact

1—T —T—G,, — 1
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Since T’ is of multiplicative type, this is an exact sequence in the semisimple abelian category
of groups of multiplicative type, hence there is a splitting T ~ T’ x G,,. This gives a nontrivial
isomorphism f: G, = T =T x Gy, x — (1,x).

For unipotent groups, the analogous statement obtained by remplacing G, by G, fails : by Proposition
1.2.7, every unipotent k-group admits nontrivial k-homomorphisms to G,, however the group U
defined in 4.1.2 does not contain G, as a k-subgroup.

Taking these considerations into account, it is natural to consider as the analogous to k-anisotropicity
the property of admitting no nontrivial homomorphisms from G,. However, it is more convenient to
give another definition by considering maps of schemes from the affine line, and later prove that the
two coincide.

Definition 4.2.1. A smooth connected unipotent k-group U is k-wound if every k-scheme morphism
A} — U is a constant map to a point in U(k).

Example 4.2.2. The following examples show that over an imperfect field the k-wound property
behaves in a very unusual way.

e If a torus is k-anisotropic, then it stays anisotropic after a purely inseparable extension of the
base field, while the k-wound property can be lost under such an extension : let k be imperfect
and t € k\kP. By 4.1.2, the k-subgroup U = {y? = x — tx?} of G2 becomes isomorphic to G
over k' = k(t'/?). However, it does not admit any nonconstant k-scheme morphism from the
affine line: let ¢: A} — U be such a map, then the image ¢(A}) is connected and is not just
a point. So, since U is irreducible, ¢ is a dominant morphism. Hence it extends to a finite
surjective map ¢: P} — U where U denotes the regular compactification of U. This gives a
contradiction because ¢ must send the unique point at infinity of A{, which is k-rational, to
the point at infinity of CI, which is not k-rational.

* A smooth connected subgroup of a k-split torus is still k-split, while a k-split unipotent group
can admit nontrivial k-wound subgroups : the group U is a k-wound subgroup of G2.

* A nontrivial quotient of a k-wound group by a k-wound subgroup can be k-split : let k be
imperfect and t € k\k”. The k-subgroup of G_ given by

G(R) := {(x,y,2) € R®: x”" + t'y” + tzF = x} < R?,

for all k-algebras R, is the zero scheme in affine space of the separable p-polynomial XP* 4+
tPYP’ 4+ tZP — X, whose principal part XP* 4+ tPYP" + tZF has no nontrivial zero on k3. Assume
there exists a nonconstant k-scheme morphism ¢: A} — G. Composing with the inclusion
of G in G} gives a nonconstant k-scheme morphism f’': Al — G such that fo f’ = 0. By
4.1.9, taking as h the identity of G2 gives a contradiction. Hence G is k-wound. Moreover, its
subgroup H = {(x,y,z) € G: z = 0} is smooth, connected and k-wound, and the map

G— G, (vyz)—2z

induces an isomorphism of k-groups G/H ~ G,. This example is from [Oes84, Ch 'V, 3.5].

This last example shows that there is a link between p-polynomials and k-wound groups: let
us illustrate it in detail in the case of an infinite field k. By Proposition 4.1.15, smooth p-torsion
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commutative k-groups are of the form U = f~1(0) < G” with f a separable p-polynomial. Moreover,
algebraic groups are connected if and only if they are geometrically irreducible, hence such a U
is connected if and only if f is geometrically irreducible over k. Let us suppose U is connected :
if its principal part has no nontrivial zero in k", then by applying Lemma 4.1.9 as in the example
above we get that U is k-wound, but the converse is false (see Remark 4.1.10). However assume there
exists a nontrivial k-rational zero: following the proof of (2) = (3) in 4.1.9 and setting h = idg», we
obtain that U is isomorphic as a k-group to F~1(0), where F is a nonzero p-polynomial which is still
geometrically irreducible over k, but the sum of the degrees of the monomials of its principal part
is strictly smaller than the one for f. By repeating this argument, one eventually gets a principal
part having no nontrivial zero in k". So all smooth p-torsion commmutative k-wound groups can be
realized as zero schemes of geometrically irreducible p-polynomials whose principal part has no
nontrivial k-rational zero.

The following result gives a canonical decomposition of smooth connected p-torsion commutative
k-groups using the notions that we just introduced.

Theorem 4.2.3. Let U be a smooth connected p-torsion commutative k-group. Then it is a direct product
U=VxW

of a vector group V over k and a smooth connected unipotent k-group W such that Wy, is ks-wound.
The subgroup V is uniquely determined by the following : Vi, is generated by all ks-scheme morphisms
¢: Ay — Uy, passing through 0.

