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Introduction
The aim of this Master Thesis is to introduce and study unipotent algebraic group schemes over a

perfect or imperfect ground field.

The first chapter begins with the definition of unipotency, proves that such groups naturally identify as
subgroups of unipotent upper triangular matrices and deduces some fundamental properties.
The second chapter covers the theory of commutative unipotent algebraic groups over a perfect field,
having as aim to establish an equivalence of categories between them and the so called Dieudonné
modules.
Then, the texts proceeds further on with a brief discussion of the motivations leading to the study of the
theory of unipotent groups over arbitrary fields of nonzero characteristic, mainly developed by J. Tits in
the 1960’s. In particular, the following very recent rigidity result by Z. Rosengarten (to appear, 2021) is
mentioned.

Theorem 1 (Rosengarten). Let G and H be group schemes of finite type over a field k of degree of imperfection 1.
Assume that G is unirational and that H is solvable and does not contain a k-subgroup isomorphic to Ga. Then any
k-scheme morphism f : G −! H such that f p1Gq “ 1H is a homomorphism of k-group schemes.

Finally, the last chapter develops Tits’ theory in detail, from a preliminary study of subgroups of vector
groups, to the definition of the wound property, concluding with a result of triviality of actions by tori on
such groups:

Theorem 2. Let T be a k-torus and U a smooth connected unipotent algebraic group over k. If U is k-wound, the
only T-action on U is the trivial one.

I would like to thank my supervisor Matthieu Romagny for all the help and advice he has given me
during my first year in France.

Notations
Throughout this text, k denotes a field, which starting from the second chapter is assumed to be of

nonzero characteristic, and R denotes a commutative k-algebra. Given a field k, an algebraic closure k is
fixed and ks denotes the separable closure inside of k. Whenever it is not specified, tensor products are to
be considered over the base field k; analogously, fiber products are to be considered over Spec k.
An algebraic group over k, or a k-group is a group scheme of finite type over k, and all algebraic groups
are to be considered affine. All constructions are to be included in the setting of scheme theory : the
Yoneda lemma is often used in order to describe a group scheme or a scheme in terms of its functor of
points and to work respectively with abstract groups or sets.

Comparison with the reductive case
In order to introduce the topic properly, it is natural to highlight the role of unipotent groups among

algebraic group schemes over a field : in particular, we compare two orthogonal families of groups,
reductive and unipotent ones. More precisely, orthogonal is intended in the sense of the following result:
over an algebraically closed field k, any smooth connected k-group G fits in an exact sequence of the form

1 −! Ru,kpGq −! G −! G{Ru,kpGq −! 1,
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where Ru,kpGq denotes its unipotent radical and the quotient G{Ru,kpGq is a reductive group i.e. does not
contain any smooth connected unipotent normal k-subgroup.

Reductive groups ”behave very well”: their structure is known and has been studied extensively, while
unipotent groups are harder to understand and classify. First, let us list, without proofs, a few results
that highlight the many differences between these two classes; next, we discuss a bit more in detail the
representability of the respective moduli spaces.

REDUCTIVE UNIPOTENT
Unirationality Yes Not in general

Rational points Form an open, Zariski-dense subscheme Can be reduced to 1
Picard group Finite Can be infinite

Automorphism group Represented by an algebraic group Not algebraic

Moduli spaces
Let us consider a smooth connected k-group G and a property P of group schemes. Define the functor

FP classyfying subgroups of G having property P as follows:

FP : pk´Algq −! pGrpq,

R 7−! FPpRq :“ t smooth connected R-subgroups of GR having property P u.

Looking at reductivity, the corresponding functor is representable by a k-scheme. Conversely, taking as
P the property of being unipotent, it is not representable in general : let k be a field of characteristic 0
and consider the k-group G “ Ga ˆGm. For any k-scheme X,

XpkrrTssq “ lim −
nPN

X
´

krTs{Tn`1
¯

,

which gives a necessary condition for the representability of a functor, called the effectivity of formal
deformations. This is due to the fact that krrTss is a local ring and that for a local ring A, there is a
bijection

Hompk´SchqpSpec A, Xq » tpx, ϕq : x P X, ϕ : OX,x ! A a local morphism u.

However, we claim that
FpkrrTssq −! lim −

nPN

F
´

krTs{Tn`1
¯

is not a bijection, hence F cannot be representable. To see this, let Pn P
`

krTs{Tn`1
˘

rXs be the polynomial

PnpXq :“ 1` TX`
TX2

2
` . . .`

TnXn

n!
,

so that its graph Hn Ă GkrTs{Tn`1 is isomorphic to the additive group Ga,krTs{Tn`1 so it is smooth connected
and unipotent, hence it can be seen as an element of F

`

krT{Tn`1
˘

. Moreover, the collection pPnqnPN is
compatible with projections, so it defines an element of the projective limit. However, this element does
not have any preimage in FpkrrTssq, because there exists no P P krrTssrXs such that P|krTs{Tn`1 “ Pn.

ii



Groundwork on unipotent groups

1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

This chapter is dedicated to illustrating in detail the definition of unipotent algebraic groups
and some of their fundamental properties. The reader will be assumed to be familiar with basic
algebraic geometry, for which the main reference is [GW]. Most fundamental results from the theory
of algebraic groups over fields, such as their definition, the existence of quotients, several properties
of tori and groups of multiplicative type, will be often used without explicitly stating nor proving
them. With respect to these topics, the main references are [Bor91] for what concerns the classical
theory (without modern algebraic geometry methods and working over an algebraically closed field)
and the first 12 chapters of [Mil17] for the group scheme point of view.

1.1 Definition
1.1.1 Preliminaries

To better understand the definition of unipotent algebraic groups, which is given in terms of their
representations, we shall give some preliminaries on linear representations, in particular on the
subspace of a vector space V fixed by a k-group acting on it.

Recall that a representation of G on a vector space V can be regarded as a morphism of group-
valued functors r : G ! GLV : it is given by a the collection of group morphisms

rR : GpRq! GLVpRq “ AutkpV b Rq

for all k-algebras R, functorial in R. To simplify notations, for g P GpRq and w P V b R, we will
denote g ¨w instead of rRpgqpwq.

Definition 1.1.1. Let G be an algebraic group over k and pV, rq a representation of G. The subspace
fixed by G is

VG :“ tv P V : g ¨ pvb 1q “ vb 1 P V b R, for all k-algebras R and all g P GpRqu.

Since we will often be interested in working in functorial terms, it is useful to understand the
structure of the vector group associated to this subspace, which is the functor R 7! VG b R.

Proposition 1.1.2. Let R be a k-algebra and pV, rq a representation of an algebraic group G. Then

VG b R “ tw P V b R : g ¨w “ w for all g P GpR1q, for all R-algebras R1u.

Proof. Let w P Vb R a vector satisfying the above condition. Let us fix peiqiPI a basis of R as a k-vector
space, and write w “

ř

iPI viei for some vi P V. To conclude that w P VG b R, it suffices to prove that
all vi belong to VG. Let S be a k-algebra and g P GpSq: by definition of VG, we need to prove that
gpvi b 1q “ vi b 1. Let us take as R1 the R-algebra Sb R. Consider the canonical k-algebra morphism

1



CHAPTER 1. GROUNDWORK ON UNIPOTENT GROUPS

S! Sb R sending s to sb 1, which induces a morphism GpSq! GpSb Rq. Let g1 be the image of g
under this morphism. By hypothesis,

ř

iPI vi b 1b ei is fixed by g1, so we have

ÿ

iPI

vi b 1b ei “ g1p
ÿ

iPI

vi b 1b eiq “
ÿ

iPI

gpvi b 1q b ei,

and since the ei form a basis, we conclude that gpvi b 1q “ vi b 1.

Corollary 1.1.3. Let G be an algebraic group over k, pV, rq a representation of G and N a normal algebraic
subgroup. Then VN is stable under G.

Proof. Let R be a k-algebra, v P VN b R and g P GpRq, our aim is to prove that g ¨ v is still in VN b R.
By 1.1.2,

VN b R “ tw P V b R : n ¨w “ w for all n P NpR1q, for all R-algebras R1u.

Let R1 be an R-algebra and n P NpR1q and denote vR1 the image of v by the morphism R! R1: then

n ¨ pg ¨ vqR1 “ pngq ¨ vR1 “ pgn1q ¨ vR1 “ g ¨ pn1 ¨ vR1q “ g ¨ v,

because n1 “ g´1ng is in NpR1q hence fixes vR1 .

The following proposition reformulates the definition of VG in terms of the associated comodule,
which allows us to easily prove that the formation of VG commutes with extension of the base field.

Proposition 1.1.4. Let pV, rq be a representation of an algebraic group G and denote ρ : V ! V bOpGq the
associated OpGq-comodule. Then

VG “ tv P V : ρpvq “ vb 1 P V bOpGqu. (1.1)

Proof. This follows from the correspondence between linear representations of G and OpGq-comodules:
see [Mil17, 4.a].

Corollary 1.1.5. Let k1{k be a field extension and r : G ! GLV a representation of a k-group G. Then
rk1 : Gk1 ! GLVbk1 is a representation of Gk1 on the vector space V b k1, satisfying

pV b k1qGk1 » VG b k1.

Proof. The condition 1.1 is k-linear, hence it commutes with a field extension of k.

1.1.2 Definition in terms of representations
Definition 1.1.6. An algebraic group G over k is said to be unipotent if every nonzero representation
of G has a nonzero fixed vector.

This definition is equivalent to saying that its only irreducible representations are one-dimensional
vector spaces equipped with a trivial action of G. If we denote ρ : V ! V b OpGq the comodule
associated to any representation pV, rq of G, the definition of unipotent group is equivalent to the
existence of a nonzero vector v P V such that ρpvq “ vb 1. Moreover, since every representation is
a directed union of its finite-dimensional subrepresentations ([Mil17], Corollary 4.8), it suffices to

2



CHAPTER 1. GROUNDWORK ON UNIPOTENT GROUPS

check its existence only for V finite-dimensional. Let us recall some basics notations : the general
linear group GLn is given as a functor by pk´Algq! pGrpq, R 7! GLnpRq, where GLnpRq denotes
the invertible matrices of order n having entries in the k-algebra R. Its coordinate ring is

OpGLnq “ krX11, X12, . . . , Xnn, 1{detpXijqs

and the comultiplication map is given by

∆pXijq “

n
ÿ

h“1

Xih b Xhj.

The algebraic group Un is the subgroup of GLn whose functor of points is

Un : pk´Algq! pGrpq, R 7! UnpRq :“ tpaijq P GLnpRq : aij “ 0 for i ą j, aij “ 1 for i “ ju,

i.e. the matrices of the form
¨

˚

˚

˚

˚

˚

˚

˝

1 ˚ ˚ ¨ ¨ ¨ ˚

1 ˚ ˚

. . . . . .
...

0 1 ˚

1

˛

‹

‹

‹

‹

‹

‹

‚

Its coordinate ring is the quotient of OpGLnq by the ideal generated by the polynomials Xij for i ą j
and Xii ´ 1, while the comultiplication comes from the one in GLn:

OpUnq “ krXij, i ă js, ∆pXijq “ Xij b 1` 1b Xij `
ÿ

iăhăj

Xih b Xhj. (1.2)

Definition 1.1.7. A finite-dimensional representation pV, rq of an algebraic group G is a unipotent
representation if there exists a basis of V such that rpGq Ă Un.

Proposition 1.1.8. An algebraic group G is unipotent if and only if every finite-dimensional representation of
G is a unipotent representation.

Proof. Let us fix a finite-dimensional representation pV, rq of G: by definition of Un, r is unipotent if
and only if there exist vector subspaces V “ Vs Ą ¨ ¨ ¨ Ą V1 Ą 0 such that each Vi is stable under the
action of G and this action is trivial on each of the successive quotients Vi`1{Vi. Let G be unipotent
and fix a composition series for V, i.e. a maximal subnormal series of V when seen as a G-module. By
maximality, each successive quotient must be simple, thus G acts trivially on it. The representation is
hence unipotent. Conversely, suppose that all finite-dimensional representations pV, rq are unipotent:
fix V and consider such a flag V “ Vs Ą ¨ ¨ ¨ Ą V1 Ą 0 assuming that V1 is nonzero. Since G acts
trivially on it, there exists a nonzero fixed vector in V, hence by definition G is unipotent.

1.1.3 Embedding in Un

The aim of this pararaph is to prove that, for an algebraic group G, being unipotent is equivalent
to admitting an embedding in Un for some n. To prove this, one needs to introduce a technical
definition concerning Hopf algebras. Let us recall that a k-scheme of finite type G “ Spec A is an

3



CHAPTER 1. GROUNDWORK ON UNIPOTENT GROUPS

algebraic group G if and only if A is a finitely generated Hopf algebra, i.e. it admits k-algebra
homomorphisms ∆ : A ! Ab A (comultiplication), ε : A ! k (counit) and S : A ! A (antipode)
satisfying the following diagrams:

Ab Ab A Ab A

Ab A A

idb∆
∆bid ∆

∆

kb A Ab A Ab k

A

idbε

εbid
∆

A Ab A A

k A k

id ¨S
S¨id

∆

ε
ε

All properties and maps of Hopf algebras can be translated into geometric terms: for instance, the
comultiplication, counit and antipode in OpGq correspond to the multiplication, unity and inversion
maps in G. These are easier to understand intuitively but sometimes harder to manipulate than their
algebraic counterpart.

Definition 1.1.9. Let A be a k-algebra. A filtration of A is an increasing sequence of vector subspaces
pFiqiPN such that

• 1 P F0,

•
Ť

iPN Fi “ A,

• FiFj Ď Fi`j for all i, j.

Definition 1.1.10. A k-Hopf algebra A “ pA, ∆, ε, Sq is said to be coconnected is there exists a
filtration C0 Ă C1 Ă C2 Ă ¨ ¨ ¨ of A such that

C0 “ k and ∆pCrq Ă

r
ÿ

i“0

Ci b Cr´i for all r P N.

Theorem 1.1.11 (Characterisation of unipotent groups). Let G be an algebraic group over k. The following
assertions are equivalent:

(1) G is unipotent.

(2) There exists an integer n such that G is isomorphic to an algebraic subgroup of Un.

(3) The Hopf algebra OpGq is coconnected.

In other words, the equivalence between p1q and p2q means that an algebraic group is unipotent if
and only if it admits a faithful unipotent representation.

4



CHAPTER 1. GROUNDWORK ON UNIPOTENT GROUPS

Proof. p1q ñ p2q : Suppose G is unipotent, and consider a faithful finite dimensional representation
of G, i.e. a closed immersion G ã−! GLn. By Proposition 1.1.8, this representation is unipotent : up
to a base change in V “ kn, it factorizes as G ã−! Un ã−! GLn.
p2q ñ p3q : Let G be a k-subgroup of Un: since all monomorphisms of algebraic groups are closed
immersions, this corresponds to the Hopf algebra OpGq being a quotient of OpUnq by a Hopf ideal
I. First, let us prove that every quotient of a coconnected Hopf algebra is coconnected. Let A be a
coconnected Hopf algebra, I a Hopf ideal and consider the quotient π : A� A{I “: B. Fix a filtration
pCrqrě0 of A satisfying the definition 1.1.10. Then Dr :“ πpCrq is the desired filtration for B, because

• π is a k-algebra morphism, hence D0 “ πpC0q “ πpkq “ k,

•
ř

rě0 Dr “
ř

rě0 πpCrq “ πpAq “ B,

• π is a k-coalgebra morphism, hence

∆BpDrq “∆B ˝ πpCrq “ pπb πq ˝ ∆ApCrq Ă pπb πq

˜

r
ÿ

i“0

Ci b Cr´i

¸

“

r
ÿ

i“0

pπb πqpCi b Cr´iq “

r
ÿ

i“0

Di bDr´i.

By p2q, this implies that it suffices to prove that OpUnq “ krXij, i ă js is coconnected. For this, let
us assign to each monomial Xij a weight j´ i, and extend this to X

nij
ij having weight nijpj´ iq and

to any monomial
ś

X
nij
ij having weight

ř

i,j nijpj´ iq. Now define Cr as being the vector subspace
of OpUnq spanned by the monomials of weight less or equal to r. Clearly C0 “ k and A is the
union of the Cr. Moreover, if two monomials P and Q have weights r and s respectively, then PQ
has weight r ` s. This implies that CrCs Ď Cr`s. Finally, we need to verify the condition on the
comultiplication on monomials. Let us proceed by induction on the weight of a monomial: by 1.2,
∆Xij P Cj´i bC0`C0bCj´i `

ř

iăhăl Ch´i bCj´h. If we assume the condition satisfied by monomials
P, Q of weights r and s, then

∆pPQq “ ∆pPq∆pQq P

˜

r
ÿ

a“0

Ci b Cr´a

¸˜

s
ÿ

b“0

Cb b Cs´b

¸

Ă
ÿ

a,b

CaCbbCr´aCs´b Ă
ÿ

a,b

Ca`bbCr`s´pa`bq

hence the condition is also satisfied for monomials of weights r` s.
p3q ñ p1q : Let A :“ OpGq be coconnected with filtration pCrqrě0 and consider a comodule ρ : V !
V b A: we want to prove that the corresponding representation of G has a nonzero fixed vector. For
all r P N, set

Vr :“ tv P V : ρpvq P V b Cru,

then V is the union of the Vr and V0 “ VG by Proposition 1.1.4. Thus, to conclude it suffices to show
that Vr “ 0 implies Vr`1 “ 0. Let v P Vr`1, then by definition ρpvq belongs to V b Cr`1. Using the
definitions of comodule and of coconnected Hopf algebra, we obtain

αpvq :“ pρb idAq ˝ ppvq “ pidV b∆q ˝ ρpvq P V b

˜

r`1
ÿ

i“0

Ci b Cr`1´i

¸

. (1.3)

5



CHAPTER 1. GROUNDWORK ON UNIPOTENT GROUPS

Now, if Vr “ 0, then ρ gives an injective map V ! V b A{Cr, hence α gives an injective map

V −! pV b A{Crq b A{Cr.