Proof. Let us consider the unique smooth connected k;-subgroup V of Uy, which is generated by all
ks-scheme morphisms ¢: A}(S — Uy, passing through 0. Since k;/k is a Galois extension, by Galois
descent there exists a unique k-subgroup V' of U such that V} = V, which is necessarily smooth and
connected. By 4.1.12, the group U admits an embedding into GY for some N > 1, hence the same is
true for V. Applying 4.1.13 and 4.1.14 to V, we get that V is a vector group over k and in particular
a k-group direct factor of U. Hence there exists a k-subgroup W of U and a splitting U = V x W.
By hypothesis U is smooth, connected and unipotent, so the same holds for W. Moreover, Wj_ is
a ks-wound subgroup due the definition of ‘7, so it remains to show that V is unique. For this, let
us consider a second decomposition U = V'’ x W' with V' a vector group over k and W’ a smooth
connected unipotent k-subgroup of U such that W;_is ks-wound. If ¢: A,ls — Uy, is a ks-scheme
morphism, then by composing with the projectionxuks — W[ we obtain a ks-scheme morphism
from the affine line to W which must be constant by definition of ks-wound. Therefore, if @ passes
through 0, then its image is contained in V;_ : this proves the inclusion V < V'. Both are vector
groups, hence V' = V x V", where V" denotes the image of V' under the projection U — W. In
particular, V! is a vector group over ks and a subgroup of W, . Since the latter is ks-wound, such a
subgroup is trivial, hence V” = 0 and finally V = V. O

Corollary 4.2.4. The following are equivalent for a smooth connected p-torsion commutative k-group U:
(a) U is k-wound,

(b) Uy, is ks-wound,
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(c) every k-homomorphism G, — U is trivial.
Moreover, U is a vector group over k if and only if Uy, is a vector group over ks.

Proof. (a) = (c) : a nontrivial k-homomorphism G, — U is in particular a nontrivial k-scheme
morphism A} — U.

(c) = (b) : assume Uy, is not ks-wound. Keeping the same notations as in the above theorem, this
implies that Vi # 0. This implies that V # 0 too, so since V is a nontrivial vector group over k, there
exists a nontrivial morphism G, — V.

(b) = (a) : let Uy, be ks-wound and consider the decomposition U = V x W given by the theorem.
Since Uy, = Vi, x Wi, with Vi a vector group over ks, we must have Vi = 0 hence there are no
nontrivial ks-scheme morphisms ¢: A,ls — Uy, passing through 0. If we had a nonconstant map of
k-schemes A} — U, by a translation and by extending scalars to ks we would obtain such a ¢, hence
U is k-wound.

Finally, let Uy be a vector group over k;: then Uy, = Vi, hence W, = 0, which implies W = 0 and
U = V is a vector group over k. O

Corollary 4.2.5. If k is a perfect field, a smooth connected p-torsion commutative k-group is a vector group.
Proof. Since ks = k, we can suppose that k is algebraically closed and apply Theorem 4.1.12. O

Let us give an example of a k-wound subgroup arising as the quotient of a pseudo-reductive
commutative group.

Let G be a commutative pseudo-reductive group over k. By [SGA3, XII, Theorem 1.7], all tori of
maximal dimension are conjugated in G by a k’-rational point for some finite separable extension
k'/k. The group G being commutative, this implies that there exists a unique maximal k-torus T — G.
By the structure theorem of commutative affine algebraic groups ([SGA3, XVII, Theorem 7.2.1])
applied to the smooth and connected G, the quotient U := G/T is a smooth connected commutative
unipotent k-group.

Lemma 4.2.6. With the above notations, the quotient
u:=G/T
is k-wound.

Proof. We may extend scalars to assume k = ks, because unipotency commutes with any field
extension by Corollary 1.1.12, while the k-wound property and pseudo-reductivity can be verified
on a separable closure by Corollary 4.2.4 and Theorem 3.2.2 respectively. In particular, the torus T
is k-split. Let us take a k-scheme morphism f: A} — U : by definition, we need to prove that it is
constant. Since the fiber product G xy; G is isomorphic to T x G, the group G is a T-torsor over U.
By pulling back via f, the fiber product

GxyAl —" 5 Al
b !
G i u
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is a T-torsor over A}, where 7t denotes the quotient map. Now, for any pair of algebraic groups G
and G; and any k-scheme X, the following diagram

Y
/ \
Glf" ‘ Gz"

« ™~
Y1 =Y/G (G1xGa)~ Y2 =Y/G
~_ J _—
Gy~ G~

TS

shows that there is an isomorphism

HY(X,G; x G3) — HY(X,G1) x HY(X, Gy)
Y +— (Y/G1,Y/Gy),

whose inverse is given by (Y1, Y2) — Y7 xx Y2, where H 1(X, G) denotes the isomorphism classes of
G-torsors over X. In our case, since T is split there exists an integer n such that

H'(A}, T) = H' (A}, G,) ~ H' (A, Gu)" = Pic(Ap)".

The Picard group of the affine line is trivial since the ring k[T] is a UFD (see [Rom12, Proposition
4.2.8]), so all T-torsors over A}(, and in part1cu1ar G xy A}, must be trivial. This implies the existence
of a section 0: A} — G xu Al By setting f := pryoc: Al — G, we have the equality f = o f, so
it suffices to prove that f is constant. Up to a translation we may suppose that f f(0) = 1. We claim
the following : for any smooth connected commutative k-group C, and any k-scheme morphism
h: A; — C such that h(0) = 1, the smooth connected group H generated by the image of h is
unipotent. Applying thisto C = G and h = fimplies H =1 because G is pseudo-reductive, hence
f=1

In order to prove our claim, we may assume that k is algebraically closed because the formation of H
commutes with extension of the ground field (see [Mil17, Proposition 2.47]). In particular, C is the
direct product

C=G, xUu

for some integer r and some unipotent k-group U’. Then the projection of H onto U’ is clearly
unipotent. Hence, by projection onto each factor isomorphic to G,;,, we may assume that C = G,. In
particular, the k-algebra homomorphism corresponding to h

Wt k[T, T~ — k[X]

sends T to a nowhere vanishing polynomial P(X) such that P(0) = 1, hence we can conclude that
h=1. O

4.3 The cckp-kernel

Up until this point we have limited ourselves to the study of commutative p-torsion groups. In
order to go beyond and study the k-wound property in the general case, we will first look at how
those groups embed as k-subgroups of a general smooth connected unipotent group. This means
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that we will look at subgroups that are smooth, connected, central and p-torsion. Throughout this
subsection, U will denote a smooth connected unipotent algebraic group over k and we will specify
whether is it supposed to be k-wound or not.

Definition 4.3.1. The cckp-kernel of U is its maximal smooth connected p-torsion central k-subgroup,
which we will denote as C,(U).

First, let us notice that this is well-defined: given two such k-subgroups G and H, the algebraic
subgroup generated by the multiplication map

m|GxH:GxH—>U

is still smooth, connected, central and p-torsion.

Remark 4.3.2. Let U # 1. Since a unipotent algebraic group is nilpotent, as seen in Proposition 1.2.5,
its descending central series

U=u-ut=[uu’]>---oU=[UU 1>

terminates with 1. Thus, if U® is its last nontrivial term, it is in particular a smooth central k-subgroup.
Since it is commutative, the multiplication by p is well defined. By applying Theorem 1.1.11 to U?,
there exists a minimal N > 1 such that pN - U = 0. Let us set H := pN=1. U® : it is a k-subgroup of
U?® which is the image of a smooth k-homomorphism, so it is smooth and connected. Moreover, it
is nontrivial and p-torsion by minimality of N. Hence U® contains a nontrivial cckp-kernel and we
have showed that a nontrivial U has nontrivial cckp-kernel.

Lemma 4.3.3. The formation of the cckp-kernel commutes with separable extensions of the base field: let k' /k
be a separable extension and U be a smooth connected unipotent k-group. Then

Cr (Ui) = (C(U))p-

Proof. The proof is based on Galois descent and spreading out of properties from the generic fiber,
by using results on limits of schemes, analogously as in the proof of Theorem 3.2.2. O

The following result shows that the k-wound property can actually be verified on the cckp-kernel,
allowing us to utilise the results found in the preceeding sections.

Proposition 4.3.4. Let k'/k be a separable field extension. The following are equivalent.
(1) The group U is k-wound.
(2) The group U does not admit any central k-subgroup isomorphic to G,.
(3) The subgroup Cr(U) is k-wound.
(4) The group Uy is k'-wound.

Proof. (1) = (2) : by definition of the k-wound property.
(2) = (3) : Let us assume (3) does not hold, in particular there exists a nontrivial k-scheme morphism
¢: A} — C(U) < U. By keeping the notations used in Theorem 3.2.2, since €(U) is commutative
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and p-torsion, we can express it as C(U) = V x W. In particular, the vector group V is nontrivial,
hence there is a k-subgroup isomorphic to G, contained in the cckp-kernel of U, which contradicts
(2).

(3) = (4) : let us remark that, if Uy is not k’-wound, then (by using results on limits of schemes as in
the proof of Theorem 3.2.2) we obtain that the same holds for some finite separable extension K/k.
Hence, we ca suppose that k’/k is finite, so k € k < ks and by Corollary 4.2.4 it suffices to prove that
if Uy, is not ks-wound, then F := C,(U) is not k-wound.

Thus, let us consider a nonconstant k;-scheme morphism ¢: A}(s — Uy,. By composing it with a
translation by a rational point we can suppose that ¢(0) = 1. Now, let H be the ks-subgroup of U,
generated by ¢: we claim that we can suppose H to be central. If this is not true, then in particular
Uy, is not commutative. By the smoothness assumption, the k;-rational points are Zariski-dense,
hence there exists g € U(k;) not centralizing H. Let us consider the k;-scheme morphism

oW A}(S — Uy, x— g p(x)'go(x),

which satisfies ¢ (0) = 1 and whose image lies in the derived subgroup D(Uy.) = D(U);, (see
[Mil17, 6.19]). The group U being non commutative, we have 0 < dim D(U) < dim U. By repeating
the same construction, one obtains a sequence of ks-scheme morphisms @) such that each of them is
nontrivial and the image of ¢! is contained in the i-th term of the descending central series of Uj..
By nilpotence, we can take the last nontrivial term, whose corresponding morphism ¢() will have an
image that is central in U} . Moreover, we can obtain such a H that is p-torsion : for this, it is enough
to remplace ¢ by p™ - ¢ for a suitable integer m. This order is bounded thanks to the embedding
given by Theorem 1.1.11. Thanks to these assumptions, the nontrivial ks-subgroup H lies in Cy, (U,),
which is equal to F,, by Lemma 4.3.3. In particular, F;_ is not ks-wound, hence by Corollary 4.2.4, F is
not k-wound.