By 1.3, this sends Vr`1 to zero, hence Vr`1 “ 0 and we are done.

Corollary 1.1.12. (a) Subgroups, quotients and extensions of unipotent groups are unipotent.

(b) Every algebraic group G over k contains a largest smooth connected unipotent normal subgroup: this is
called the unipotent radical of G and denoted Ru,kpGq.

(c) Let G be an algebraic group over k and k1{k a field extension. Then G is unipotent if and only if Gk1 is
unipotent.

Proof. paq : Let G be unipotent and H a k-subgroup of G. By 1.1.11, there exists an embedding

H ã−! G ã−! Un

for some n, hence H is unipotent too. Let Q “ G{H be a quotient of G and denote π : G ! Q the
quotient map. Consider a representation of Q on a vector space V. By precomposing with the
quotient map,

G π
−! Q −! GLV

we obtain a representation of G, which has a nonzero fixed vector v P V because G is unipotent.
Therefore, v is also fixed by Q and we conclude that Q is unipotent. Finally, let us consider an
algebraic group G and a normal algebraic subgroup N such that both N and G{N are unipotent.
Let r : G ! GLV be a nonzero representation of G. By 1.1.3, VN is stable under G, so we obtain
a representation of G on VN . Since it is an N-invariant morphism, by universal property of the
quotient it induces an unique representation of G{N as shown in the following diagram:

G GLVN

G{N

r

D!

Now, V is nonzero and N is unipotent, hence VN is nonzero. Moreover, the equality VG “ pVNqG{N

and the unipotence of G{N imply that VG is nonzero too. Hence G is unipotent as desired.
pbq : we use the following result, which is a consequence of the isomorphism theorems for algebraic
groups (see [Mil17], Proposition 6.42) : let P be a property of algebraic groups such which is preserved
by quotients and extensions. Then every algebraic group G contains a largest smooth connected
subgroup H having property P. Moreover, the quotient G{H contains no nontrivial subgroup with
property P. By paq, we can apply this proposition to the property P “unipotent and conclude the
existence and uniqueness of the unipotent radical.
pcq : Let G be unipotent, by 1.1.11 the Hopf algebra OpGq is coconnected: let us denote its filtration
as pCrqrě0. By taking pCr b k1qrě0 as a filtration of OpGq b k1 we see that it is coconnected too, hence
Gk1 is unipotent. Conversely, assume Gk1 is unipotent and let pV, rq be a representation of G. Since

6



CHAPTER 1. GROUNDWORK ON UNIPOTENT GROUPS

Gk1 is unipotent, pVG b k1qGk1 is nonzero, while by 1.1.5 it is equal to VG b k1, so VG is nonzero too
and we are done.

1.2 Basic properties
1.2.1 Unipotent groups and groups of multiplicative type

The notion of unipotent algebraic group is orthogonal to the notion of group of multiplicative type,
in a sense that we will specify in the following section. Let us recall that an algebraic group over k is
of multiplicative type if and only if it becomes diagonalizable over an algebraic closure k, which is
equivalent to being diagonalizable over some finite separable extension of the base field (see [Mil17,
Ch. 12]).

Proposition 1.2.1. An algebraic group that is both unipotent and of multiplicative type is trivial.

Proof. Let G be such an algebraic group over k. Let us consider an embedding G ã! GLV for some
finite-dimensional k-vector space V. By extending scalars to a suitable finite field extension k1{k, we
can suppose G is both diagonalizable and unipotent, thanks to Corollary 1.1.12. Since an algebraic
group is diagonalizable if and only if all its linear representations are diagonalizable, V is a direct
sum of simple representations Vi. By unipotency of G, each of the Vi has a nonzero fixed vector,
hence the action of G on it must be trivial.

Corollary 1.2.2. • Let G be an algebraic group over k. The intersection of a unipotent k-subgroup with a
k-subgroup of multiplicative type is trivial.

• Let U and M be algebraic groups over k which are respectively unipotent and of multiplicative type.
Then

Hompk´GrpqpM, Uq “ 0 and Hompk´GrpqpU, Mq “ 0.

Proof. Let U and M be such subgroups. Then their intersection is a k-subgroup of U, hence it is
unipotent by 1.1.12. Moreover, the property of being of multiplicative type is also inherited by
subgroups, so U XM is trivial by 1.2.1.
Now, let us consider a k-homomorphism ϕ : U ! M. By the homomorphism theorem, we can
factorize it as

ϕ : U
q
� U{ker ϕ “ ϕpUq i

ã−! M,

with q faithfully flat and i a closed immersion. This shows that the image ϕpUq can be realized both as
a quotient of U, which is unipotent by 1.1.12, and as a subgroup of M, which is of multiplicative type.
Thus, we conclude that the morphism ϕ is trivial. The same proof works for any k-homomorphism
ψ : M! U.

1.2.2 Nilpotence and composition series
Another significant property of unipotent algebraic groups is that they are nilpotent : in order to

prove this, let us recall some terminology. A subnormal series for an algebraic group G over k is a
finite sequence

G “ G0 Ą G1 Ą ¨ ¨ ¨ Ą Gr “ 1

of k-subgroups such that Gi is a normal subgroup of Gi´1 for i “ 1, . . . , r. If each Gi is normal in G, it
is called a normal series.

7



CHAPTER 1. GROUNDWORK ON UNIPOTENT GROUPS

Definition 1.2.3. Let G be an algebraic group over k. A composition series is a subnormal series
pGiq

r
i“0 such that

dim G0 ą dim G1 ą ¨ ¨ ¨ ą dim Gr “ 0

and which is maximal among subnormal series satisfying this property.

Finally, let us recall that an algebraic group is said to be :

• solvable if it admits a subnormal series whose successive quotients Gi{Gi`1 are commutative,
also called a solvable series;

• nilpotent if it admits a normal series such that each quotient Gi{Gi`1 is contained in the center
of G{Gi`1, also called a nilpotent series.

In other words, a solvable group can be obtained by successive extensions of commutative algebraic
groups, while for a nilpotent group we can even assume those extensions to be central.

Lemma 1.2.4. For any integer n ě 1, the algebraic group Un admits a central normal series whose successive
quotients are isomorphic to Ga.

Proof. Let us fix an n P N and consider the pairs pi, jq with 1 ď i ă j ď n, which we number as
follows:

C1 “ p1, 2q C2 “ p2, 3q C3 “ p3, 4q ¨ ¨ ¨ Cn´1 “ pn´ 1, nq
Cn “ p1, 3q Cn`1 “ p2, 4q ¨ ¨ ¨ C2n´3 “ pn´ 2, nq

¨ ¨ ¨ ¨ ¨ ¨

CN “ p1, nq,

with N “ npn´ 1q{2. For s “ 0, . . . , N, let us denote as Gs the algebraic subgroup of Un having as
functor of points

GspRq :“ tpaijq P UnpRq : aij “ 0 for pi, jq “ Cl , l ď su.

We claim that the pGsq
N
s“0 give a central normal series for Un. The case n “ 2 is trivial, since U2 is

already isomorphic to Ga and the second term of the series above is the neutral element. Let us
prove our claim for n “ 3 in order to simplify notations : in this case,

G0 “ U3 “

$

’

&

’

%

¨

˚

˝

1 ˚ ˚

0 1 ˚

0 0 1

˛

‹

‚

,

/

.

/

-

, G1 “

$

’

&

’

%

¨

˚

˝

1 0 ˚

0 1 ˚

0 0 1

˛

‹

‚

,

/

.

/

-

, G2 “

$

’

&

’

%

¨

˚

˝

1 0 ˚

0 1 0
0 0 1

˛

‹

‚

,

/

.

/

-

, G3 “ 1.

With a straightforward calculation on the functor of points, one verifies that G1 and G2 are normal
algebraic subgroups of U3. Moreover, their successive quotients

G0{G1
a12−! Ga, G1{G2

a23−! Ga, G2{G3 “ G2.

are all isomorphic to Ga as k-groups, where we denote as aij the map assigning to a matrix its
coordinate pi, jq. Finally, the series is easily seen to be central, so it is nilpotent.

Proposition 1.2.5. Every unipotent algebraic group over k admits a central normal series whose successive
quotients are isomorphic to algebraic subgroups of the additive group Ga. In particular, every unipotent
algebraic group is nilpotent.

8
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Proof. First, we prove the following lemma on subnormal series : consider G “ G0 Ą G1 Ą ¨ ¨ ¨ Ą

Gs “ 1 a subnormal series and let H be an algebraic subgroup of G. Then by setting Hi :“ H X Gi

for all i “ 0, . . . , s we obtain a subnormal series for H, such that each Hi{Hi`1 is isomorphic to a
subgroup of Gi{Gi`1. By Theorem 1.1.11 every unipotent group H can be realized as a subgroup of
G “ Un, so we conclude by applying Lemma 1.2.4.
By definition of subnormal series, each Gi is normal in Gi`1. Moreover, Hi X Hi`1 “ Hi`1, so by the
isomorphism theorem (see [Mil17, Theorem 5.52]),

Hi{Hi`1 “ Hi{Hi X Gi`1 » Hi ¨ Gi`1{Gi`1,

and the last term is an algebraic subgroup of Gi{Gi`1.

Corollary 1.2.6. Let G be a smooth connected unipotent algebraic group over k. If k is algebraically closed,
then G admits a composition series whose successive quotients are isomorphic to Ga.

Proof. By Proposition 1.2.5, there exists a central normal series pNiq
s
i“0, with successive quotients

isomorphic to algebraic subgroups of Ga. If we remplace each Ni by its identity component No
i , this

gives a chain of connected normal subgroups of G having successive quotients of dimension less
than or equal to 1. If we eliminate all repetitions, all successive quotients will be one-dimensional
subgroups of Ga, hence isomorphic to the additive group.

1.2.3 Homomorphisms to Ga

There is a useful characterisation of unipotent algebraic groups in terms of k-homomorphisms to
the additive group. This provides an alternative definition of unipotency, which does not need linear
representations : for example, it is the one given in [DG, IV, §2, 2.1].

Proposition 1.2.7. Let G be an algebraic group over k, then it is unipotent if and only if every nontrivial
k-subgroup of it admits a nontrivial homomorphism to Ga.

Proof. Let G be unipotent, and consider a k-subgroup H of G. By 1.1.12, H is unipotent too, so
by 1.2.5 it admits a nontrivial algebraic subgroup of Ga as a quotient. The quotient map gives a
nontrivial homomorphism H ! Ga.
Now, let us assume that all k-subgroups of G admit nontrivial homomorphism to the additive group.
In particular there exists a nontrivial k-homomorphism ψ1 : G ! Ga. Let us set G1 :“ ker ψ1 : it is
either trivial or it admits a nontrivial ψ2 : G1 ! Ga. By repeating this process, we obtain a descending
series of algebraic subgroups G Ą G1 Ą ¨ ¨ ¨ Ą Gn Ą ¨ ¨ ¨ such that each Gi`1 is normal in Gi. Moreover,
algebraic subgroups satisfy the descending chain condition, hence this series must terminate in 1
and it gives a subnormal series for G. Its successive quotients are isomorphic to algebraic subgroups
of Ga, so G is actually obtained by successive extensions of such subgroups, which are unipotent. By
Corollary 1.1.12, we conclude that G is unipotent.
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2.4 Structure Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

The aim of this part is to give an overview of the structure of commutative unipotent groups over
a perfect field, following [DG]. First, the Frobenius and Verschiebung morphisms are introduced,
followed by the groups of Witt vectors and some results on their extensions. These elements allow to
define Dieudonné modules over a field and to establish an equivalence of categories between them
and unipotent commutative groups.

2.1 Frobenius and Verschiebung
This first subsection applies to any ground field k of characteristic p ą 0, not necessarily perfect.

Our aim is to introduce for an affine algebraic k-group G a twisted version of the Frobenius
endomorphism of k, defining it in such a way that it is a k-group homomorphism.
Let X be any k-scheme of finite type. We will restrict to the affine case, which is enough for our
purposes, in order to simplify notations. The absolute Frobenius morphism of X is the scheme
morphism which acts as the identity on the topological space |X| and as h 7! hp on the sections of OX

over any open subset of X. However, this does not define a k-scheme morphism, since the frobenius
F : k ! k does not coincide with the identity in general. Therefore, we are led to introducing the
following definitions.

Definition 2.1.1. Let A be a k-algebra. We define Appq as the tensor product Abk,F k.

Definition 2.1.2. The (relative) Frobenius morphism of a k-algebra A is the k-algebra homomorphism

FA : Appq −! A

obtained via the following diagram by the universal property of the tensor product:

A

Appq “ Abk,F k A

k k

FA

a 7!ab1

a 7!ap

λ 7!1bλ

F

In other words, it is given by FApab λq “ λap, so it is the one that makes the Frobenius into a
k-algebra morphism.

10
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Now let us consider X “ Spec A and denote Xppq “ Spec Appq its base change with respect to the
Frobenius morphism. We denote the k-scheme morphism associated to FA as

FX : X −! Xppq.

It is called the relative Frobenius morphism of X.
Now, let us restrict to the case of an algebraic group over k.

Proposition 2.1.3. Let G “ Spec A be an algebraic group over k. Then Gppq is an algebraic group and the
morphism FG : G ! Gppq is a k-homomorphism.

Proof. It suffices to prove that the functor of points of Gppq is group-valued. Let us consider a

k-algebra R and denote FR the k-algebra given by k F
! k! R. By the following diagram,

R

Appq A

k k

ϕ

ϕ

F

there is a bijection

Hompk´AlgqpA, FRq −! Hompk´AlgqpAppq, Rq, ϕ 7−! ϕ

hence the functor of points of Gppq is GppqpRq “ Hompk´SchqpSpec R, Gppqq “ Hompk´AlgqpAppq, Rq “
Hompk´AlgqpA, FRq “ GpFRq so it takes values in the category pGrpq.

Remark 2.1.4. Since it is defined by the universal property of the fiber product, the Frobenius
morphism is functorial : for all k-scheme morphisms ϕ : X ! Y, the following diagram commutes

X Xppq

Y Yppq.

FX

ϕ ϕppq

FY

We will now introduce with a bit more work a dual notion to the Frobenius, called the Verschiebung
morphism: the word means ”shift” in English, while it is often called ”décalage” by French authors.
This section mainly follows [DG, IV, §3, 4].

Let B be a k-algebra and X :“ Spec B. The symmetric group Sp acts on the p-th tensor product
Âp B :“ Bb ¨ ¨ ¨ b B by

σpv1 b ¨ ¨ ¨ b vpq “ vσp1q b ¨ ¨ ¨ b vσppq, for all σ P Sp

defining an action of Sp on the k-scheme Xp :“ Specp
Âp Bq, which is not to be confused with the

Frobenius twist Xppq that we introduced above. Let TSp
pBq be the k-algebra of symmetric tensors of

order p over B and set
SpX :“ SpecpTSp

pBqq.

11
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Remark 2.1.5. Since TSp
pBq is by definition the greatest k-subalgebra of

Âp B on which Sp acts
trivially, it is the ring of invariants under the action of Sp. Thus, the corresponding canonical
morphism

qX : Xp −! SpX

realizes SpX as the quotient of Xp by the symmetric group Sp. By the universal property of the
quotient, for all affine k-schemes Y and all Sp-invariant k-scheme morphism ψ : Xp ! Y there exists a
unique ψ : SpX ! Y such that the following diagram commutes.

Xp Y

SpX

ψ

qX
D! ψ

The following lemma allows us to see Xppq as a closed subscheme of SpX.

Lemma 2.1.6. Let B be a k-algebra and denote s the symmetrizing operator

s :
p
â

B −! TSp
pBq, v1 b ¨ ¨ ¨ b vp 7−!

ÿ

σPSp

vσp1q b ¨ ¨ ¨ b vσppq.

The canonical map
Bppq “ Bbk,F k −! TSp

pBq, vb λ 7−! λpvb ¨ ¨ ¨ b vq

induces an isomorphism of k-algebras

Bppq » TSp
pBq{sp

p
â

Bq.

We will denote as vp the image of vb ¨ ¨ ¨ b v in the quotient, so the isomorphism is given by vb λ 7! λvp.

Proof. Let peiqiPI be a basis of B as a k-vector space. For any J “ pj1, . . . , jpq P Ip, denote as eJ :“
ej1 b ¨ ¨ ¨ b ejp and call ωpJq Ă Ip the orbit of J under the action of Sp given by pσ, Jq 7! pjσp1q, . . . , jσppqq.
If ω “ ωpJq is such an orbit, set eω :“

ř

J1Pω eJ1 . The collection peωqω give a k-basis of TSppBq and

speJq “ spej1 b ¨ ¨ ¨ b ejpq “ N ¨ eωpJq for some N P N.

In particular, N is the cardinality of the stabilizer of J in Sp. Hence, TSppBq is the direct sum of
sp
Âp Bq and of the k-vector subspace having as basis teJ : j1 “ . . . “ jpu.

Having identified Bppq with a quotient of TSp
pBq, the corresponding k-scheme morphism

iX : Xppq −! SpX

is a closed immersion.

12
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Lemma 2.1.7. Let B be a k-algebra and X “ Spec B. The following diagram

Xp X

SpX Xppq

δ

qX

iX

FX

commutes, where δ : X ! Xp denotes the diagonal morphism.

Proof. Indeed, it corresponds to the diagram of k-algebras

Âp B B

TSp
pBq Bppq

µ

FB

with µpv1 b ¨ ¨ ¨ b vpq “ v1 ¨ . . . ¨ vp, FBpvb λq “ λvp and the quotient map on the bottom is given by
Lemma 2.1.6. Hence, it is commutative by definition of s.

Now, let G “ Spec A be a commutative algebraic group over k. Denote as πp : Gp ! G the
multiplication by p, i.e. the morphism given by

πp : GpRq ˆ ¨ ¨ ¨ ˆGpRq −! GpRq, pg1, . . . , gpq 7−! g1 ` . . .` gp,

for all k-algebras R, where the group law on G is written additively. It corresponds to the k-algebra
morphism ∆p “ ∆b ¨ ¨ ¨ b ∆ : A! Ap.
For a k-scheme morphism f : X ! G, corresponding to a k-algebra morphism f ˚ : A ! B, let
f p : Xp ! Gp be the morphism given by

p
â

A −!
p
â

B, a1 b ¨ ¨ ¨ b ap 7−! f ˚pa1q b ¨ ¨ ¨ b f ˚papq.