(4) = (1) : a nontrivial k-scheme morphism ¢: A} — U gives a nontrivial base change ¢.. O

Corollary 4.3.5. Let U be k-wound. Then the quotient
u/Cy(U)

is k-wound.

Proof. Let us denote F := C,(U) and notice that by the above proposition we can assume k = k. Let
us assume that U/F is not k-wound, so it contains by (2) a central k-subgroup A that is isomorphic
to G,. Let us consider the following pull-back, where 7r: U — U/F is the canonical projection.

1—— F —— 1 YA) A 1

| l

1 F ", UJF —— 1

The k-subgroup 71~ 1(A) is an extension of A by F so it must be smooth, connected and unipotent.
Moreover,

* it is central in U : if not, let g € U(ks) = U(k) not centralizing 77~ 1(A), which exists because
the base field is separably closed hence rational points are dense. This allows to define the
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k-scheme morphism
p: Al ~A=mYA)JF —U x+— gxg 'x!
which is nonconstant, contradicting the hypothesis that U is k-wound.
* itis p-torsion : if not, we get again a nonconstant scheme morphism

p: A} ~A=nYA)F —U *+— xP.
This shows that 7771(A) lies in the cckp-kernel F, hence F = 1~ !(A) which implies A = 1 and gives
a contradiction with the assumption that A is isomorphic to G,. O

Corollary 4.3.6. Let U be k-wound and define a chain of smooth connected normal subgroups {U;}i=o by
setting Uy = 1 and such that U, 1 is the pullback

1 UZ- Ui+1 — Gk(u/ll,) — 1
1 u; u uu; — 1.

Then
(a) If U is k-wound, then so is every U /U;.
(b) Their formation commutes with separable extensions of k.
(c) For ilarge enough, U = U;.

(d) These k-subgroups are stable under k-automorphisms of U. In particular, if H is a smooth k-group acting
on U, then each U; is stable under the action of H.

Proof. (a): Let U be k-wound and proceed by induction on i. For i = 1, the quotient U/U; = U/C,(U)
is k-wound by Corollary 4.3.5. Now assume that U/U; is k-wound and consider the following
sequence,

1 —— Uj/U; = C(U/U;) —— U/Uijpy —— (U/U;)/C(U/U;) — 1,

which is exact by definition of the U;s. Now, its kernel H := U, 1 /U; is k-wound by induction and
by Proposition 4.3.4, while the quotient Q := (U/U;)/C(U/U;) is k-wound again by Corollary 4.3.5.
Hence, every k-scheme morphism from the affine line to H and to Q is a constant map to a k-rational
point. Since the underlying k-scheme of U /U, is the product H x Q, this proves that U/U;1 is
wound too.

(b) : By Lemma 4.3.3, the formation on C; commutes with separable extensions of the ground field,
hence the same is true for each U;.

(c) : By Remark 4.3.2, if U/U; is nontrivial then its cckp-kernel U;,,/U; is smooth, connected,
unipotent and nontrivial, so it has strictly positive dimension. Since U is algebraic, this implies that
U coincides with U; for a sufficiently large i.
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(d) : The stability of U; under k-automorphisms follows from the fact that they preserve the cckp-
kernel C(U).

Finally, let H be a smooth k-group acting on U : by the above results, we may extend scalars and
assume k = k. It is enough to prove that U; is H-stable if U;(k) is H(k)-stable, the latter is a special
case of stability under k-automorphisms of U. Let m: H x U — U denote the action : we want to
prove that m(H x U;) < U i.e. that

Hx U <m Y(U;) = (HxU) xy U

Let us denote respectively X := Hx U, Y := Hx U; and Z := (H x U) xy U;. Both Y and Z are
closed subschemes of X and the hypothesis translates into the inclusion Y (k) < Z(k). Taking their

Zariski closures, by definition of reduced subscheme we have Y (k),,; < Z(k),,;, which is a subscheme

of Z because the underlying topological space of Z is Z(k). Moreover, by smoothness of Y we have
Y(k),,qs = Y soY < Z and we are done. O

The following is a structure theorem, which states exactly what we aimed for when we introduced
the notion of k-wound unipotent group : it is analogous to the result of existence of an exact sequence
of the form

1 —T, —T—T —1,

which realizes a torus T as an extension of a k-anisotropic torus T" = T/T; by the maximal k-split
subtorus T;.

Theorem 4.3.7. Let U be a smooth connected unipotent k-group. There exists a unique smooth connected
normal k-split subgroup Uspyi. such that the quotient U /Uspy is k-wound. It has the following properties:

(1) If G is a k-split smooth connected unipotent k-group and ¢: G — U a k-homomorphism, then its image
is contained in Uspit.

(2) If W is a k-wound smooth connected unipotent k-group and : U — W a k-homomorphism, then its
kernel contains Uspy.

(3) The formation of Uspy; is compatible with separable extensions of k.

Proof. Let us proceed by induction on n = dim U, the case n = 0 being U = 1. If n > 1 and U is
k-wound, we are done by setting Ugpiie = 1. If U is not k-wound, by Proposition 4.3.4 there exists
a smooth central k-subgroup A ~ G,. Let us denote as H the quotient U/A : by induction there
exists a smooth connected normal k-split subgroup Hgp;e such that H /Hspht is k-wound. We call
Usplit its preimage, so that it is an extension of Hgp; by G, hence it is k-split. Moreover, the quotient
U/Uspit ~ H/Hgpyit is k-wound. Let us prove the properties.