By commutativity of G, the map πp ˝ f p is Sp-invariant, so by Remark 2.1.5 there exists a unique
f p : SpX ! G factorising it.

Definition 2.1.8. With the above notations, the morphism

f V :“ f p ˝ iX : Xppq −! G

is called induced by Verschiebung by f . In other words, f V is defined by the following commutative
diagram

Xp SpX Xppq

Gp G

qX

fpf p f p

iX

f V

πp

Lemma 2.1.9. Let f : X ! G as above.
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(a) For all affine k-schemes Y and all k-scheme morphisms g : Y ! X,

p f ˝ gqV “ f V ˝ gppq.

(b) We have
f V ˝ FX “ p ¨ f : X −! G,

where for all k-algebras R, p ¨ f : XpRq −! GpRq, x 7−! p ¨ f pxq “ f pxq ` . . .` f pxq.

Proof. paq : The following diagram is commutative

Yp SpY Yppq

Xp SpX Xppq

qX

gp Spg
iY

gppq

qX

iX

so together with the diagram in Definition 2.1.8, by uniqueness of the construction we obtain
p f ˝ gqV “ f V ˝ gppq.
pbq : As seen in Lemma 2.1.7, iX ˝ FX “ qX ˝ δ. Hence, f V ˝ FX “ f p ˝ iX ˝ FX “ f p ˝ qX ˝ δ, which by
the diagram in Definition 2.1.8 is equal to fp ˝ δ “ p ¨ f .

Definition 2.1.10. Let G be a commutative algebraic group over k. Using the above notations, the
morphism pidGq

V is called the Verschiebung morphism of G and is denoted VG.

In particular, VG is equal to pidGq
p ˝ iG. Notice that, by applying Lemma 2.1.9 to f “ idG, we get

hV “ VG ˝ hppq for all k-scheme morphisms h : X ! G.

Example 2.1.11. Let G “ Ga “ Spec krTs. The morphism πp : G
p
a ! Ga corresponds to

∆p : krTs −!
p
â

krTs, T 7−!1b ¨ ¨ ¨ b 1b T` 1b ¨ ¨ ¨ b Tb 1` . . .` Tb 1b . . .b 1

“
1

pp´ 1q!
sp1b ¨ ¨ ¨ b 1b Tq P s

˜

p
â

krTs

¸

,

hence in particular pidGq
p is zero, so VGa “ pidGq

p ˝ iGa “ 0.

Let us state a few fundamental properties, which justify the fact that the Verschiebung is seen
as a dual of the Frobenius. Finally, we conclude this subsection with a lemma showing that the
Verschiebung morphism behaves very differently for unipotent groups compared to the case of
groups of multiplicative type.

Proposition 2.1.12. Let G and H be commutative algebraic groups over k.

(i) The Verschiebung morphism VG : Gppq ! G is a k-homomorphism.

(ii) (functoriality) Let ϕ : G ! H be a k-homomorphism, then

ϕ ˝VG “ VH ˝ ϕppq.
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(iii) The formation of the Verschiebung commutes with extensions of the base field : for any extension k1{k,
we have VGk1

“ VG bk k1.

(iv) (duality) The following equalities hold :

VG ˝ FG “ p ¨ idG, and FG ˝VG “ p ¨ idGppq .

Proof. piq : See [DG, I I, §1, 1.5].
piiq : By Lemma 2.1.9 paq, ϕV “ pidH ˝ϕqV “ pidHq

V ˝ ϕppq “ VH ˝ ϕppq. On the other hand, ϕ ˝VG

verifies the suitable diagram in Definition 2.1.8, so by uniqueness it must coincide with ϕV .
piiiq : All morphisms involved in the definition of VG commute with extensions of the base field.
Actually, the construction works on any base ring and automatically commutes with any base change,
see [DG, IV,§3, 4.6].
pivq : By Lemma 2.1.9 pbq applied to f “ idG, we have VG ˝ FG “ pidGq

V ˝ FG “ p ¨ idG. Now,
the Frobenius morphism is functorial as seen in Lemma 2.1.4 : by applying it to ϕ “ VG, we get
FG ˝VG “ pVGq

ppq ˝ FGppq . Moreover, by piiiq, taking as base change the Frobenius endomorphism
F : k! k, the map pVGq

ppq equals VGppq , hence by piiq we obtain

FG ˝VG “ VGppq ˝ FGppq “ p ¨ idGppq

and conclude.

Lemma 2.1.13. Let G be a commutative algebraic group over k. The following are equivalent:

(1) The Verschiebung VG is an isomorphism,

(2) The Verschiebung VG is an epimorphism,

(3) The group G is of multiplicative type.

Moreover, the group G is unipotent if and only if for every quotient H of G there exists an integer n such that
Vn

H “ 0.

Proof. p1q ñ p2q : trivial.
p2q ñ p3q : Let f : G ! Ga be a k-homomorphism, then by Proposition 2.1.12 and Example 2.1.11,
f ˝VG “ VGa ˝ f ppq “ 0, hence f is trivial. By [Mil17, 12.18], this shows that G is of multiplicative
type.
p3q ñ p1q : By Proposition 2.1.12, we can extend scalars and assume that the group G is diagonalizable,
i.e. of the form SpecpkrMsq for a suitable abelian group of finite type M. In this case, M identifies
with the group of characters of G and the morphism πp corresponds to the k-algebra homomorphism

∆p : krMs −!
p
â

krMs, m 7−! mb ¨ ¨ ¨ bm.

In particular, this implies that the Verschiebung morphism is an isomorphism (see [DG, IV, §3, 4.11]).
Now, let us suppose that G is unipotent: since every algebraic quotient is unipotent too, it suffices
to prove the claim for H “ G. Let us consider pGiq

s
i“0 a composition series of G having successive

quotients isomorphic to algebraic subgroups of Ga and proceed by induction on s. If s “ 1, we
conclude that VG “ 0 by Example 2.1.11. If s ą 1, by induction there exist integers n, m such that
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Vn
G1
“ 0 and Vm

G{G1
“ 0. This last assertion means in particular that Vm

G pG
ppmqq Ă G1. Moreover, for all

i the diagram

Gpp
iq

1 Gpp
iq pG{G1q

ppiq » Gpp
iq{Gpp

iq

1

G1 G G{G1

Vi
G1

Vi
G Vi

G{G1

commutes. Hence, we can factorise Vn`m
G as

Gpp
n`mq Gpp

nq

1 G1 Ă G
pVm

G q
ppnq Vn

G1

so we obtain Vn`m
G “ 0.

2.2 Witt groups
Throughout the rest of this chapter, k will denote a perfect field of characteristic p ą 0. We will

now define the group of Witt vectors, which play a fundamental role in classifying commutative
unipotent groups over k. The main reference other than [DG] is [Rab14].

2.2.1 Definition
Definition 2.2.1. Let n P N. The n-th Witt polynomial is the element of ZrX0, X1, X2 . . .s “ ZrXs
given by

wnpXq :“ Xpn

0 ` pXpn´1

1 ` p2Xpn´2

2 ` . . .` pnXn.

Let us denote as AN
Z the scheme Spec ZrXs. Then each wn defines a scheme morphism, still

denoted as wn : AN
Z !A1

Z, given on the functor of points by the set-theoretic maps

RN −! R, x 7−! pwnpxqq,

for all rings R. Let us call Φ the scheme morphism having wn as its n-th component, i.e.

Φ : AN
Z −!AN

Z , x 7−! pwnpxqqnPN.

Remark 2.2.2. Notice that we can express all variables Xn as polynomials

Xn P Zrp´1srw0, w1, . . . wn´1s Ă Zrp´1, w0, w1, . . . , wi, . . .s.

For instance, X0pwq “ w0. If we suppose the statement to be true for all Xj with j ď n, then the
equality

wn`1 “ X0pwqpn`1
` pX1pwqpn

` . . .` pXnpwqp ` pn`1Xn`1

allows us to express Xn`1 in the desired form. For example,

X1 “
1
p
`

w1 ´ Xp
0

˘

“
1
p
`

w1 ´wp
0

˘

, (2.1)

X2 “
1
p2

ˆ

w2 ´
1

pp´1 wp
1 ´

1
pp´1 w2p

0 ´wp2

0

˙

. (2.2)

16



CHAPTER 2. COMMUTATIVE UNIPOTENT GROUPS OVER PERFECT FIELDS

In other words, the map

ΦZrp´1s : AN bZ Zrp´1s −!AN bZ Zrp´1s

is a scheme isomorphism.

Now, let us denote as O the scheme A1
Z, together with its canonical ring scheme structure. The

aim is to use Φ to define a new ring structure on AN
Z .

Definition 2.2.3. The ring of Witt vectors is the ring scheme having as underlying scheme AN
Z ,

equipped with the addition and multiplication laws given on the functor of points by

x ‘ y :“ Φ´1pΦpxq `Φpyqq, (2.3)

x d y :“ Φ´1pΦpxq `Φpyqq, (2.4)

for all x, y P RN, for all rings R, where the operations on the right hand side are done componentwise,
i.e. using the ring structure of ON. For any element x P RN, the coordinates xi are called its Witt
components and the coordinates wnpxq its ghost components.

Proof. By Remark 2.2.2, these operations are well defined after a base change to Zrp´1s : it suffices to
transport the ring structure by means of the Zrp´1s-isomorphism ΦZrp´1s. Hence, for all i P N, there
exist unique polynomials Si, Pi P ZrX0, . . . Xi, Y0, . . . , Yis Ă ZrX, Ys such that

wnpS0pX, Yq, S1pX, Yq, . . .q “ wnpXq `wnpYq,

wnpP0pX, Yq, P1pX, Yq, . . .q “ wnpXq ¨wnpYq.

It remains to show that those polynomials actually have integer coefficients, so the ring structure is
defined over Z. Let us discuss in detail the case i “ 0 and i “ 1, for the general case see [DG, V, §1,
1.1]. For instance,

Φ´1ppx0, xp
0 , . . .q ` py0, yp

0 , . . .qq “ px0 ` y0, . . .q and Φ´1ppx0, xp
0 , . . .q ¨ py0, yp

0 , . . .qq “ px0y0, . . .q,

hence S0pX, Yq “ X0 `Y0 and P0pX, Yq “ X0Y0. Moreover, by 2.1

px0,x1, 0, . . .q‘ py0, y1, 0, . . .q “ Φ´1ppx0, xp
0 ` px1, . . .q ` py0, yp

0 ` py1, . . .qq “

px0 ` y0,
1
p
pxp

0 ` yp
0 ` px1 ` py1 ´ px0 ` y0q

pq, . . .q “ px0 ` y0, x1 ` y1 ´
1
p

p´1
ÿ

i“1

ˆ

p
i

˙

xi
0yp´1

0 , . . .q,

so we get

S1pX, Yq “ X1 `Y1 ´
1
p

p´1
ÿ

i“1

ˆ

p
i

˙

Xi
0Yp´i

0 .

Analogously, we find that

P1pX, Yq “ P1pX0, X1, Y0, Y1q “ X1Yp
0 ` Xp

0 Y1 ` pX1Y1.
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Definition 2.2.4. Let A be a ring. The A-group of Witt vectors, which we will still denote as WA, is
the underlying group scheme, having as commutative group law the one defined by the polynomials
Si above.

Definition 2.2.5. Let n P N. The ring scheme Wn is defined as having as underlying scheme An
Z,

while addition and multiplication are obtained by truncating the ones in W :

pa0, . . . , an´1q‘pb0, . . . , bn´1q “ pS0pa0, b0q, . . . , Sn´1pa0, . . . , an´1, b0, . . . , bn´1qq,

pa0, . . . , an´1qdpb0, . . . , bn´1q “ pP0pa0, b0q, . . . , Pn´1pa0, . . . , an´1, b0, . . . , bn´1qq.

This is called the scheme of Witt vectors of lenght n and for a ring A an element in WnpAq is called
a Witt vector of length n with coefficients in A.

In particular, notice that W1 » O , hence as group scheme it is isomorphic to the additive group Ga.

Let us introduce two collections of morphisms between Witt groups: the first shows that the group
W has a natural projective limit structure, while the second will correspond to the Verschiebung
morphism in this particular case.

For all n P N, let us denote as πn the canonical projection

πn : Wn`1 −!Wn

pa0, . . . , anq 7! pa0, . . . , an´1q,

which are in particular morphisms of ring valued functors. Moreover, they induce projections
πn,m : Wn`m !Wm for all n, m P N, hence a projective limit structure

W “ lim −
nPN

Wn.

Now, let us consider the collection of the shifting maps

In : Wn −!Wn`1

pa0, . . . , an´1q 7! p0, a0, . . . , an´1q.

Since these maps are compatible with the projections, they induce by passing to the projective limit a
morphism

I : lim −
nPN

Wn “ W −! lim −
nPN

Wn`1 “ W1 » W

pa0, a1, . . .q 7! p0, a0, a1, . . .q.

Let us denote as In,m : Wn !Wn`m the shifting morphism obtained by iterating I and truncating,
i.e. In,mpa0, . . . , an´1q “ p0, . . . , 0, a0, . . . , an´1q. The following sequence of group-valued functors is
exact:

0 −!Wn
In,m
−!Wn`m

πn,m
−!Wm −! 0.

Lemma 2.2.6. Let us consider the ring Wpkq. For all elements w “ pa0, a1, a2, . . .q, the following equality
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holds
p d w “ p0, 1, 0 . . .qd pa0, a1, a2, . . .q “ p0, ap

0 , ap
1 , ap

2 , . . .q.

Proof. We have explicit expressions for P0 and P1 above in Definition 2.2.3: this gives P0pp, wq “
0 ¨ a0 “ 0 and P1pp, wq “ a1 ¨ 0` 1 ¨ ap

1 ` p2a1 “ ap
1 . For the general calculation, see [DG, V,§1, 1.7].

Remark 2.2.7. Let A be a ring of characteristic p. The following commutative diagram made up of
cartesian squares

Wppq
A WA WFpq W

SpecpAq SpecpAq SpecpFpq Spec Z
FA

shows that Wppq
A “ WA and analogously we have Wppq

n,A “ Wn,A for all n.

Lemma 2.2.8. Let A be k-algebra. The Verschiebung morphism VWA : WA !WA is equal to IWA .

Proof. By functoriality, it suffices to prove it for A “ Fp. In this case, the Frobenius map FWFp
is

a homomorphism of commutative Fp-groups. Since both VWFp
˝ FWFp

and IWFp
˝ FWFp

are equal to
p ¨ idWFp

by Remark 2.2.6, then
pVWFp

´ IWFp
q ˝ FWFp

“ 0

and we are done because FWFp
is an epimorphism of algebraic groups over Fp, because the corre-

sponding Fp-algebra homomorphism is injective.

2.2.2 Extensions of Witt groups
Let us consider the following exact sequence:

0 −!Wn
In−!Wn`1

πn,1
−! Ga −! 0

and denote as En the element of Ext1pGa, Wn,kq corresponding to the isomorphism class of this
extension.

Lemma 2.2.9. Let us consider the morphisms In : Wn,k !Wn`1,k and π1,n : Wn`1,k !Wn,k, which induce
maps

pInq˚ : Ext1pGa, Wn,kq −! Ext1pGa, Wn`1,kq,

pπ1,nq˚ : Ext1pGa, Wn`1,kq −! Ext1pGa, Wn,kq.

Then
pInq˚En “ 0 and pπ1,nq˚En`1 “ En.

Proof. Let H be an extension obtained by pushforward of Wn`1,k along the morphism In: it is given
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by the following diagram

1 Wn,k Wn`1,k Ga 1

1 Wn`1,k H Ga 1

In

In j

πn,1

i

σ

In particular, H is the quotient of Wn`1,k ˆWn`1,k by the anti-diagonal action of Wn,k, i.e. we have the
following equivalence relation: for all x, y P Wn`1,k and all x P Wn,k,

px, yq „ px` Inpzq, y´ Inpzqq.

The morphisms i and j are then given by

i : x 7−! px, 0q, j : y 7−! p0,´yq

and there is a canonical well-defined section of i,

σ : H −!Wn`1,k, px, yq 7−! x` y,

which splits the sequence, hence the extension is trivial.
The second statement follows from the definition of En`1 and En as the isomorphism classes of
Wn`2,k and Wn`1,k respectively and from the fact that the following diagram is cocartesian.

1 Wn`1,k Wn`2,k Ga 1

1 Wn,k Wn`1,k Ga 1.

In`1

π1,n π1,n`1

πn`1,1

πn,1

Let us make a few remarks on endomorphisms of the additive group and apply them to our study
of extensions of Witt groups.

Definition 2.2.10. The ring krFs is the noncommutative ring of polynomials in the variable F, with
multiplication given by

Fλ “ λpF, for all λ P k.

Lemma 2.2.11. The ring of endomorphisms of the additive k-group Ga is isomorphic to krFs.

Proof. Let us denote as ∆ the comultiplication map of OpGaq “ krTs : an endomorphism of Ga

corresponds to giving an element P “
ř

l alTl P krTs such that ∆P “ Pb 1` 1b P. This means that
for all l,

alpTl b 1` 1b Tlq “ alpTb 1` 1b Tql

and this condition is satisfied if and only if P is of the form

b0T` b1Tp ` . . .` bnTpn
, bj P k.
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Now, let us denote as F the Frobenius endomorphism of Ga: this gives an isomorphism

krFs » EndpGaq,
ÿ

j

bjFj 7−!
ÿ

j

bjTpj
.

Let G be a commutative algebraic group over k. Then Ext1pG, Gaq is a left krFs-module by
considering the operation of pushforward along an endomorphism of Ga; analogously Ext1pGa, Gq is
a right krFs-module considering pullbacks.

Proposition 2.2.12. Let H be a k-subgroup of Ga and n ě 1. Then

(a) The map pπn´1,1q˚ : Ext1pH, Wn,kq! Ext1pH, Gaq is bijective.

(b) Let i : H ã! Ga be the inclusion morphism, then the induced map

i˚ : Ext1pGa, Wn,kq −! Ext1pH, Wn,kq

is surjective.

(c) The left krFs-module Ext1pGa, Wn,kq is free with basis tEnu.

Proof. The proof is by induction on n, see [DG, V, §1, 2.2]. The proof shows that the assumption that
the base field k is perfect is sufficient.

Corollary 2.2.13. Let

0 −! L
j
−! M

ϕ
−! Ga

be an exact sequence of commutative k-groups and f : L ! Wn,k a k-homomorphism. Then there exists a
k-homomorphism g : M!Wn`1,k such that the following diagram is commutative

L M

Wn,k Wn`1,k.

j

f g

In

Proof. Let H be the k-subgroup of Ga generated by the image of ϕ and see M as an extension of H
by L. By functoriality of the pushforward of extensions, the following diagram commutes

Hompk´GrpqpL, Wn,kq Ext1pH, Wn,kq

Hompk´GrpqpL, Wn`1,kq ExtpH, Wn`1,kq.

p´q˚

In˝p´q pInq˚

p´q˚

We claim that pInq˚ is trivial: if this holds, then in particular the extension obtained by pushforward
of M along In ˝ f is trivial. Thus, there is a diagram of the following form, which gives the desired
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homomorphism g.

0 L M H 0

0 Wn`1,k H ˆWn`1,k H 0

j

In˝ f

ϕ

ϕˆg

It remains to show that pInq˚ “ 0. By Proposition 2.2.12, i˚ is surjective so it suffices to prove the claim
for H “ Ga. Moreover, Ext1pGa, Wn,kq is free with basis tEnu, so we are done because pInq˚En “ 0 as
seen in Lemma 2.2.9.

The following lemma will be a key results in the proofs of the next sections.

Lemma 2.2.14. Let m, n ě 1 and consider a commutative algebraic group G over k such that Vn
G : Gpp

nq ! G
is zero. For all k-homomorphisms f : G !Wn`m,k, there exists a unique k-homomorphism g : G !Wn,k such
that

f “ In,m ˝ g.

Proof. As seen in Lemma 2.2.8, Wppq
n`m,k “ Wn`m,k. By functoriality of the Verschiebung (see Proposi-

tion 2.1.12),
f ˝Vn

G “ Vn
Wn`m,k ˝ f pp

nq

which is trivial because Vn
G “ 0. Thus, we obtain a factorisation of f pp

nq by

Gpp
nq h
−! ker Vn

Wn`m,k
“ tp0, . . . , 0, a0, . . . , an´1qu “ In,mpWn,kq.

Moreover, In,m is an isomorphism between Wn and ker Vn
Wn`m,k

and Wn,k is isomorphic to Wppnq

n,k , so h

can be seen as a morphism Gpp
nq !Wppnq

n,k .
Now, since the base field k is perfect, the functor H 7! Hppq from commutative algebraic k-groups
into the same category is an equivalence. In particular, there exists a homomorphism g : G !Wn,k

such that h “ gpp
nq. Thus, we obtain

f pp
nq “ pIn,mq

ppnq ˝ h “ pIn,mq
ppnq ˝ gpp

nq “ pIn,m ˝ gqpp
nq

and we are done.

The following result makes a first link between Witt vectors and general commutative unipotent
groups, showing that such a group fits into a specific exact sequence involving Witt vectors.

Proposition 2.2.15. Let U be a commutative unipotent algebraic group over k. There exists integers n, r, s P N

and an exact sequence of k-groups
0 −! G −!Wr

n,k −!Ws
n,k.

Proof. First, let us show the existence of a k-group monomorphism α : G !Wn
n,k. We will proceed by

Noetherian induction: the statement is clearly true for U “ 1 and we suppose it to be true for all
proper algebraic subgroups of G. By Proposition 1.2.7, there exists a nontrivial k-homomorphism
f : G ! Ga. By applying the inductive hypothesis to H :“ ker f Ĺ G, there exists a monomorphism
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γ : H ! Wm
m,k for some m. By Corollary 2.2.13 applied to the components of f there exists a

k-homomorphism α : G !Wm
m`1,k such that the diagram

H M

Wm,k Wm
m`1,k

γ α

Im
m

commutes. This allows to take as monomorphism the map G !Wm
m`1,k ˆWm`1,k having as compo-

nents α and I1,m ˝ f : G{H !Wm´1,k.
Now, let us consider such a monomorphism α : G !Wr

n,k and denote as Q its cokernel. By the above
consideration, there exists also a monomorphism α1 : Q!Ws

m,k for some integers m, s. By composing
it with the quotient map π : Wr

n,k ! Q, one obtains an exact sequence of the form

0 −! G α
ã!Wr

n,k
β
−!Ws

m,k.

If m “ n we are done, if m ă n it suffices to remplace β by Im,n´m ˝ β, if m ą n we can apply Lemma
2.2.14 to get a k-homomorphism β1 : Wr

n,k ! Ws
n,k such that β “ Is

n,m´n ˝ β1 and remplacing β by β1

still gives an exact sequence.

2.3 Dieudonné modules
Let us fix some notations for the rest of this chapter : for w “ pa0, a1, . . .q P Wpkq and n P Z, we

will denote as wpp
nq the element

wpp
nq “ Fn

Wpkqpwq “ pa
pn

0 , apn

1 , . . .q.

The hypothesis of having a perfect base field allows us to take as n a negative integer.
Let us also recall that p identifies with p0, 1, 0, . . .q in Wpkq and that p ¨w “ Ipwppqq.

Definition 2.3.1. The Dieudonné ring over k is the ring D generated by Wpkq and two indeterminates
F and V together with the relations

Fw “ wppqF, wV “ Vwppq, FV “ VF “ p.

By definition, D is a free Wpkq-module, either for the right and for the left module structure,
having as basis

. . . , Fn, . . . , F, 1, V, . . . , Vn, . . .

In other words, every element of D has a unique expression as a finite sum of the form

ÿ

ně0

bnFn ` a`
ÿ

ně0

Vncn, a, bn, cn P Wpkq.

Whenever needed we will denote it as Dk in order to specify the base field we are considering.

Definition 2.3.2. A Dieudonné module over k is a left Dk-module.
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Let us consider a perfect field extension K{k. The canonical map

WpKq bWpkq Dk −! DK

is given by

wb

˜

ÿ

ně0

bnFn ` a`
ÿ

ně0

Vncn

¸

7−!
ÿ

ně0

wbnFn `wa`
ÿ

ně0

Vnwpp
nqcn,

so it is an isomorphism because the Frobenius endomorphism of k is surjective.
Let M be a Dieudonné module over k. Then

WpKq bWpkq M “ WpKq bWpkq Dk bDk M » DK bDk M

so it has a natural structure of Dieudonné module over K, which is said to be the extension of scalars
of M associated to K{k.

Let A be a k-algebra. For an element w P Wpkq, we will denote as wA the corresponding element
in WpAq obtained via the morphism k ! A. Moreover, for u P WnpAq, we will denote as w ¨ u the
element obtained by truncating wA and taking the product πnpwAqu in WnpAq.

Lemma 2.3.3. Let A be a k-algebra and n ě 1.

(1) The group M :“ WnpAq together with the Frobenius and Verschiebung morphisms F “ FWnpAq and
V “ VWnpAq, equipped with the operation

w ¨ u “ wM ¨ u :“ pwpp
1´nqqA ¨ u, for all u P WnpAq, w P Wpkq (2.5)

is a Dieudonné module over k.

(2) The map In : WnpAq!Wn´1pAq is a morphism of Dieudonné modules.

Proof. See [DG, V, §1, 3.2]

The operation defined just above gives for all k-algebras A a morphism

Dk −! EndApWnpAqq “ EndpWn,kqpAq

and it is by definition natural in A, hence induces a morphism of group-valued functors

Dk −! EndpWn,kq “ Hompk´GrpqpWn,k, Wn,kq.

Moreover, the morphism Vn
Wn,k

is zero, so this actually defines a morphism

ρn : D{DVn −! EndpWn,kq

Lemma 2.3.4. For all n ě 1, the homomorphism ρn is an isomorphism.

Proof. Let us proceed by induction on n. For n “ 1, there is a canonical isomorphism D{DkV! krFs
which sends V to 0 and w “ pλ0, λ1, . . .q to λ0 for all w P Wpkq. Hence, the assertion is true by
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Lemma 2.2.11. Now, let us assume that ρn is an isomorphism and consider the following diagram:

0 HompGa, Wn`1,kq HompWn`1,k, Wn`1,kq HompWn,k, Wn`1,kq 0

0 DVn{DVn`1 D{DVn`1 D{DVn 0.

α β

i ρn`1 ρn

The bottom row is exact, so let us consider the top one. The first map is give by α “ p´q ˝πn,1 so it is
injective because πn,1 is an epimorphism. The second map is given by β “ p´q ˝ In, so in particular
β ˝ α “ p´q ˝ πn,1 ˝ In is equal to 0. It remains to prove the surjectivity of β, which follows from
Lemma 2.2.14 applied to j “ In.
By Lemma 2.3.3, In is a morphism of Dieudonné modules hence the square on the right is commuta-
tive. Thus, there is a well-defined morphism

i : DVn{DVn`1 −! Hompk´GrpqpGa, Wn`1,kq

which makes the square on the left commute. By the inductive hypothesis, ρn is an isomorphism,
while β is an isomorphism by Lemma 2.2.13. Therefore, it suffices to prove that i is bijective to
conclude that ρn`1 is an isomorphism too.
Let A be a k-algebra, u P Wn`1pAq and w “ pλ0, λ1, . . .q P Wpkq. Then

ipFrwVnq ˝ pπn,1qpuq “ ρn`1pFrwVnqpuq,

so by 2.5 and using the relation wVi “ Viwpp
iq, it is equal to

Fr
Wn`1pAq

´´

wpp
´nq

¯

A
¨ pVn

Wn`1pAqpuqq
¯

“ Fr
Wn`1pAq ˝Vn

Wn`1pAqpwA ¨ uq “

Fr
Wn`1pAq ˝ I1,n ˝ πn,1pwA ¨ uq “ I1,n ˝ Fr

Ga
pλ0 ¨ πn,1puqq.

Hence, ipFrwVnq “ I1,nρ1pFrλ0q. Now, the map

DVn{DVn`1, FrwVn 7−! Frλ0

is a bijection, ρ1 is bijective as we remarked above, and finally I1,n ˝ p´q is bijective again by Lemma
2.2.14. Finally, we can conclude that i is an isomorphism.

2.4 Structure Theorem
In this section, the aim is to apply the preceeding results in order to associate to a commutative

unipotent group, which is rather a geometric object, a specific Dieudonné module which is purely
algebraic. Let us start by introducing this correspondence, whose definition and properties rely
heavily on the theory of Witt groups and their extensions.

2.4.1 Definition of the functor
Let us start by considering the inductive system

W‚ :“ tWn,k, In : Wn,k −!Wn`1,kunPN.
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By Lemma 2.3.3, this system is compatible with the Dk-module structures.

Definition 2.4.1. Let U be a commutative unipotent k-group. The Dieudonné module of U is the
left Dk-module

MpUq :“ lim−!
nPN

Hompk´GrpqpU, Wn,kq.

We will denote is as MkpUq whenever it is necessary to take the base field into account. Moreover,
let us notice that the transition functions of W‚ are all monomorphisms so we can identify each

MnpUq :“ Hompk´GrpqpU, Wn,kq

with its image in MpUq.
Let f : U ! U1 be a k-homomorphism between commutative unipotent k-groups. The collection of
the natural maps

Mnp f q : MnpU1q −!MnpUq, g 7−! g ˝ f

for all n P N is compatible with the inductive limit structure, hence induces a morphism which we
will denote as

Mp f q : MpU1q −!MpUq.

Notice that for all n, the map Mnp f q is a D{Vn-module morphism, hence in particular a D-module
morphism. In particular, the limit Mp f q is a morphism of Dieudonné modules.

Remark 2.4.2. Since U is algebraic, there exists an integer n such that Vn
U “ 0, as seen in Lemma

2.1.13. All maps
In,m ˝ p´q : MnpUq −!Mn`mpUq

are bijective, so in particular, the limit MpUq identifies with MnpUq “ Hompk´GrpqpU, Wn,kq.
Actually, notice that for all n, MnpUq identifies with tm PMpUq : Vnm “ 0u. Indeed, if f : U !Wn,k

is a k-homomorphism, then Vn
Wn,k

˝ f “ 0. Conversely, let m P MpUq such thath Vm “ 0 : such an
element descends to a finite level to a k-homomorphism h : U ! Wn`q,k, such that Vn

Wn`q,k
˝ h “ 0.

Thus, the exact sequence

0 −!Wn,k
In,q
−!Wn`1,k

Vn
Wn`q,k
−! Wn`q,k

shows that h actually factorizes by Wn,k hence m descends to an element in MnpUq.
In particular, the Dieudonné module associated to an algebraic group satisfies the following definition.

Definition 2.4.3. A Dieudonné module M is said to be erasable if for all m P M, there exists an
integer n ě 1 such that Vnm “ 0.

Example 2.4.4. Let us fix n ě 1: applying the above remark to U “ Wn,k, we get an isomorphism

Ψn : D{DVn ρn
−! Hompk´GrpqpWn,k, Wn,kq “MnpWn,kq

„
−!MpWn,kq

of Dieudonné modules.

The discussion above defines a functor

M : tcommutative unipotent algebraic groupsu{k −! terasable Dieudonné modules of finite typeu{k.
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2.4.2 Equivalence of categories
The final result of this chapter is the following theorem, which we now prove, that establishes

the equivalence of categories we aimed for. Actually, it holds in a general setting without having to
consider the groups to be algebraic : for a more general discussion, see [DG, V, §1].

Theorem 2.4.5 (Structure theorem of commutative unipotent algebraic groups). The contravariant
functor M is an anti-equivalence of categories between commutative unipotent algebraic groups over k and
Dieudonné modules of finite type over k erasable.

Proof. Exact : the functor M is left exact since all Mn “ Hompk´Grpqp´, Wn,kq are. It suffices to prove
that it is right exact i.e. that it sends monomorphisms to epimorphisms. Let j : U1 ! U be a closed
immersion of algebraic k-groups and consider a composition series of the unipotent quotient U{U1

having successive quotients isomorphic to algebraic subgroups of Ga, which exists by Proposition
1.2.5. By taking their inverse images in U1, one obtains a sequence of k-subgroups

U1 “ G0 Ă G1 Ă ¨ ¨ ¨ Ă Gr “ U

such that Gi{Gi´1 is isomorphic to a k-subgroup of Ga for all i. Let us proceed by induction on the
length r of the composition series: if r “ 1, setting

ϕ : U U{U1 “ G1{G0 Ga,

we obtain an exact sequence of the form

0 −! U1 j
−! U

ϕ
−! Ga.

Now, let us consider Mpjq : MpUq ! MpU1q and take an element in MpU1q, which descends to a
k-homomorphism f PMnpU1q for a sufficiently large n. By Lemma 2.2.13 there exists g PMn`1pUq
such that g ˝ j “ In ˝ f , which gives a preimage of f in the inductive limit MpUq. Thus, Mpjq is
surjective. Now, let r ą 1 and assume the statement to be true for any k-subgroup admitting such a
composition series of length r´ 1. In particular, decomposing the morphism j as

j : U1 Gr´1 U,
j1 j2

by the inductive hypothesis both Mpj1q and Mpj2q are surjective, hence the same holds for

Mpjq “Mpj2 ˝ j1q “Mpj1q ˝Mpj2q.

Fully faithful : let us fix a commutative unipotent k-group U and consider the map

ϕWn,k : Hompk´GrpqpU, Wn,kq −! HomD´modpMpWn,kq,MpUqq, f 7−!Mp f q.

First, Hompk´GrpqpU, Wn,kq identifies with tm P MpUq : Vnm “ 0u as seen in Remark 2.4.2. On the
other hand, by Example 2.4.4 we have

HomD´modpMpWn,kq,MpUqq “ HomD´modpD{DVn,MpUqq “ tm PMpUq : Vnm “ 0u.
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Now, let us take H to be any commutative unipotent k-group and fix an exact sequence of the form

0 −! H −!Wr
n,k −!Ws

n,k

whose existence is given by Proposition 2.2.15. This induces a commutative diagram with exact rows

0 Hompk´GrpqpU, Hq Hompk´GrpqpU, Wr
n,kq Hompk´GrpqpU, Ws

n,kq

0 HomDpMpHq,MpUqq HomDpMpWr
n,kq,MpUqq HomDpMpWs

n,kq,MpUqq.

ϕH ϕWr
n,k

ϕWs
n,k

Since ϕWr
n,k

and ϕWs
n,k

are both bijective, we obtain that ϕH is bijective too.

Essentially surjective : Let M be a Dieudonné module of finite type and erasable. In particular,
there exists an integer n ě 1 such that Vn M “ 0, so it has a natural structure of D{DVn-module.
Since the ring D{DVn is noetherian (see [DG, V, §1, 3.2]), a module of finite type is of finite
presentation, hence there exist integers r, s and an exact sequence

pD{DVnq
s ϕ
−! pD{DVnq

r −! M −! 0.

By full faithfulness of the functor M, there exists a k-homomorphism f : Wr
n,k −! Ws

n,k such that
ϕ “Mp f q, so by exactness of M, the exact sequence

0 −! ker f −!Wr
n,k

f
−!Ws

n,k

implies that M »Mpker f q.

Proposition 2.4.6. Let K{k be a perfect field extension of k and U a commutative unipotent k-group. Then
there exists a canonical isomorphism

WpKq bWpkqMpUq
„
−!MpUKq.

Proof. See [DG, V, §1, 4.9]

Example 2.4.7. Let us see what the above equivalence of categories looks like in some of the simplest
commutative unipotent groups.