(1) : Consider such a ¢: G — U and take a composition series G = Gg © G; 2 --- © G, = 1 having
successive quotients isomorphic to G,. Let i be minimal such that ¢(G;) < Ugpyie and suppose i > 0.
Then the induced morphism

G — Gi-1/Gi = U/Uspiie

is nontrivial, contradicting that U/Ugp;; is k-wound. Hence i = 0 and we are done.
(2) : Consider such a ¢: U — W. By applying (1) to W we obtain ¢(Usplir) & Wepiie = 1 which is
equivalent to saying Uspiit < ker .
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(3) : Let k'/k be a separable extension. The k’-subgroup (Usplit)r is smooth, connected, normal and
k'-split hence it is contained in (Uy )spiit- The quotient (U )splie/(Usplit)x is @ k'-split subgroup of
(U/Usplit)x, which is k’-wound because the wound property commutes with separable extensions by
Proposition 4.3.4. Thus, it must be trivial and (U )spiit = (Usprit)x'- O

The discussion above leads naturally to introduce the following definition, which is analogous to
the unipotent radical.

Definition 4.3.8. Let G be any smooth algebraic group over k. The subgroup R, ;(G) is the maximal
k-split smooth connected unipotent normal k-subgroup of G.

Notice that this is well defined thanks to [Mil17, Proposition 6.42] : one proceeds in the same way
as for the unipotent radical in Corollary 1.1.12.

Corollary 4.3.9. For any smooth algebraic group G over k,

Rus,k(G> = Ru,k(G)split-

In particular, the quotient R, 1(G)/Rysx(G) is k-wound and the formation of R,s commutes with separable
extensions of the base field k.

Proof. For any algebraic field extension k'/k, the subgroup Ry «(G)k is k’-split hence contained in
Rys i (Grr). Now, let us take k' = ks and consider R,k (Gy,). By its uniqueness and maximality, it is
invariant by the Galois action so it descends to a k-subgroup H of G, i.e. Hy, = Rysx, (Gk,). Thus, H
is necessarily smooth, unipotent and normal in G. Moreover, by Theorem 4.3.7(3), the subgroup
H is k-split hence contained in R, «(G). This gives the inclusion Ry (Gk,) S Rysx(G)k,. By these
observations, we may assume k = ks. The inclusion Rysx(G) S Ry x(G)spiit holds by definition of
Rus(G)spli; conversely, notice that F := R, x(G)spiit is a characteristic k-subgroup of G, hence in
particular F(k) is normal in G(k). Since k is separably closed and G is smooth, by Zariski density of
its rational points we can conclude that F is normal in G so in particular F < R,;(G) and the first
statement is proved.

Once we have this equality, the formation of R, is compatible with any separable extension of the
ground field because such a compatibility holds

e for the unipotent radical R,, by Theorem 3.2.2,

e for Uspit, by Theorem 4.3.7.

4.4 Tori acting on unipotent groups

In this last section, the setting will be that of a k-torus acting on a smooth connected unipotent
k-group.

Definition 4.4.1. Let T be a k-torus and (V,r) a finite dimensional linear representation of T. If T is
k-split, then r is diagonalizable : with respect to a suitable basis of V, it is given by

xa(t) 0
T— GLy, tr—— )

0 Xn(t)
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for some characters (eventually admitting repetitions) x;: T — G,,. These characters are called the
weights of T in V.

Whenever an action of a k-split torus T on an algebraic group G is given, it induces a linear
representation of T on the Lie algebra Lie(G), hence a weight space decomposition, as in Definition
4.4.1, of the latter.

Let us start by the simplest case we are interested in, i.e. assume the unipotent group U equipped
with a T-action is a vector group over k, so that Lie(U) ~ U. Recall that a linear structure on a vector

group V is the G,-action on it arising from a fixed isomorphism G} ~ V. The base field being of
positive characteristic, there exist nonlinear automorphisms of G} for n > 1, hence the T-action on U
may not respect an initial choice of linear structure, as illustrated in the following example.

Example 4.4.2. Let U = G2 with its standard linear structure
Gm x Gf — GZ,  (a,(x,y)) — (ax, ay)
and consider T = G, acting on U as
TxU-—U, (t(xy)r—t-(x,y)=(tx—(t—1t")y", ty).

Clearly, the T-action is not linear. However, by differentiating, since k is of characteristic p, one
obtains that the corresponding linear representation of T on Lie(U) is trivial. Notice that this action
becomes linear after composition with the k-group automorphism of G2 given by

w: G2 — G2, a(x,y)=(x+yy), al(zw)=(z—wf,w).
Indeed, for all k-algebras R, we have
a Mt a(x,y) =a (- (x+yP,y)) = a (tx + HtyP — (t— )y, ty) = a” (tx + tPyP, ty) = (tx, ty),

for all t e R* = G,;(R) and x,y € R? = G2(R).