• Example 2.4.4 shows that MpWn,kq identifies with D{DVn, the simplest case being

MpGaq “M1pGaq “ D{DV “ krFs “ EndpGaq.

• Setting Wm,n :“ kerpFi
Wn,k

: Wn,k !Wn,kq, the theorew gives

MpWm,nq “ D{ pDFm `DVnq ;

again, the easiest case is obtained by setting n “ 1:

MpWm,1q “Mpαpmq “ D{ pDFm `DVq “ krFs{pFmq.
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• By using the Artin-Schreier exact sequence

0 −! pZ{pnZqk −!Wn,k
F´id
−! Wn,k −! 0

one concludes by exactness of M that

M pZ{pnZq “ D{ pDVn `DpF´ 1qq .
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This short chapter constitutes a link between the theory over perfect field and arbitrary, most of
the time imperfect, ones: first, it shows that the vanishing of the unipotent radical is not a geometric
property. It continues by illustrating Rosengarten’s rigidity result, which gives an interesting
motivation to the study of wound unipotent groups.

3.1 Preliminaries : Weil restriction
The restriction of scalars is an elementary construction in the theory of algebraic groups, playing

at the same time a fundamental role, because it gives rise to interesting examples and it is used to
construct the so called standard pseudo-reductive groups. Here, it will be used in some proofs and
examples.

Throughout this subsection, let K denote a finite k-algebra : the notation K is due to the fact that in
most cases this is applied to a finite field extension K{k. Also, recall that we are restricting to the
affine case.

Proposition 3.1.1. Let G be an algebraic group over K. The functor

RK{kpGq : pk´Algq −! pSetq, R 7−! GpKb Rq

is group-valued and represented by an affine scheme of finite type over k, hence it is an algebraic group.

Proof. Let G “ Spec A. Since it is of finite type, there exists suitable integers d, m P N and polynomials
fi P KrX1, . . . , Xds such that

A » KrX1, . . . , Xds{p f1, . . . , fmq.

Let e1, . . . , en be a basis of K as a k-vector space and set

Xi :“Yi1e1 ` . . .`Yinen “
ÿ

j

Yijej,

fh :“gh1e1 ` . . .` ghnen “
ÿ

l

ghlel .

for all i “ 1, . . . , d and h “ 1, . . . , m. An element of RK{kpGq “ GpKb Rq “ Hompk´AlgqpA, Kb Rq is
given by a morphism

ϕ : KrX1, . . . , Xds{p f1, . . . , fmq −! Kb R

Xi 7−!
ÿ

j

ej b rij,
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where Xi denotes the image ot Xi in A. This induces a k-algebra homomorphism

ϕ1 : B :“ krYij, 1 ď i ď d, 1 ď j ď ns{pghl , 1 ď h ď m, 1 ď l ď nq −! R

Yij 7−! rij.

The map ϕ 7! ϕ1 gives a bijection HompK´AlgqpA, K b Rq » Hompk´AlgqpB, Rq, so we have proved
that RK{kpGq is represented by Spec B. For a more general statement and proof, see [BLR12, 7.6].

Definition 3.1.2. Let G be an algebraic group over K. The algebraic group RK{kpGq over k is called
the Weil restriction or the restriction of scalars of G.

This defines a functor

RK{k : pK´Grpq −! pk´Grpq, G 7−! RK{kpGq.

Now let us consider the homomorphism defined on the functor of points as the natural transfor-
mation

$

&

%

iG : G ã−! RK{kpGKq

GpRq −! GpKb Rq,

induced by the k-algebra morphism R ! Kb R, r 7! 1b r, for all k-algebra R. This is a monomor-
phism of algebraic groups, hence a closed immersion (see [Mil17, Theorem 5.34]). This canonical
mapping has the following universal property.

Proposition 3.1.3. Let G be an algebraic group over k and H an algebraic group over K. For every k-
homomorphism

α : G −! RK{kpHq,

there exists a unique K-homomorphism β : GK ! H such that the following diagram commutes:

G RK{kpGKq GK

RK{kpHq H

iG

α
RK{kpβq D!β

Remark 3.1.4. The universal property above can be expressed by an adjunction as follows : for all
algebraic group G over k and H over K, there is a bijection

Hompk´GrpqpG,RK{kpHqq
„
−! HompK´GrpqpGK, Hq.

The functor RK{k is therefore right adjoint to the base change functor G 7! GK. An important
consequence is that it is left exact, thus it preserves inverse limits, such as kernels, products and fiber
products.

Proof. Giving an adjunction between two functors F : A ! B (on the left) and G : B ! A (on the
right) is equivalent to giving a couple of natural transformations

η : 1A −! GF, ε : FG −! 1B,
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called respectively unit and counit of the adjunction, such that the following triangle identities hold
for all A P A and B P B :

εFpAq ˝ FpηAq “ idFpAq, GpεBq ˝ ηGpBq “ idGpBq . (3.1)

For more details, see [Lei14, §2.2].
In our case, F : pk´Grpq ! pK´Grpq is the base change functor, G : pK´Grpq ! pk´Grpq is
the Weil restriction. The morphism iG described above is functorial in G and defines the unit of
the adjonction. Now, let us consider a K-algebra R1 and denote it as R10 when it is regarded as a
k-algebra via the morphism k ! K ! R1. There is a natural K-algebra morphism K b R10 ! R1,
sending λb r 7! λr, which induces a morphism

εH :
`

RK{kpHq
˘

K −! H, HpKb R10q −! HpR1q.

This is functorial in H and defines the counity of the adjunction. Since the triangle identities hold,
the morphism RK{kpβq is given by the following diagram.

RK{kpGKq RK{kpRK{kpHqKq RK{kpHq

G RK{kpHq

RK{kpβq“Gpβq

GFpαq GpεHq

α

iG iGpHq
id

The left hand square commutes by functoriality of i, while the right hand triangle expresses the
second identity in 3.1.

The intuition behind the idea of Weil restriction might lead to think that, for a finite extension
k1{k, the k-group structure of Rk1{kpGk1qpRq is similar to the one of Grk

1 : ks. This holds for the additive
group, but in general it is far from being true, as illustrated by the following example.

Example 3.1.5. Let k be an imperfect field of characteristic p “ 2 and t P kzk2. Consider the
purely inseparable extension k1 “ kp

?
tq and the algebraic group G :“ Rk1{kpGm ,k1q, obtained by Weil

restriction of the multiplicative group. For any k-algebra R,

GpRq :“ Rk1{kpGm,k1qpRq “ Gm,k1pk1 b Rq “ pk1 b Rqˆ “ tx` y
?

t, x2 ´ ty2 P Rˆu,

because an element x` y
?

t P k1 b R “ R‘
?

tR is inversible if and only if the R-linear map

˜

a
b

¸

» a` b
?

t 7−! pa` b
?

tqpx` y
?

tq “ ax` byt` pbx` ayq
?

t »

˜

x ty
y x

¸˜

a
b

¸

which is true if and only if its determinant x2 ´ ty2 is invertible. As a set, the abstract group GpRq
identifies with G2

m ,kpRq “ tpx, yq P R2 : x2 ´ ty2 P Rˆu. However, the group law in GpRq is given by

px, yq ˚ px1, y1q “ px` y
?

tqpx1 ` y1
?

tq “ pxx1 ` tyy1 ` pxy1 ` x1yq
?

tq,
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hence it is not the same as the one in G2
m ,kpRq. Moreover, this group is one of the simplest examples

of a pseudo-reductive group which is not reductive, as we will see in Example 3.2.3 below.

In the case of a separable field extension, the process of Weil restriction behaves in a much simpler
way : it is analogous to the idea of viewing a complex manifold of dimension n as a real manifold of
dimension 2n. More precisely, we have the following result.

Proposition 3.1.6. Let k1{k be a finite separable field extension and K{k a finite Galois extension that splits
k1{k. For an algebraic group G over k1, there is an isomorphism

`

Rk1{kpGq
˘

K »
ź

σ : k1ã!K

GˆSpec k1,σ Spec K,

where σ runs over all embeddings k1 ã! K.

Proof. See [Mil17, 2.61].

3.2 Pseudo-reductivity
As mentioned before, the first reason behind the study of unipotent groups over imperfect fields is

that pseudo-reductivity cannot be verified on the algebraic closure, because the unipotent radical of
a smooth connected algebraic group can become larger after a purely inseparable extension of scalars
on the base field. Let us start by giving precise definitions reductivity and pseudo-reductivity.

Let G be a smooth connected algebraic group over k. Let us recall that its unipotent radical Ru,kpGq
is defined to be its largest smooth connected unipotent normal k-subgroup (see Corollary 1.1.12).

Definition 3.2.1. A smooth connected k-group G is reductive if its geometric unipotent radical
Ru,kpGkq is trivial, and it is pseudo-reductive if Ru,kpGq is trivial.

The following key result states that the unipotent radical commutes with a separable extension of
scalars : in particular, over a perfect field the notion of reductive and pseudo-reductive coincide.

Theorem 3.2.2. Let K{k be a separable field extension and G a smooth connected affine k-group. Then

Ru,kpGqK “ Ru,KpGKq.

In other terms, the formation of the unipotent radical commutes with separable extensions of the ground field.
In particular, G is pseudo-reductive over k if and only if it is pseudo-reductive over K.

Proof. Since Ru,kpGqK is a smooth connected normal unipotent subgroup of GK, the inclusion
Ru,kpGqK Ď Ru,KpGKq always holds. First, we claim that we can restrict to the case of a separa-
bly closed base field k. For that, let us start by considering a Galois extension k1{k: by Galois
descent, Ru,k1pGk1q descends to a smooth connected unipotent normal k-subgroup H Ă G, which is
by definition contained in Ru,kpGq. Hence Ru,k1pGk1q “ Hk1 Ď Ru,kpGqk1 and we are done. Now let ks{k
and Ks{K be separable closures, chosen such that ks Ď Ks. Both ks{k and Ks{K are Galois, hence

α : Ru,kpGqks −! Ru,kspGksq

β : Ru,KpGqKs −! Ru,KspGKsq

are isomorphisms. If we denote by i the inclusion Ru,kpGqK ! Ru,KpGKq, the following diagram
commutes:
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Ru,kspGksqKs Ru,kspGKsq

pRu,kpGqksqKs “ pRu,kpGqKqKs Ru,KpGKqKs

γ

αbKs

ibKs

β

If γ is an isomorphism, then the same is true for ib Ks. By Galois descent, this implies that i is an
isomorphism. Therefore it suffices to prove the theorem for k a separably closed field.
Now, the inclusion we want to prove is Ru,KpGKq Ă Ru,kpGqK. Since they are both smooth and
connected subgroups, it suffices to prove an inequality on dimensions. Actually, we will prove the
following more general fact : let U Ă GK be a smooth connected unipotent normal K-subgroup with
dim U “ d, then from U we can construct a smooth connected unipotent normal k-subgroup of G
having dimension d. For this, we express K as the direct limit K “ lim−! F of all its subfields k Ď F Ď K
which are finitely generated over k Since K{k is separable, let us note that each F is necessarily
separable over k. Based on descent of closed subschemes and morphisms between them, as in [EGA4,
Prop 8.6.3 and 8.9.1], there exists such an F for which U descends to an F-subgroup of GF. Let U0

be such a subgroup: since pU0qK “ U, by faithfully flat descent U0 is necessarily smooth, connected,
unipotent and normal in GF (to prove it we do not need the results on inductive limits). By replacing
K by F, this allows to suppose that the extension K{k is finitely generated. Therefore it must be of
the form

k ã−! kpX1, . . . , Xmq ã−! K

where the first is purely transcendental and the second is finite and separable, hence by the primitive
element theorem it is monogeneous: there exists α P K such that it is an extension of the form
K “ kpX1, . . . , Xmqpαq “ kpX1, . . . , XmqrTs{pPq, where P P kpX1, . . . , XmqrTs is a separable polynomial.
By replacing α by a suitable f α with f P krX1, . . . , Xms we can suppose that P is a polynomial with
coefficients in krX1, . . . , Xms. Hence

K “ kpX1, . . . , XmqrTs{pPq “ Frac pkrX1, . . . , Xms{pPqq “: FracpAq.

Now, let us express K as the following direct limit

K “ Frac A “ Ap0q “ lim−!
aPAzt0u

Ar1{as

By separability of P, we can obtain that the morphism Spec A! Spec k is smooth, i.e. A is a k-smooth
domain, after replacing Spec A by some open subscheme Spec Ar1{as. Again by standard results
on limits, there exists a suitable localisation Ar1{as such that U descends to a closed subscheme of
GAr1{as: by replacing A with this localisation, there exists a closed subscheme U Ď GA such that
UK “ U Ď GK.
Now we want to prove that, by further remplacing A by a localisation, we can suppose that U is
a unipotent normal A-subgroup of GA. This is done by ”spreading out” these properties from the
generic fiber Spec K. The normality of U in GK is equivalent to saying that the map

GK ˆU ! GK, pg, uq 7! gug´1
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factors through U. Therefore it suffices to apply descent of morphisms from K “ lim−! Ar1{as to
obtain that U is an A-smooth normal A-subgroup of GA, having geometrically connected fibers of
dimension d, because UK is the generic fiber of U ! Spec A. Geometrically, remplacing A by Ar1{as
corresponds to shrinking Spec A by taking out the hypersurface pa “ 0q. Concerning the unipotence
of UK, by Corollary 1.2.6 it can be expressed as follows: there exists a finite extension K1{K such that
UK1 admits a composition series whose successive quotients are isomorphic to Ga ,K1 . Let α1, . . . , αn a
K-basis of K1 and set A1 :“ Arα1, . . . , αns. Then A1 is an A-finite domain such that A1K “ K1. Let us
consider the following commutative diagram, which is by construction made up of cartesian squares
given by fiber products:

UK1 UA1

Spec K1 Spec A1

Spec K Spec A

The field extension K ! K1 is faithfully flat, so up to restricting A to a localization we obtain that
A! A1 is faithfully flat too. Moreover, the diagram shows that the generic fiber of Spec A1 ! Spec A
is Spec K1. Since it is true for UK1 , by spreading out of properties as before, from this diagram we
can suppose that UA1 admits a composition series by A1-smooth normal closed A-subgroups, having
successive quotients isomorphic to Ga A1 .
As a final step, we claim that all fibers of U ! Spec A are unipotent. Suppose this is true: since A is
k-smooth and k separably closed, Apkq is dense in A, hence there exists a k-point of Spec A. The fiber
of U over such a point is a normal k-subgroup of G which is smooth, connected, unipotent and of
dimension precisely d.
To prove it, let us fix a point s P Spec A, which corresponds to a morphism Spec κpsq! Spec A. Since
Spec A1 ! Spec A is faithfully flat, in particular it is surjective, so there exists s1 P Spec A1 a preimage
of s. Let us consider the following commutative diagram :

UA1 U

pUA1qs1 Us

Spec A1 Spec A

Spec κps1q Spec κpsq

where we denote the fibers over s and s1 as
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Us :“ U bA κpsq

pUA1qs1 :“ pUA1q bA1 κps1q

The commutative square in the front tells us that pUA1qs1 “ Us bκpsq κps1q. Since being unipotent
commutes with extensions of the base field (Corollary 1.1.12), this implies that Us is unipotent.

Theorem 3.2.2 fails when purely inseparable field extensions are taken into account, as illustrated
by the following example : it is the simplest case of a pseudo-reductive nonreductive algebraic group
and it is a generalization of Example 3.1.5 above.

Example 3.2.3. Let k be an imperfect field of characteristic p ą 0 and k1{k a purely inseparable field
extension of degree rk1 : ks “ pn. Let us consider the smooth k-group G, obtained by Weil restriction
of the multiplicative group:

G :“ Rk1{kpGm ,k1q.

The group Gm,k embeds as a k-subgroup of G, as we have seen in Defintiion 3.1.2. Hence, we can
consider the quotient U :“ G{Gm. The smoothness of G comes from the following general property
of Weil restriction : if Y is a smooth k1-variety, then Rk1{kpYq is smooth over k. First, we claim that
there exists an integer n such that Upn

“ 1. By smoothness of U, it suffices to verify that this is true
for Upksq, because ks-rational points are schematically dense. Thus, we compute

Upksq
pn
“

`

Gmpk1 bk ksq{Gmpksq
˘pn

“
`

pk1 bk ksq
ˆ{kˆs

˘

“ 1,

because k1{k is purely inseparable and ks{k is separable, so their tensor product over k is a field.
Next, we claim that if a k-group H is not unipotent, then it contains a one-dimensional torus T.
( question need borel subgroups...?)
Now, we want to apply this in order to show that U is unipotent. If this is not true, then it must
admit a one-dimensional torus T as a k-subgroup, which we can assume to be split by extending
scalars to ks. Hence, for all m ě 1, T “ Tpm

because the sequence

1 −! µpm ã−! Gm
pn¨
−! Gm −! 1

is exact. This contradicts the fact that Upn
“ 1, hence the quotient U is unipotent. In particular, the

k-group G is not reductive.
On the other hand, we have

Gpksq “ pk1 bk ksq
ˆ

which has no pn-torsion for any n since k1 bk ks is a field. In particular, it does not contain any
unipotent subgroup (normal or not), so by density of the rational points the same holds for the
algebraic group Gks . Thus, Ru,kspGksq is trivial, hence the unipotent radical Ru,kpGq is trivial too and
we have shown that G is pseudo-reductive.

The above argument can be generalized as follows : if k1{k is a finite purely inseparable extension
and G1 is a smooth connected nontrivial reductive k1-group, then the Weil restriction

G :“ Rk1{kpG1q
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is not reductive, even though it is pseudo-reductive (see [CGP15, Example 1.6.1]).

3.3 Rigidity for Unirational Groups
Throughout the preceding sections it has been shown that, when working with unipotent or

pseudo-reductive groups, purely inseparable extensions lead to many complications that do not
take place in the separable case. Moreover, in the last chapter we have established and explained an
equivalence of categories, which only holds in the commutative case and over a perfect field. So,
why the need to study groups over imperfect fields?
The first reason is that, whenever one does algebraic geometry over a perfect field k of nonzero
characteristic, the fiber over the generic point of any smooth k-variety, its function field, is always
imperfect. The simplest class of imperfect fields are those such that rK1{p : Ks “ p, also called of
degree of imperfection 1. Geometrically, such a field K is the function field of some smooth k-curve.
Some examples include Fpptq, Fppptqq and more generally all global and local fields of nonzero
characteristic (for basics on global and local fields see [Neu13, I I, §5]).

However, interesting stimuli exist already within the theory of algebraic groups : over an imperfect
field, groups have a more rich and complex structure, and this is particularly true for unipotent ones.
Let us mention and give a few comments on a rigidity result which is an application of Tits’ theory.

First, over a perfect field k, each smooth connected nontrivial unipotent group U contains a copy
of the additive group. Notice that this makes it impossible to have a rigidity theorem for scheme
maps f : G ! U satisfying f p1Gq “ 1U , analogous to the usual fundamental rigidity theorem for
abelian varieties. For example, one can define a counterexample as

f : Gm Ga U,
g

where gpxq “ x´ 1 : clearly, f is a k-scheme morphism satisfying f p1Gmq “ 1U , but it is not a k-group
homomorphism.

On the other hand, over imperfect fields there exist several smooth and connected unipotent
groups that do not contain any copy of Ga (the simplest one being Example 4.1.2 below): this makes
a big difference, as the following recent result, which is still to appear in the literature, shows.

Theorem 3.3.1 (Rosengarten). Let G and H be group schemes of finite type over a field k of degree of
imperfection 1. Assume that G is unirational and that H is solvable and does not contain a k-subgroup
isomorphic to Ga. Then any k-scheme morphism f : G −! H such that f p1Gq “ 1H is a homomorphism of
k-group schemes.

Let us recall that a k-variety is said to be unirational if there exists an integer N ě 1 and a rational
map PN 99K X; essentially, this is a useful property to guarantee the existence of many rational
points. In characteristic 0, and more generally over a perfect base field, all affine algebraic groups
are unirational, hence the first assumption is non tautological only when working over an imperfect
field.

What about the second assumption? It involves solvable groups not containing a copy of Ga: in
particular, in this text we will study the case of unipotent groups, which Tits calls k-wound.
In order to state the theorem, the precise definition of this notion is not needed; however, it is heavily
used in the proof given by Rosengarten. Again, if the base field is perfect, this condition is not
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satisfied by any nontrivial smooth connected unipotent group, hence the rigidity theorem actually
makes sense only over an imperfect base field.

An important consequence is given by the following corollary, which follows directly from the
theorem by taking G “ H a unipotent wound group and applying the statement to the inversion
map, as one does in the case of abelian varieties.

Corollary 3.3.2. Let k be a field of degree of imperfection 1. Then any unirational wound unipotent k-group
is commutative.
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This last chapter follows [CGP15, Appendix B], and [Con11]. Even though a complete exposition of
Tits’ results has only been published in [CGP15], most of the material can be found in his unpublished
Yale lecture notes from 1967.
The intent is to survey Tits’ work on the structure of smooth connected unipotent groups over an
arbitrary field, in particular concerning the imperfect case. This involves introducing and studying
the k-wound property, concluding with some results on the actions of tori on unipotent groups,
which are useful to proceed further on with the study of general solvable groups. Particular attention
is paid to illustrate a few examples in detail, in order to highlight the differences with the perfect
case and the pathologies which might arise.
Henceforth, k will denote an arbitrary field of characteristic p ą 0.

4.1 Subgroups of vector groups
Recall that a smooth solvable k-group is k-split if it admits a composition series having successive

quotients isomorphic to Ga or Gm. For k-tori, this notion behaves in a very convenient manner: all
subgroups and quotients of a k-split torus are k-split. Moreover, the notion of k-anisotropicity is
orthogonal to the k-split property, as in the following result (see [Bor91, 8.14 and 8.15]).

Proposition 4.1.1. Let T be a torus over k. Then there exist a unique maximal k-split subtorus Ts and a
unique maximal k-anisotropic subtorus Ta, such that the mapping

Ta ˆ Ts −! T, pa, sq 7−! as

is an isogeny.

What changes when we move on to the unipotent case? First, the following example shows that a
smooth connected normal k-subgroup of a k-split unipotent group is not necessarily k-split.

Example 4.1.2. Let k be imperfect and a P kzkp. Consider the k-split unipotent group G2
a and the

k-subgroup U Ă G2
a defined on the functor of points as

UpRq :“ tpx, yq P R2 : yp “ x´ axpu

for all k-algebras R, i.e.

U “ Spec
ˆ

krX, Ys
pYp ´ X` aXpq

˙

.

Now let k1 :“ kpa1{pq: if we extend scalars to k1, the group Uk1 is isomorphic to Ga, hence in particular
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it is k1-split:

Uk1 “ U ˆSpec k Spec k1 “ Spec
ˆ

krX, Ys
pYp ´ X` aXpq

bk k1
˙

“ Spec
ˆ

k1rX, Ys
pYp ´ X` pa1{pXqpq

˙

“ Spec
ˆ

k1rX, Ys
ppY´ a1{pXqp ´ Xq

˙

» Spec
ˆ

k1rV, Ts
pTp ´Vq

˙

» Spec k1rTs “ pGaqk1

However, U is not isomorphic to Ga as a k-scheme, hence in particular it is not k-split as a k-group.
Let us assume that OpUq “ krX, Ys{pYp ´ X ` aXpq and krTs are isomorphic as a k-algebras. Let
us denote x and y the images of X and Y in the quotient OpUq: the isomorphism gives x “ QpTq,
y “ RpTq for suitable polynomials Q, R P krTs of degree strictly larger than 1. Moreover, the equality
yp “ x´ axp implies that Q and R have same degree. Thus, we obtain

QppTq “ RpTq ´ aRpTqp P krTs.

Considering the highest degree term on both sides, this gives a P kp, which is absurd.

This example also shows that the k-split property for unipotent groups can be sensitive to purely
inseparable extensions, unlike what happens in the case of groups of multiplicative type (see [Mil17],
Corollary 12.20).

Carrying on the comparison with the case of tori, we wish to define and study an analogue for
unipotent k-groups of the notion of k-anisotropicity. Let us start by a preliminary study of subgroups
of vector groups, which are in particular unipotent, commutative and p-torsion. The aim of this first
section is to show that any such unipotent group embeds into a vector group, and to establish the
conditions under which the embedding can be realized in codimension 1.

4.1.1 p-polynomials
Definition 4.1.3. A polynomial f P krX1, . . . , Xns is a p-polynomial if every monomial appearing in

f is of the form cijX
pj

i for some i P t1 . . . nu, j P N and cij P k.

In particular, remark that f “
řn

i“1 fipXiq where fipXiq “
ř

j cijX
pj
i P krXis. The polynomials fi are

uniquely determined if we add the condition fip0q “ 0 for all i.

Lemma 4.1.4. A polynomial f P krX1, . . . , Xns is a p-polynomial if and only if the associated map of k-schemes
Gn

a ! Ga is a k-homomorphism.

Proof. We associate to f in a natural way the map Gn
a ! Ga given on the functor of points by

Gn
a pRq “ Rn −! R “ GapRq, x “ px1, . . . , xnq 7−! f px1, . . . , xnq

for all k-algebras R.

• Let f be a p-polynomial, then it is of the form f “
ř

i,j cijX
pj

i . For all x “ px1, . . . , xnq,
y “ py1, . . . , ynq P Rn, we clearly have

f px` yq “
ÿ

i,j

pxi ` yiq
pj
“

ÿ

i,j

xpj

i `
ÿ

i,j

ypj

i “ f pxq ` f pyq,

hence the map is a k-homomorphism.
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• We proceed by induction on the number n of indeterminates. For n “ 1, the polynomial
gpX, Yq :“ f pX`Yq ´ f pXq ´ f pYq is zero in krX, Ys. Write f as f “

řm
k“1 alXl for some al P k.

Then

0 “ gpX, Yq
m
ÿ

l“0

alppX`Yql ´ Xl ´Ylq

thus whenever al ‰ 0 it must be pX ` Yql “ Xl ` Yl , which is true if and only if l “ pj.
We conclude by setting cj :“ apj . Now suppose the statement true for n and consider f P
krX1 . . . , Xn, Ts which is additive. Write it as

f pX, Tq “ g0pXq ` g1pXqT` . . .` gmpXqTm P krX1, . . . , XnsrTs

In particular, g0pX`Yq “ f pX`Y, 0q “ f pX, 0q ` f pY, 0q “ g0pXq ` g0pYq, hence by induction
g0 is a p-polynomial. It suffices to prove that g1, . . . , gm P krX ´ 1, . . . , Xns are constant : this
implies f pX, Tq “ g0pXq ` hpTq with h P krTs additive hence a p-polynomial, thus we conclude
by applying to h the case n “ 1. Let us fix x P kn. Then by additivity f px, Tq ` f p0, 0q “
f px, 0q ` f p0, Tq P krTs. By developing both terms, we get

g1pxqT` . . .` gmpxqTm “ g1p0qT` . . .` gmp0qTm P krTs,

hence gipxq “ gip0q is constant for all i.

Definition 4.1.5. A nonzero polynomial f P krX1, . . . , Xns is a separable polynomial if A :“
krX1, . . . , Xns{p f q is a separable k-algebra, that is, geometrically reduced.

Proposition 4.1.6. Let f P krX1, . . . , Xns be a nonzero polynomial such that f p0q “ 0. Then the subscheme
f´1p0q Ď Gn

a is a smooth k-subgroup of Gn
a if and only if f is a separable p-polynomial.

Proof. Let f be a p-polynomial: the subscheme f´1p0q is the kernel of the associated map Gn
a ! Ga,

which is a k-homomorphism by 4.1.4, hence f´1p0q is a k-subgroup. By definition of separable
polynomial, it is also generically smooth, thus being a k-group, it is smooth.
Conversely, let G :“ f´1p0q Ď Gn

a be a smooth k-subgroup. The smoothness implies by definition
that f is separable. Again by 4.1.4, it suffices to prove that the associated map of schemes is a
k-homomorphism, i.e. that f is additive. Since it suffices to verify this after extending scalars to
k, and smoothness being a geometric property, we can suppose that k is algebraically closed. Let
α P Gpkq: since G Ď Gn

a is a k-subgroup, x` α belongs to G if and only if x does, thus f pX` αq and
f pXq both have G as zero scheme in affine space. Hence there exists a unique constant λpαq P kˆ such
that f pX ` αq “ λpαq f pXq. By considering a monomial of highest degree of f we obtain λpαq “ 1.
Now let us fix β P kn. Since f pα ` βq “ f pβq for all α P Gpkq, the polynomial f pX ` βq ´ f pXq
vanishes on Gpkq. The group G being smooth and k algebraically closed, G is the only reduced
subscheme of Gn

a having as underlying topological space the Zariski closure of Gpkq, which allows to
conclude that f pX` βq ´ f pβq vanishes on all G. Therefore there exists a unique µpβq P k such that
f pX ` βq ´ f pβq “ µpβq f pXq. Considering a monomial term of highest degree we obtain µpβq “ 1,
hence f px` βq “ f pxq ` f pβq for all x, β P kn and f is additive.
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Corollary 4.1.7. Let G Ď Gn
a be a smooth k-subgroup of codimension 1. Then G is the zero scheme of a

separable nonzero polynomial in krX1, . . . , Xns.

Proof. Being a smooth closed subscheme of codimension 1, G is the zero scheme of a separable
nonzero polynomial f P krX1, . . . , Xns. By 4.1.4, the fact that G “ f´1p0q is a k-subgroup implies that
f is a p-polynomial.

Definition 4.1.8. Let f “
řn

i“1 fipXiq be a p-polynomial over k in n variables with fip0q “ 0 for all i.
The principal part of f is the sum of the leading terms of the fi.

Lemma 4.1.9. Let V be a vector group of dimension n ě 1 over k and let f : V ! Ga be a k-homomorphism.
The following are equivalent.

1. There exists a nonconstant k-scheme morphism f 1 : A1
k ! V such that f ˝ f 1 “ 0.

2. For every k-group isomorphism h : Gn
a » V, the principal part of the nonzero p-polynomial f ˝ h has a

nontrivial zero in kn.

3. There exists a k-group isomorphism h : Gn
a » V such that kerp f ˝ hq contains the first factor of Gn

a , i.e.
f ˝ h only depends on the last n´ 1 coordinates.

Remark 4.1.10. In the second condition, the existence of such an isomorphism is not sufficient: let k be
imperfect and consider a P kzkp, f pX, Yq “ Yp ´ pX` aXpq. Then f is a nonzero p-polynomial whose
principal part Yp ´ aXp has no zeros on k2zt0u. However, by composing it with the k-automorphism
of G2

a given by h : px, yq 7! px, y` xpq one gets the p-polynomial f ˝ h “ Yp `Xp2
´ pX` aXpq, whose

principal part is Yp ` Xp2
which has p1,´1q as nontrivial zero.

Proof. p1q ñ p2q : Let ϕ :“ h´1 ˝ f 1 and write it in components as ϕ “ pϕ1, . . . , ϕnq, with ϕi P krts. Let
si “ 0 whenever ϕi “ 0 and denote aitsi the leading term of ϕi otherwise. Since f 1 is not constant, the
same holds for ϕ, hence for some i we have si ą 0. Let f “

řn
i“1 ciX

pmi

i be the principal part of f ˝ h.
By p1q, 0 “ f ˝ f 1 “ p f ˝ hq ˝ ph´1 ˝ f 1q “ f ˝ h ˝ ϕ, hence

0 “ f phpϕptqqq “
n
ÿ

i“1

cipaitsiqpmi
` . . . “

n
ÿ

i“1

cia
pmi

i tsi pmi
` . . .

Now let N :“ maxitsi pmiu ą 0 and define bi :“ ai when si pmi “ N (so in particular bi is nonzero)
and bi :“ 0 otherwise. The coefficient of the term of degree N in f ˝ h ˝ ϕ is

řn
i“1 cib

pmi

i and it must
vanish, hence pb1, . . . , bnq is the desired nontrivial zero of the principal part of f ˝ h.

A1
k

Gn
a Gn

a V

Ga

ϕ
f 1

h1 h

p-pol f

p2q ñ p3q : Let h : Gn
a » V be a k-group isomorphism. The case f “ 0 is trivial, hence we may

assume f ‰ 0 so the principal part of f ˝ h is nonzero: we denote it as
řn

i“1 ciX
pmi

i . Let d be the
sum of the degrees of its nonzero terms and let us proceed by induction on d, the case d “ 0 being
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f “ 0. If cr “ 0 for some r, the principal part does not depend on Xr, hence the same holds for the
whole p-polynomial f ˝ h, so we are done by composing with the k-automorphism interchanging
X1 and Xr. Thus, let us assume that all ci are nonzero and, up to a coordinate permutation, that
m1 ě . . . ě mn ě 0. By p2q, there exists pa1, . . . , anq P knzt0u such that

řn
i“1 cia

pmi

i “ 0. Let r ě 0 be
minimal such that ar ‰ 0 and define the k-automorphism h1 : Gn

a » Gn
a given by

py1, . . . , ynq 7−! px1, . . . , xnq :“ py1, . . . , yr´1, aryr, yr`1 ` ar`1ypmr´mr`1

r , . . . , yn ` anypmr´mn

r q

By composing the principal part of f ˝ h with h1 we get

n
ÿ

i“1

ciX
pmi

i “

r´1
ÿ

i“1

ciY
pmi

i ` crapmi
r Ypmi

r `

n
ÿ

i“r`1

ci

´

Yi ` aiY
pmr´mi
r

¯pmi

“
ÿ

i‰r

ciY
pmi

i `

n
ÿ

i“r

cia
pmi

i Ypmr

r

which since a1 “ . . . “ ar´1 “ 0, equals

ÿ

i‰r

ciY
pmi

i `

˜

n
ÿ

i“1

cia
pmi

i

¸

Ypmr

r “
ÿ

i‰r

ciY
pmi

i

because pa1, . . . , anq is a zero. Finally, the sum of the degrees of the nonzero terms of the principal
part of f ˝ h ˝ h1 is strictly smaller than d (because cr ‰ 0) and we conclude by applying the induction
hypothesis.
p3q ñ p1q : Let h : Gn

a ! V be a k-group isomorphism such that kerp f ˝ hq contains the first factor
of Gn

a . Define ϕ : Ga ! Gn
a as ϕptq “ pt, 0, . . . , 0q and let f 1 :“ h ˝ ϕ. Then f p f 1ptqq “ f phpϕptqqq “

f phpt, 0, . . . , 0qq hence f ˝ f 1 “ 0.

Lemma 4.1.11. Let V be a vector group of dimension n ě 1 over k, K{k a Galois extension, and let f : V ! Gn
a

be a k-homomorphism. The equivalent conditions of 4.1.9 hold over K if and only if they hold over k.

Proof. First, we prove the following : if f is a p-polynomial of the form f pXq “
řn

i“1 ciX
pmi

i over k,
then if f has a zero in Knzt0u, then it has a zero in knzt0u.
We proceed by induction on n: if n “ 1, by hypothesis there exists a1 P Kˆ such that c1apm1

1 “ 0, then
c1 “ 0 and we conclude. If n ą 1, we can suppose up to permuting the coordinates that m1 ě ... ě mn

and consider pa1, . . . , anq P Knzt0u such that
řn

i“1 cia
pmi

i “ 0. If an “ 0, then we can apply the

induction hypothesis to
řn´1

i“1 ciX
pmi

i . Otherwise, we can divide each ai by apmn´mi
n and thus assume

that an “ 1. Now let σ P GalpK{kq : both a and σpaq are zeros of f , and since it is a p-polynomial,
b :“ a´ σpaq is a zero too. If all ai belong to k already, we are done; if not, since the extension is
Galois, there exists a σ such that a ‰ σpaq hence b ‰ 0. Moreover, bn “ an ´ σpanq “ 1´ 1 “ 0, so we
can again apply the induction hypothesis.
Now let us go back to the conditions in 4.1.9. If p1q is true over k, then it is also true over K. Moreover,
we just proved that if the principal part of a nonzero p-polynomial has a nontrivial zero in Kn, then
it has a nontrivial zero in kn, which means that if p2q holds over K, then it also holds over k.