Tits” idea consists in considering an action of a split torus T such that the induced linear represen-

tation of T on Lie U has only nontrivial weights, and to deduce from it some properties of the action
on the group U. In particular, the existence of such an action imposes some important obstructions
on the k-group structure of U.
Let us start, analogously to the preceding sections, by looking at the commutative p-torsion case:
later we will proceed with a similar result in the wound case, dropping the assumption of being
commutative nor p-torsion. The following proposition is a refinement of Theorem 4.1.12 obtained by
adding a given action of a k-group H. Later on, we will restrict to the case of a torus.

Proposition 4.4.3. Let U be a smooth commutative p-torsion k-group and consider a k-group H acting on U.
Then there exists a linear representation of H on a finite dimensional vector space V and an H-equivariant
embedding

HCU‘LZDH

of U as a k-subgroup of the vector group V.
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Proof. Let us consider the functor
Hom(U,G,): (k—Alg) — (Grp), R+ Homr_grp)(Ur, Gar)-

Fix a k-algebra R and consider an element of Hom(U, G,)(R) i.e. a R-group morphism ¢: Ur — G, g:
it corresponds to a R-linear map ¢*: R[T] — R ®y O(U), which is determined by f := ¢*(T). This
gives a natural injective map

jr: Hom(U, Gg)(R) — R@ O(U), ¢ — ¢*(T). (4.1)

Notice that a R-group morphism ¢ corresponds precisely to giving a primitive element in O(Ug), i.e.
to asking that ¢*(T) belong to the R-submodule

Pr={feO(Ur): Ar(f) = f®1+1®f},

where A denotes the comultiplication map in O(U). The condition on f is R-linear and it is functorial
in R, so since k — R is flat, we obtain

Pr=P®R={feO0l): =f®1+1Qf}®R.

In what follows, we will denote the vector space Py = Hom_gp) (U, G,) simply as P. In particular,
this shows that
Hom(U, G,)(R) ~ Homg_gep) (U, Ga) ® R ~ PRR,

so the functor is a vector group associated to the k-vector space P. Now, let us denote the action of
Hon U as (h,u) — h-u and consider the induced action on the k-group scheme Hom(U, G,) = P
given on the functor of points by

H(R) @ Hom(g _Grp) (Ur, Ga,r) — Homr_Grp)(Ur, Gar), (h,¢)— h-¢

with (h-¢)(u) := ¢(h=! - u) for all u € Ug. The collection of maps jg defined by 4.1 give a k-group
scheme morphism
j: Hom(U, G,) — O(U),

which we can simply see as being induced by the inclusion of k-vector spaces P = O(U). Since the
action we just defined is the restriction of the natural induced action of H on O(U), it makes j into a
H-equivariant morphism.

We now apply the following result (see [CGP15, Proposition A.2.3]): for any k-group G acting on
an affine k-scheme X, the coordinate ring O(X) is the directed union of G-stable finite dimensional
k-linear subspaces.

In our case, since j is H-equivariant, we conclude that the same holds for P = Hom(k,Grp)(LI, G,).
The group U being smooth, commutative and p-torsion, by Theorem 4.1.12 there exists a k-group
closed immersion i: U < G} for some n > 1, which corresponds to a k-algebra epimorphism

i* 1 k[Xy, ..., Xn] — O(U).

By the above considerations, we can fix a H-stable finite dimensional k-linear subspace W < P
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containing the set {i*(X3),...,i*(X,)}, which generates O(U) as a k-algebra. The k-linear inclusion
W < O(U) gives by universal property of the symmetric algebra a H-invariant k-algebra homomor-
phism

P Sym(W) — 0(U),

which is surjective by how we defined W and whose corresponding k-scheme morphism
p: U — V:=W" = Spec(Sym(W))

is thus a closed immersion. Moreover, it is H-invariant because ¢* is, and a k-homomorphism
because W consists of primitive elements. O

From now on, we will keep the following setting : the group H in Proposition 4.4.3 is assumed to
be a k-torus T, acting on the unipotent U admitting a T-equivariant embedding into a vector group
V. The aim is to decompose the vector space V by isolating the part on which the action has only
nontrivial weights, in such a way that this decomposition descends to an analogous T-equivariant
splitting for the group U.

Proposition 4.4.4. Within the same setting as in Proposition 4.4.3, let the group H be a k-torus T and
consider the T-invariant decomposition of V of the form

V="VxV,

where Vo = VT is the subspace fixed by the T-action and V' the span of the isotypic subspaces of the nontrivial
irreducible representations of T occurring in V.

(a) The product map
m: (UnVo)x (UnV) — U

is an isomorphism of k-groups.
(b) There is a T-equivariant linear decomposition
V' =V xVj

and a T-equivariant automorphism « of V such that

a(U) = (a(U) N Vo) x Vi,

Proof. (a) : Let us denote Uy := Un Vyand U’ := U V’. Since V = VT = Z7(V) and the embedding
of U in V is T-equivariant, we have Uy = Z7(U). Moreover, U is smooth so by [Mil17, Theorem 13.9]
the centralizer U is also smooth. If we prove that m is a k-group isomorphism this will imply that
U’ is smooth too. Consider the vector space V' : it is the span of the vector subspaces