4.1.2 Embedding into a vector group and consequences
Theorem 4.1.12. Let G be a smooth p-torsion commutative k-group. Then

(a) G embeds as a k-subgroup of a vector group over k,
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(b) G admits an étale isogeny onto a vector group over k,

(c) If G is connected and k “ k, then G is a vector group over k.

Let us recall some notations and basic facts on the Lie algebra of a vector group, which we
will need in the proof : for any finite dimensional k-vector space V, the associated vector group
V » SpecpSympV_qq represents the functor pk´Algq! pGrpq, R 7! V b R. A choice of a basis for
V determines an isomorphism V » Gn

a for some integer n. Let W “ V be a vector group. Then

OpWq “ OpVq “ SympV_q “
à

ně0
pV_qbn{xvbw´wb v | v, w P V_y

has augmentation ideal I “ ker ε “
À

ně1pV
_qbn, hence I{I2 “ pV_qb1 “ V_ and

LiepWq » HomkpI{I2, kq “ HomkpV_, kq » V,

so W “ V » LiepWq.

Proof. (a) : Let us start by constructing the embedding into a vector group over k. First, we want to
show that we can assume k “ k.
Let k1{k be a finite extension and consider the canonical inclusion iG : G ã! Rk1{kpGk1q defined in
Proposition 3.1.3. By definition of Weil restriction,

Rk1{kpGa,k1qpRq “ Ga ,k1pRb k1q “ Rb k1 » Rrk
1 : ks,

for all k-algebras R, i.e. Rk1{kpGa ,k1q » G
rk1 : ks
a . Now if Gk1 embeds as a k1-subgroup of Ga

n
,k1 , by

applying the functor Rk1{k, which is right adjoint to base change hence left exact hence preserves
kernels, we get

G ã−! Rk1{kpGk1q ã−! Rk1{kpGa
n
,k1q “ G

n¨rk1 : ks
a

This allows us to replace k with a finite extension k1. Now suppose there exists an embedding of Gk
as a k-subgroup of some Ga

N
,k . Using standard arguments on limits of schemes, since k is the direct

limit of its finite subextensions k Ă k1 Ă k, the embedding descends to a finite extension k1, i.e. there
exists k1 such that the following diagram commutes.

Gk Ga
N
,k

Spec k

Gk1 Ga
N
,k1

Spec k1

Therefore we can assume that k is algebraically closed.
Next, we want to prove that we can assume G is connected. For this, let us consider the component
group G{Go. It is étale, hence since k “ k it must be a constant discrete commutative group. Moreover,
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G is p-torsion hence it must be the constant group over k associated to the abstract group pZ{pZq
n

for some n. Now let us consider the connected-étale sequence on rational points:

1 −! Gopkq −! Gpkq −! pZ{pZq
n
pkq −! 1.

Let us fix x1, . . . , xn a pZ{pZq- basis of G{Gopkq: then any choice of liftings x1, . . . , xn in Gpkq generates
a subgroup isomorphic to pZ{pZqn because G is p-torsion. This splits the sequence over k-points,
which actually gives a splitting of algebraic groups, because pZ{pZqn is a constant group hence
a sum of k-points. Thus there exists an isomorphism G » Go ˆ pZ{pZqn, and since pZ{pZq is a
k-subgroup of the additive group, G embeds into Go ˆGn

a . Therefore we can conclude that, for the
purpose of finding an embedding of G into a vector group, we can assume that G is connected.
Our aim is actually to prove that, under these two assumptions, G is a vector group. By Corollary
1.2.6, G being connected and unipotent over k, it admits a composition series with successive quotients
isomorphic to Ga, which we denote as G “ G0 Ą G1 Ą ¨ ¨ ¨ Ą Gs “ 1. In particular each Gi is a
commutative extension of Ga by Gi`1. By induction on the dimension of G, it suffices to prove that a
commutative extension U of Ga by Ga is k-split if it’s p-torsion.
For this, consider the group W2,k of Witt vectors of order 2 and the canonical short exact sequence

0 −! Ga
In−!W2,k

π1,1
−! Ga −! 1.

By Proposition 2.2.12, the element E1 P Ext1pGa, Gaq corresponding to the isomorphism class of
this extension is a basis of the left krFs-module Ext1pGa, Gaq. In other words, there exists a k-group
endomorphism ϕ of the additive group such that U is given by the following cartesian diagram:

1 Ga Ga 1

1 Ga W2,k Ga 1.

q

ψ ϕ

π1,1

Since U is smooth and p-torsion, the same is true for the subgroup ψpUq. Moreover,

p ¨ px, yq “ p0, xpq for all px, yq P W2,k,

hence in particular, if we denote H the p-torsion subgroup of W2,k, we have π1,1pHq “ αp. It follows
that π1,1 ˝ ψpUq is a smooth subgroup of αp hence it is trivial. By commutativity of the pullback
diagram above, π1,1 ˝ ψ “ ϕ ˝ q vanishes hence ϕ “ 0 because q is an epimorphism. Thus, we
conclude that the extension must be split i.e. U » G2

a.
Having proved paq and pcq, we can go back to the general setting of an arbitrary base field k in
order to construct the étale isogeny. Let us fix an embedding of G into a vector group V, having
codimension m. Consider the vector subspace LiepGq Ď LiepVq: once we have fixed an isomorphism
V » Gn

a for some n, the map W 7! LiepWq gives a bijection between linear k-subgroups of V and
vector subspaces of LiepVq, so we can choose such a W such that LiepGq ‘ LiepWq “ LiepVq and
consider the map ρ : G ã! V � V{W. The associated linear map

Lie ρ : LiepGq! LiepV{Wq

45



CHAPTER 4. TITS’ WORK ON WOUND GROUPS

is an isomorphism of Lie algebras. Let N :“ ker ρ : since G is smooth and connected, the equality
0 “ kerpLie ρq “ Liepker ρq “ Lie N implies that N is smooth of dimension 0, hence étale. The closed
immersion G{N ã! V{W given by universal property of the quotient must hence be also an open
immersion, so it is an isomorphism because the vector group V{W is connected. In conclusion, ρ is
surjective with finite étale kernel, hence it is the desired étale isogeny of G into a vector group.

We will now state and prove some consequences of the embedding of a smooth p-torsion commu-
tative group into a vector group. In particular, the following result will be useful later, when we will
need to consider k-scheme morphism from the affine line.

Proposition 4.1.13. Let V1, . . . , Vn be k-groups isomorphic to Ga and let V :“ V1 ˆ ¨ ¨ ¨ ˆVn » Gn
a . Let

U be a smooth k-subgroup of V such that Uks is the ks-subgroup of Vks generated by a family of ks-scheme
morphisms ϕ : A1

ks
! Vks passing through 0. There exists a k-group automorphism h of V such that hpUq is

the direct product V1 ˆ ¨ ¨ ¨ ˆVr for some r ď n. In particular this shows that

(i) U is a vector group over k,

(ii) U is a k-group direct factor of V.

Proof. Let us proceed by induction on n. If n “ 1, it suffices to take the identity morphism A1
ks
! V1,ks

to conclude that Uks “ V1,ks and so U “ V1. Now let n ą 1. If dim U “ dim V “ n, then being smooth
and connected we conclude that U “ V, so we can suppose dim U ď n´ 1. If dim U “ n´ 1, then by
4.1.15 U is the zero scheme of a p-polynomial, i.e. the kernel of some homomorphism f : V ! Ga.
Since we assumed that U has dimension n´ 1 ą 0, there exists a nonconstant scheme morphism
f 1 : A1

ks
! Vks such that Uks “ f´1p0qks contains the image of f 1. In particular, f 1 ˝ f “ 0 over ks :

by applying Lemma 4.1.11 to the extension ks{k and the equivalence p1q ô p3q in Lemma 4.1.9, we
conclude the existence of a k-group automorphism h1 : V „

−! V such that kerp f ˝ h1q contains V1. The
group U being the zero scheme of f , this is equivalent to saying that V1 is contained in h1pUq. Let us
denote as U1 the projection of h1pUq onto V1 :“ V2 ˆ ¨ ¨ ¨ ˆVn, then we have h1pUq “ V1 ˆU1, so we
can apply the induction hypothesis to U1 and V1 to conclude. Finally, let us suppose that dim U is
strictly smaller than n´ 1 and let U1 be the projection of U onto V1 “ V2 ˆ ¨ ¨ ¨ ˆVn. By the inductive
hypothesis, there exists a k-group automorphism h : V1 „

−! V1 such that hpU1q “ V2 ˆ ¨ ¨ ¨ ˆVr for
some r ă n. If we set h1 :“ idV1 ˆh : V » V, we obtain h1pUq Ď V1 ˆ ¨ ¨ ¨ ˆVr and we can again apply
induction as before.

Corollary 4.1.14. Let G be a smooth p-torsion commutative k-group. Then any smooth k-subgroup of G
which is a vector group is a k-group direct factor.

Proof. By 4.1.12, the group G embeds as a k-subgroup of some vector group V of dimension n over k.
Let us consider a smooth k-subgroup W which is isomorphic to Gr

a for some r ď n. The vector group
W is generated by k-homomorphisms

Ga ã−! Gr
a
„
−!W ã−! G ã−! V,

hence in particular by k-scheme morphisms A1
k ! V, so we can apply Proposition 4.1.13 to conclude

that W is a k-group direct factor inside of V, hence in particular by restriction a direct factor of G.

Another important consequence of Theorem 4.1.12 is the following : in the case of an infinite base
field, we can actually find an embedding into a vector group having codimension equal to 1.
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Proposition 4.1.15. Let U be a smooth p-torsion commutative k-group over an infinite field k. Then U is
isomorphic to a k-subgroup of codimension 1 of a k-vector group. In particular, it is isomorphic to the zero
scheme of a separable nonzero p-polynomial over k.

Later we will see that if k is perfect and U is connected then it is a vector group (see Corollary
4.2.5 below) : this proposition is thus true also over finite fields if U is connected.

Example 4.1.16. Actually, this result is not tautological : in the case of a finite base field k, a
nonconnected U with the properties above does not admit an embedding of codimension 1 in general.
Let k “ Fp: then Ga ,k consists of p rational points. Hence, for n ą 1 the constant group U :“ pZ{pZqn

has dimension 0 but it cannot admit an embedding into the additive group because it is a disjoint
sum of pn rational points.

Proof. By Theorem 4.1.12, there exists an embedding of G into a vector group V over k. Let us proceed
by induction on m :“ dim V ´ dim U. If m “ 1, then we conclude using Corollary 4.1.7. Let us
assume m ą 1 : if we prove that U can be embedded into a vector group W over k of dimension equal
to dim V ´ 1, then we are done by induction. By smoothness of U, the linear subspace LiepUq has
codimension m in LiepVq. Let us fix an isomorphism V » Gn

a , with its corresponding linear structure
on V, and consider the schematic image of the multiplication map Ga ˆU ! V, which we denote as
Y. Since m ě 2, the closed subscheme Y has nonzero codimension in V. Now let us consider the
vector group LiepUq Ď V associated to the linear subspace LiepUq: since V is irreducible, the union
LiepUq Y Y must be a proper closed subscheme of V. Moreover, k is infinite and the underlying
scheme of V is the affine space An

k , so the set of rational points Vpkq is dense in V. Thus, let us take
v a rational point not belonging to LiepUq YY and denote L Ă V the k-subgroup corresponding to
the line xvy Ă Vpkq. Consider π : V �W :“ V{L the canonical quotient map and set ψ :“ π|U : it is
enough to prove that ker ψ “ 1, so U embeds as a k-subgroup of W. For this, let us consider the
induced Lie algebra homomorphism

Lie ψ : LiepUq −! LiepWq “ LiepVq{LiepLq.

Its kernel is given by L X LiepUq, which is trivial because v R LiepUq. Hence we obtain 0 “

kerpLie ψq “ Liepker ψq. Since the group U is smooth and connected, ker ψ is étale, i.e. of the form
Spec A with A a finite étale k-algebra. By extending scalars to an algebraic closure, pker ψqk “

SpecpAb kq is a disjoint union of n copies of Spec k, where n denotes the dimension of A as a k-vector
space. Thus, it suffices to prove that ψ is injective on Upkq : if this holds, then n “ 1 hence A “ k
and ker ψ is trivial. Now, if ψ is not injective on Upkq, then there exists a nonzero λ P k such that
λv P Upkq. Since Y is stable under the action Ga ˆ V ! V, this would imply xvy “ Lpkq Ď Ypkq.
However, by definition v belongs to Lpkq but not to Y, so we conclude that ψUpkq is injective.

4.2 Wound unipotent groups
Let us recall that a torus over k is k-anisotropic, i.e. XpTq “ Hompk´GrpqpT, Gmq “ 1, if and only

if Hompk´GrpqpGm, Tq “ 1: if we consider a nontrivial character χ : T ! Gm, the image χpTq is a
smooth connected nontrivial k-subgroup of Gm, hence it coincides with Gm. By setting T1 :“ ker χ,
the following sequence is exact

1 −! T1 −! T −! Gm −! 1.
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Since T1 is of multiplicative type, this is an exact sequence in the semisimple abelian category
of groups of multiplicative type, hence there is a splitting T » T1 ˆGm. This gives a nontrivial
isomorphism f : Gm ! T “ T1 ˆGm, x 7! p1, xq.
For unipotent groups, the analogous statement obtained by remplacing Gm by Ga fails : by Proposition
1.2.7, every unipotent k-group admits nontrivial k-homomorphisms to Ga, however the group U
defined in 4.1.2 does not contain Ga as a k-subgroup.
Taking these considerations into account, it is natural to consider as the analogous to k-anisotropicity
the property of admitting no nontrivial homomorphisms from Ga. However, it is more convenient to
give another definition by considering maps of schemes from the affine line, and later prove that the
two coincide.

Definition 4.2.1. A smooth connected unipotent k-group U is k-wound if every k-scheme morphism
A1

k ! U is a constant map to a point in Upkq.

Example 4.2.2. The following examples show that over an imperfect field the k-wound property
behaves in a very unusual way.

• If a torus is k-anisotropic, then it stays anisotropic after a purely inseparable extension of the
base field, while the k-wound property can be lost under such an extension : let k be imperfect
and t P kzkp. By 4.1.2, the k-subgroup U “ typ “ x´ txpu of G2

a becomes isomorphic to Gak1

over k1 “ kpt1{pq. However, it does not admit any nonconstant k-scheme morphism from the
affine line: let ϕ : A1

k ! U be such a map, then the image ϕpA1
kq is connected and is not just

a point. So, since U is irreducible, ϕ is a dominant morphism. Hence it extends to a finite
surjective map ϕ : P1

k !
rU where rU denotes the regular compactification of U. This gives a

contradiction because ϕ must send the unique point at infinity of A1
k , which is k-rational, to

the point at infinity of rU, which is not k-rational.

• A smooth connected subgroup of a k-split torus is still k-split, while a k-split unipotent group
can admit nontrivial k-wound subgroups : the group U is a k-wound subgroup of G2

a.

• A nontrivial quotient of a k-wound group by a k-wound subgroup can be k-split : let k be
imperfect and t P kzkp. The k-subgroup of G3

a given by

GpRq :“ tpx, y, zq P R3 : xp2
` tpyp2

` tzp “ xu Ď R3,

for all k-algebras R, is the zero scheme in affine space of the separable p-polynomial Xp2
`

tpYp2
` tZp ´ X, whose principal part Xp2

` tpYp2
` tZp has no nontrivial zero on k3. Assume

there exists a nonconstant k-scheme morphism ϕ : A1
k ! G. Composing with the inclusion

of G in G3
a gives a nonconstant k-scheme morphism f 1 : A1

k ! G3
a such that f ˝ f 1 “ 0. By

4.1.9, taking as h the identity of G3
a gives a contradiction. Hence G is k-wound. Moreover, its

subgroup H “ tpx, y, zq P G : z “ 0u is smooth, connected and k-wound, and the map

G −! Ga, px, y, zq 7−! z

induces an isomorphism of k-groups G{H » Ga. This example is from [Oes84, Ch V, 3.5].

This last example shows that there is a link between p-polynomials and k-wound groups: let
us illustrate it in detail in the case of an infinite field k. By Proposition 4.1.15, smooth p-torsion
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commutative k-groups are of the form U “ f´1p0q Ď Gn
a with f a separable p-polynomial. Moreover,

algebraic groups are connected if and only if they are geometrically irreducible, hence such a U
is connected if and only if f is geometrically irreducible over k. Let us suppose U is connected :
if its principal part has no nontrivial zero in kn, then by applying Lemma 4.1.9 as in the example
above we get that U is k-wound, but the converse is false (see Remark 4.1.10). However assume there
exists a nontrivial k-rational zero: following the proof of p2q ñ p3q in 4.1.9 and setting h “ idGn

a
, we

obtain that U is isomorphic as a k-group to F´1p0q, where F is a nonzero p-polynomial which is still
geometrically irreducible over k, but the sum of the degrees of the monomials of its principal part
is strictly smaller than the one for f . By repeating this argument, one eventually gets a principal
part having no nontrivial zero in kn. So all smooth p-torsion commmutative k-wound groups can be
realized as zero schemes of geometrically irreducible p-polynomials whose principal part has no
nontrivial k-rational zero.

The following result gives a canonical decomposition of smooth connected p-torsion commutative
k-groups using the notions that we just introduced.

Theorem 4.2.3. Let U be a smooth connected p-torsion commutative k-group. Then it is a direct product

U “ V ˆW

of a vector group V over k and a smooth connected unipotent k-group W such that Wks is ks-wound.
The subgroup V is uniquely determined by the following : Vks is generated by all ks-scheme morphisms
ϕ : A1

ks
! Uks passing through 0.