Vy={veV:g-vr = xi(g)vr, forall ge G(R), for all k-algebras R},

for some nontrivial characters x;, so its formation commutes with any extension of the base field and
we may assume k to be algebraically closed. In particular, the torus T is split hence the representation
T — GLy is a sum of one-dimensional representations. Thus, we can fix a basis (e1,...,e4, f1,..., fr)

59



CHAPTER 4. TITS’ WORK ON WOUND GROUPS

of V.=V x V' such that T acts through the character x, on kf; foralli=1,...,r. Since k = kand T
is smooth, the subset

TN =Do-v(r=1))cT

is nonempty, so we can fix a rational point s € T(k) such that x;(s) = 1 foralli =1,...,7. Now, let us
consider the k-linear application

p:V—V, v—5-0—-0,

which sends V' to V' with kernel Vj, because ¢(e¢j) = 0 and ¢(f;) = (xi(s) —1)f; # 0. By restriction,
it defines a linear automorphism of V’, hence a k-group automorphism f: V' — V’. Since U is
smooth, the image f(U) is a smooth k-subgroup of V', which must be contained in U because the
embedding of the latter inside of V is chosen to be T-stable. Now, let us consider the T-equivariant
decomposition

Vi=kfi®- - @kf,

which expresses V' as direct sum of one-dimensional vector groups, having nontrivial T-action due
to how we chose s € T(k). In particular, since f(U) is a T-stable k-subgroup of V’, this decomposition
implies that f(U) is connected. Moreover, Uy n f(U) < Vo n V' = 0, hence the direct product
Up x f(U) is a k-subgroup of U. Restricting f to f(U) gives an endomorphism of the latter with
trivial kernel, hence a k-group automorphism by smoothness and connectedness. In particular,
f: U — f(U) is, up to an automorphism of its image, a quotient map. Since U nker f = U n Vy = Uy,
the inclusion Uy x f(U) < U becomes an isomorphism, and finally

fU)=Uyx fU))nV =UNV

and we conclude that m is an isomorphism.

(b) : recall that we have denotes U’ := U n V' and set V| := Lie(U’). Since T is k-split, all its
linear representations are sum of simple subrepresentations, so the T-stable V| admits a T-stable
complement V; in V. In particular, the projection

p:U’<—>K—»Kl’

gives an isomorphism Lie p on Lie algebras by definition of V], so as we already argued in previous
proofs, the subgroup H := kerp is étale. Moreover, since Es T-equivariant, H is T-stable, hence
contained in the centralizer Z1(V’), which is trivial by definition of V’. Hence, p is an isomorphism.
Let us reformulate the inclusion U’ < V' as

LI<—>K1’><ZZ’, x — (p(x), x — p(x)).
The second component gives a T-equivariant k-homomorphism
§:Vi—Vy 01— p (v1) — 01,

so we can identify U’ with the graph of g inside of V'. Finally, letusseta: V=Vyx Vi xV; — V
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as being the identity of the factor V) and the inverse of the map

(v1,v2) — (v1,8(v1) + v2)

on V] x V5. In particular, for ug +x € U = Uy x U’, since x = p Y (v1) = (v1,8(v1)) for a unique
vl E Kll' we have
a(u) = ug + a(v1,8(v1)) = up + vy € Up x V{

as desired. ]

In particular, suppose that the linear representation of T on V is sufficiently nontrivial, i.e. that Vj =
0. This implies that U = U’, and the T-equivariant automorphism « gives a k-group isomorphism
between U and the vector group V. Thus, the above result has the following consequence.

Corollary 4.4.5. Let U be a smooth commutative p-torsion k-group and T a k-torus acting on it. Consider a
T-equivariant embedding of U into a vector group V equipped with a linear representation of T. If VT =0,
then U is a vector group. Moreover, U admits a T-equivariant linear structure.

Finally, the following result realizes the desired T-equivariant decomposition of the group U,
which is independent of any choice of embedding into a vector group.

Theorem 4.4.6. Let U be a smooth commutative p-torsion k-group equipped with the action of a k-torus T.
Then
U=UuxU,

with Uy = Z7(U) and U’ a T-stable subgroup which is a vector group and admits a linear structure relative
to which T acts linearly. Moreover, the subgroup U’ is uniquely determined and functorial in U.

Proof. The existence of such a U’ = U n V' is given by Proposition 4.4.3 and 4.4.4, so it suffices to
prove that it is unique and functorial by finding a description of U’ that does not involve any choice
of embedding into a vector group V. For this, we may extend scalars to ks and suppose k is separably
closed. Let us consider a T-equivariant linear structure on the vector group U’: the weight space
decomposition given by this action must include only nontrivial weights, due to how we defined Uy.
In particular, the map

TxU—U, (tu)r—t-u—u

will have as image the whole U’. This definition only depends on the action of T on U, hence it
shows uniqueness and functoriality of U’. O

Let us apply Theorem 4.3.7 to a smooth commutative p-torsion U that is also k-wound. In this
case, clearly U’ must vanish because a wound group cannot contain any subgroup isomorphic to a
vector group: this implies that U = Zr(U) i.e. the action is necessarily trivial. Actually, the same is
still true for any wound group, even without assuming it is commutative nor p-torsion.

Before precisely stating the result, let us introduce a subgroup associated to a cocharacter A for a
smooth connected k-group G, which is an essential element of the proof.

Let A: G,; — G be a cocharacter : it gives rise to the action by conjugation

GnxG—G, (g —t-g=AtgAH)",

61



CHAPTER 4. TITS’ WORK ON WOUND GROUPS

which induces a linear representation of G,, on Lie G, hence a weight space decomposition

LieG= P (LieG), = (LieG)- @ (LieG)o @ (Lie G)+.
neX(Gy)=2Z

Definition 4.4.7. Let ¢ € G(k) be a rational point: we say that the limit lim;_,o ¢ - ¢ exists if there is a
Gp-equivariant k-scheme morphism f: A} — G such that f(1) = g, where the action of G, on the
affine line is by scalar multiplication. In other words, this means that we can extend the action of G,
to the whole A]. If this condition is verified,

F(t) = F(E1) =t f(1) = g = A(BGAD)"!
for all t # 0, and we define the limit as lim; .o f- g := f(0).

Now, the following

P(X) :={geG: %in(}bg exists},
U(A) :={geG: yrr(}t-g =1} < P(A)

are k-subgroups of G. In particular, U(A) is unipotent and Lie U(A) = (Lie G); in other words, we
have defined a subgroup such that its Lie algebra is the span of the weight spaces having positive
weights. For the detailed statements and proofs of these results, see [CGP15, §2.1].

In order to give an idea of what these subgroups look like, let us illustrate the example of the general
linear group. The base field k is supposed to be separably closed, because this is the case that will be
relevant in the proof.

Example 4.4.8. Let A be a nontrivial character of GL,: its image is a smooth connected subgroup of
multiplicative type in GL, and it is different than 1, hence it must be a copy of G,,, in particular
contained in a maximal torus. Since all maximal tori are conjugated by a k,-rational (hence rational
since k = k;) point, we may suppose that the image of A is contained in the maximal torus consisting
of invertible diagonal matrices. In particular, there exist integers ay, ..., a, such that

th 0
A Gy, — GL, t+— .
0 ton
Moreover, up to a coordinate permutation we can assume that a; >> a,. Now, let us fix a rational
point ¢ = (xij)zjzl € GL, (k) and consider the element t- ¢ = A(t)gA(t) ! : its (i, j)-th coordinate is
given by
n
(t-8)ij = D, Spt“it ™ = %",
1Lh=1

Thus, the limit lim; .o ¢ - ¢ exists if and only if x;; = 0 whenever a; < a;, so the subgroup P(A) consists
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of all matrices of the form

Bl * *
0 B
8= (xij)l] ’
. . *
0o --. 0 Bm

where the blocks B; are invertible matrices of suitable order such that a new block begins over the
column corresponding to an exponent 4; strictly smaller than 4; ;. In particular, the limit of such a

matrix is
B, 0 --- 0
B :
llmt g = 0 2 7
t—0 O
0 --- 0 By

hence the subgroup U(A) corresponds to the matrices having as each B; the identity matrix of the
corresponding order. In this case, we see that U(A) is unipotent and k-split.

Let us come to an end with the following result and its proof; in particular, notice that a funda-
mental argument is the invariance of the k-wound property with respect to separable field extensions
of k, seen in Proposition 4.3.4.

Theorem 4.4.9. Let T be a k-torus and U a smooth connected unipotent algebraic group over k. If U is
k-wound, the only T-action on U is the trivial one.

Proof. Let us consider an action of T on U and denote its centralizer as Z: our aim is to prove
that Z = U. Consider the k-group semidirect product H := U x T : by [Mil17, Corollary 13.10],
the centralizer Z7(G) = Z x T is smooth and connected, hence the same is true for Z. By [CGP15,
Corollary A.8.11], since T is of multiplicative type, to prove that Z = U it suffices to prove that
Lie(Z) = Lie(U), i.e. that T acts trivially on the Lie algebra of U. By Proposition 4.3.4, we can extend
scalars and assume that k = k;, so in particular the torus T is k-split. If the T-action on Lie(U) is
nontrivial, there exists a factor isomorphic to the multiplicative group which acts nontrivially, hence
we may replace T by such a copy of G;, and consider a nontrivial 1-parameter subgroup : G, — U.
By precomposing with the inversion in G, if necessary, we can assume there exists a nontrivial
weight space in Lie U having a positive weight, i.e. that (Lie U) # 0. If we consider the semidirect
product G = U x G,,, we can apply the theory briefly illustrated above and consider U(A) < U: since
Lie(U(A)) = (LieU)+ # 0, in particular it is a nontrivial k-subgroup. It suffices to prove that it is
k-split, because this leads to a contradiction with the fact that U is wound. Thus, let us consider the
maximal smooth connected normal k-split subgroup S = U(A)sp1- By Theorem 4.3.7, the quotient
U(A)/S is k-wound. Let g € U(A)(k) : by definition of U(A), there is a G-equivariant k-scheme
morphism f: Al — U(A) (- why does it go to U(A) and not simply into U?)

such that f(0) = 1 and f(1) = g. By composing it with the projection 7r: U(A) — U(A)/S, we must get
a constant map by definition of the wound property, which in particular means that g = f(1) € S(k).
Having assumed the base field to be serparably closed, this is enough to conclude that U(A) = S i.e.
that U(A) is split. O
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