Proof. Let us consider the unique smooth connected ks-subgroup rV of Uks which is generated by all
ks-scheme morphisms ϕ : A1

ks
! Uks passing through 0. Since ks{k is a Galois extension, by Galois

descent there exists a unique k-subgroup V of U such that Vks “
rV, which is necessarily smooth and

connected. By 4.1.12, the group U admits an embedding into GN
a for some N ě 1, hence the same is

true for V. Applying 4.1.13 and 4.1.14 to V, we get that V is a vector group over k and in particular
a k-group direct factor of U. Hence there exists a k-subgroup W of U and a splitting U “ V ˆW.
By hypothesis U is smooth, connected and unipotent, so the same holds for W. Moreover, Wks is
a ks-wound subgroup due the definition of rV, so it remains to show that V is unique. For this, let
us consider a second decomposition U “ V1 ˆW1 with V1 a vector group over k and W1 a smooth
connected unipotent k-subgroup of U such that W1

ks
is ks-wound. If ϕ : A1

ks
! Uks is a ks-scheme

morphism, then by composing with the projection Uks � W1
ks

we obtain a ks-scheme morphism
from the affine line to W1

ks
which must be constant by definition of ks-wound. Therefore, if ϕ passes

through 0, then its image is contained in V1ks
: this proves the inclusion V Ď V1. Both are vector

groups, hence V1 “ V ˆV2, where V2 denotes the image of V1 under the projection U � W. In
particular, V2ks

is a vector group over ks and a subgroup of Wks . Since the latter is ks-wound, such a
subgroup is trivial, hence V2 “ 0 and finally V “ V1.

Corollary 4.2.4. The following are equivalent for a smooth connected p-torsion commutative k-group U:

(a) U is k-wound,

(b) Uks is ks-wound,

49



CHAPTER 4. TITS’ WORK ON WOUND GROUPS

(c) every k-homomorphism Ga ! U is trivial.

Moreover, U is a vector group over k if and only if Uks is a vector group over ks.

Proof. paq ñ pcq : a nontrivial k-homomorphism Ga ! U is in particular a nontrivial k-scheme
morphism A1

k ! U.
pcq ñ pbq : assume Uks is not ks-wound. Keeping the same notations as in the above theorem, this
implies that Vks ‰ 0. This implies that V ‰ 0 too, so since V is a nontrivial vector group over k, there
exists a nontrivial morphism Ga ã! V.
pbq ñ paq : let Uks be ks-wound and consider the decomposition U “ V ˆW given by the theorem.
Since Uks “ Vks ˆWks with Vks a vector group over ks, we must have Vks “ 0 hence there are no
nontrivial ks-scheme morphisms ϕ : A1

ks
! Uks passing through 0. If we had a nonconstant map of

k-schemes A1
k ! U, by a translation and by extending scalars to ks we would obtain such a ϕ, hence

U is k-wound.
Finally, let Uks be a vector group over ks: then Uks “ Vks hence Wks “ 0, which implies W “ 0 and
U “ V is a vector group over k.

Corollary 4.2.5. If k is a perfect field, a smooth connected p-torsion commutative k-group is a vector group.

Proof. Since ks “ k, we can suppose that k is algebraically closed and apply Theorem 4.1.12.

Let us give an example of a k-wound subgroup arising as the quotient of a pseudo-reductive
commutative group.

Let G be a commutative pseudo-reductive group over k. By [SGA3, XII, Theorem 1.7], all tori of
maximal dimension are conjugated in G by a k1-rational point for some finite separable extension
k1{k. The group G being commutative, this implies that there exists a unique maximal k-torus T Ă G.
By the structure theorem of commutative affine algebraic groups ([SGA3, XVII, Theorem 7.2.1])
applied to the smooth and connected G, the quotient U :“ G{T is a smooth connected commutative
unipotent k-group.

Lemma 4.2.6. With the above notations, the quotient

U :“ G{T

is k-wound.

Proof. We may extend scalars to assume k “ ks, because unipotency commutes with any field
extension by Corollary 1.1.12, while the k-wound property and pseudo-reductivity can be verified
on a separable closure by Corollary 4.2.4 and Theorem 3.2.2 respectively. In particular, the torus T
is k-split. Let us take a k-scheme morphism f : A1

k ! U : by definition, we need to prove that it is
constant. Since the fiber product GˆU G is isomorphic to Tˆ G, the group G is a T-torsor over U.
By pulling back via f , the fiber product

GˆU A1
k A1

k

G U

pr1

pr2 f

π

50



CHAPTER 4. TITS’ WORK ON WOUND GROUPS

is a T-torsor over A1
k , where π denotes the quotient map. Now, for any pair of algebraic groups G1

and G2 and any k-scheme X, the following diagram

Y

Y1 “ Y{G1 Y2 “ Y{G2

X

pG1ˆG2qñ

G1ñ G2ñ

G2ñ G1ñ

shows that there is an isomorphism

H1pX, G1 ˆ G2q −! H1pX, G1q ˆ H1pX, G2q

Y 7−! pY{G1, Y{G2q,

whose inverse is given by pY1, Y2q 7! Y1 ˆX Y2, where H1pX, Gq denotes the isomorphism classes of
G-torsors over X. In our case, since T is split there exists an integer n such that

H1pA1
k , Tq “ H1pA1

k , Gn
mq » H1pA1

k , Gmq
n “ PicpA1

kq
n.

The Picard group of the affine line is trivial since the ring krTs is a UFD (see [Rom12, Proposition
4.2.8]), so all T-torsors over A1

k , and in particular GˆU A1
k , must be trivial. This implies the existence

of a section σ : A1
k ! GˆU A1

k . By setting rf :“ pr2 ˝ σ : A1
k ! G, we have the equality f “ π ˝ rf , so

it suffices to prove that rf is constant. Up to a translation we may suppose that rf p0q “ 1. We claim
the following : for any smooth connected commutative k-group C, and any k-scheme morphism
h : A1

k ! C such that hp0q “ 1, the smooth connected group H generated by the image of h is
unipotent. Applying this to C “ G and h “ rf implies H “ 1 because G is pseudo-reductive, hence
rf “ 1.
In order to prove our claim, we may assume that k is algebraically closed because the formation of H
commutes with extension of the ground field (see [Mil17, Proposition 2.47]). In particular, C is the
direct product

C “ Gr
m ˆU1

for some integer r and some unipotent k-group U1. Then the projection of H onto U1 is clearly
unipotent. Hence, by projection onto each factor isomorphic to Gm, we may assume that C “ Gm. In
particular, the k-algebra homomorphism corresponding to h

h# : krT, T´1s −! krXs

sends T to a nowhere vanishing polynomial PpXq such that Pp0q “ 1, hence we can conclude that
h “ 1.

4.3 The cckp-kernel
Up until this point we have limited ourselves to the study of commutative p-torsion groups. In

order to go beyond and study the k-wound property in the general case, we will first look at how
those groups embed as k-subgroups of a general smooth connected unipotent group. This means
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that we will look at subgroups that are smooth, connected, central and p-torsion. Throughout this
subsection, U will denote a smooth connected unipotent algebraic group over k and we will specify
whether is it supposed to be k-wound or not.

Definition 4.3.1. The cckp-kernel of U is its maximal smooth connected p-torsion central k-subgroup,
which we will denote as CkpUq.

First, let us notice that this is well-defined: given two such k-subgroups G and H, the algebraic
subgroup generated by the multiplication map

m|GˆH : Gˆ H −! U

is still smooth, connected, central and p-torsion.

Remark 4.3.2. Let U ‰ 1. Since a unipotent algebraic group is nilpotent, as seen in Proposition 1.2.5,
its descending central series

U “ U0 Ą U1 “ rU, U0s Ą ¨ ¨ ¨ Ą Ui “ rU, Ui´1s Ą ¨ ¨ ¨

terminates with 1. Thus, if Us is its last nontrivial term, it is in particular a smooth central k-subgroup.
Since it is commutative, the multiplication by p is well defined. By applying Theorem 1.1.11 to Us,
there exists a minimal N ě 1 such that pN ¨Us “ 0. Let us set H :“ pN´1 ¨Us : it is a k-subgroup of
Us which is the image of a smooth k-homomorphism, so it is smooth and connected. Moreover, it
is nontrivial and p-torsion by minimality of N. Hence Us contains a nontrivial cckp-kernel and we
have showed that a nontrivial U has nontrivial cckp-kernel.

Lemma 4.3.3. The formation of the cckp-kernel commutes with separable extensions of the base field: let k1{k
be a separable extension and U be a smooth connected unipotent k-group. Then

Ck1pUk1q “ pCkpUqqk1 .

Proof. The proof is based on Galois descent and spreading out of properties from the generic fiber,
by using results on limits of schemes, analogously as in the proof of Theorem 3.2.2.

The following result shows that the k-wound property can actually be verified on the cckp-kernel,
allowing us to utilise the results found in the preceeding sections.

Proposition 4.3.4. Let k1{k be a separable field extension. The following are equivalent.

(1) The group U is k-wound.

(2) The group U does not admit any central k-subgroup isomorphic to Ga.

(3) The subgroup CkpUq is k-wound.

(4) The group Uk1 is k1-wound.

Proof. p1q ñ p2q : by definition of the k-wound property.
p2q ñ p3q : Let us assume p3q does not hold, in particular there exists a nontrivial k-scheme morphism
ϕ : A1

k ! CkpUq Ď U. By keeping the notations used in Theorem 3.2.2, since CkpUq is commutative
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and p-torsion, we can express it as CkpUq “ V ˆW. In particular, the vector group V is nontrivial,
hence there is a k-subgroup isomorphic to Ga contained in the cckp-kernel of U, which contradicts
p2q.
p3q ñ p4q : let us remark that, if Uk1 is not k1-wound, then (by using results on limits of schemes as in
the proof of Theorem 3.2.2) we obtain that the same holds for some finite separable extension K{k.
Hence, we ca suppose that k1{k is finite, so k Ď k1 Ď ks and by Corollary 4.2.4 it suffices to prove that
if Uks is not ks-wound, then F :“ CkpUq is not k-wound.
Thus, let us consider a nonconstant ks-scheme morphism ϕ : A1

ks
! Uks . By composing it with a

translation by a rational point we can suppose that ϕp0q “ 1. Now, let H be the ks-subgroup of Uks

generated by ϕ: we claim that we can suppose H to be central. If this is not true, then in particular
Uks is not commutative. By the smoothness assumption, the ks-rational points are Zariski-dense,
hence there exists g P Upksq not centralizing H. Let us consider the ks-scheme morphism

ϕp1q : A1
ks
−! Uks , x 7−! g´1ϕpxq´1gϕpxq,

which satisfies ϕp1qp0q “ 1 and whose image lies in the derived subgroup DpUksq “ DpUqks (see
[Mil17, 6.19]). The group U being non commutative, we have 0 ă dimDpUq ă dim U. By repeating
the same construction, one obtains a sequence of ks-scheme morphisms ϕpiq such that each of them is
nontrivial and the image of ϕpiq is contained in the i-th term of the descending central series of Uks .
By nilpotence, we can take the last nontrivial term, whose corresponding morphism ϕprq will have an
image that is central in Uks . Moreover, we can obtain such a H that is p-torsion : for this, it is enough
to remplace ϕ by pm ¨ ϕ for a suitable integer m. This order is bounded thanks to the embedding
given by Theorem 1.1.11. Thanks to these assumptions, the nontrivial ks-subgroup H lies in CkspUksq,
which is equal to Fks by Lemma 4.3.3. In particular, Fks is not ks-wound, hence by Corollary 4.2.4, F is
not k-wound.
p4q ñ p1q : a nontrivial k-scheme morphism ϕ : A1

k ! U gives a nontrivial base change ϕks .

Corollary 4.3.5. Let U be k-wound. Then the quotient

U{CkpUq

is k-wound.

Proof. Let us denote F :“ CkpUq and notice that by the above proposition we can assume k “ ks. Let
us assume that U{F is not k-wound, so it contains by p2q a central k-subgroup A that is isomorphic
to Ga. Let us consider the following pull-back, where π : U ! U{F is the canonical projection.

1 F π´1pAq A 1

1 F U U{F 1π

The k-subgroup π´1pAq is an extension of A by F so it must be smooth, connected and unipotent.
Moreover,

• it is central in U : if not, let g P Upksq “ Upkq not centralizing π´1pAq, which exists because
the base field is separably closed hence rational points are dense. This allows to define the
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k-scheme morphism

ϕ : A1
k » A “ π´1pAq{F −! U, x 7−! gxg´1x´1

which is nonconstant, contradicting the hypothesis that U is k-wound.

• it is p-torsion : if not, we get again a nonconstant scheme morphism

ψ : A1
k » A “ π´1pAq{F −! U, x 7−! xp.

This shows that π´1pAq lies in the cckp-kernel F, hence F “ π´1pAq which implies A “ 1 and gives
a contradiction with the assumption that A is isomorphic to Ga.

Corollary 4.3.6. Let U be k-wound and define a chain of smooth connected normal subgroups tUiuiě0 by
setting U0 “ 1 and such that Ui`1 is the pullback

1 Ui Ui`1 CkpU{Uiq 1

1 Ui U U{Ui 1.

Then

(a) If U is k-wound, then so is every U{Ui.

(b) Their formation commutes with separable extensions of k.

(c) For i large enough, U “ Ui.

(d) These k-subgroups are stable under k-automorphisms of U. In particular, if H is a smooth k-group acting
on U, then each Ui is stable under the action of H.

Proof. paq : Let U be k-wound and proceed by induction on i. For i “ 1, the quotient U{U1 “ U{CkpUq
is k-wound by Corollary 4.3.5. Now assume that U{Ui is k-wound and consider the following
sequence,

1 Ui`1{Ui “ CkpU{Uiq U{Ui`1 pU{Uiq{CkpU{Uiq 1,

which is exact by definition of the Uis. Now, its kernel H :“ Ui`1{Ui is k-wound by induction and
by Proposition 4.3.4, while the quotient Q :“ pU{Uiq{CkpU{Uiq is k-wound again by Corollary 4.3.5.
Hence, every k-scheme morphism from the affine line to H and to Q is a constant map to a k-rational
point. Since the underlying k-scheme of U{Ui`1 is the product H ˆQ, this proves that U{Ui`1 is
wound too.
pbq : By Lemma 4.3.3, the formation on Ck commutes with separable extensions of the ground field,
hence the same is true for each Ui.
pcq : By Remark 4.3.2, if U{Ui is nontrivial then its cckp-kernel Ui`1{Ui is smooth, connected,
unipotent and nontrivial, so it has strictly positive dimension. Since U is algebraic, this implies that
U coincides with Ui for a sufficiently large i.

54



CHAPTER 4. TITS’ WORK ON WOUND GROUPS

pdq : The stability of Ui under k-automorphisms follows from the fact that they preserve the cckp-
kernel CkpUq.
Finally, let H be a smooth k-group acting on U : by the above results, we may extend scalars and
assume k “ ks. It is enough to prove that Ui is H-stable if Uipkq is Hpkq-stable, the latter is a special
case of stability under k-automorphisms of U. Let m : H ˆU ! U denote the action : we want to
prove that mpH ˆUiq Ď Ui i.e. that

H ˆUi Ď m´1pUiq “ pH ˆUq ˆU Ui.

Let us denote respectively X :“ H ˆU, Y :“ H ˆUi and Z :“ pH ˆUq ˆU Ui. Both Y and Z are
closed subschemes of X and the hypothesis translates into the inclusion Ypkq Ď Zpkq. Taking their
Zariski closures, by definition of reduced subscheme we have Ypkqred Ď Zpkqred, which is a subscheme
of Z because the underlying topological space of Z is Zpkq. Moreover, by smoothness of Y we have
Ypkqred “ Y so Y Ď Z and we are done.

The following is a structure theorem, which states exactly what we aimed for when we introduced
the notion of k-wound unipotent group : it is analogous to the result of existence of an exact sequence
of the form

1 −! Ts −! T −! T1 −! 1,

which realizes a torus T as an extension of a k-anisotropic torus T1 “ T{Ts by the maximal k-split
subtorus Ts.

Theorem 4.3.7. Let U be a smooth connected unipotent k-group. There exists a unique smooth connected
normal k-split subgroup Usplit such that the quotient U{Usplit is k-wound. It has the following properties:

(1) If G is a k-split smooth connected unipotent k-group and ϕ : G ! U a k-homomorphism, then its image
is contained in Usplit.

(2) If W is a k-wound smooth connected unipotent k-group and ψ : U !W a k-homomorphism, then its
kernel contains Usplit.

(3) The formation of Usplit is compatible with separable extensions of k.

Proof. Let us proceed by induction on n “ dim U, the case n “ 0 being U “ 1. If n ą 1 and U is
k-wound, we are done by setting Usplit “ 1. If U is not k-wound, by Proposition 4.3.4 there exists
a smooth central k-subgroup A » Ga. Let us denote as H the quotient U{A : by induction there
exists a smooth connected normal k-split subgroup Hsplit such that H{Hsplit is k-wound. We call
Usplit its preimage, so that it is an extension of Hsplit by Ga hence it is k-split. Moreover, the quotient
U{Usplit » H{Hsplit is k-wound. Let us prove the properties.
p1q : Consider such a ϕ : G ! U and take a composition series G “ G0 Ą G1 Ą ¨ ¨ ¨ Ą Gr “ 1 having
successive quotients isomorphic to Ga. Let i be minimal such that ϕpGiq Ď Usplit and suppose i ą 0.
Then the induced morphism

Ga
„
−! Gi´1{Gi

ϕ
−! U{Usplit

is nontrivial, contradicting that U{Usplit is k-wound. Hence i “ 0 and we are done.
p2q : Consider such a ψ : U ! W. By applying p1q to W we obtain ψpUsplitq Ď Wsplit “ 1 which is
equivalent to saying Usplit Ď ker ψ.
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p3q : Let k1{k be a separable extension. The k1-subgroup pUsplitqk1 is smooth, connected, normal and
k1-split hence it is contained in pUk1qsplit. The quotient pUk1qsplit{pUsplitqk1 is a k1-split subgroup of
pU{Usplitqk1 , which is k1-wound because the wound property commutes with separable extensions by
Proposition 4.3.4. Thus, it must be trivial and pUk1qsplit “ pUsplitqk1 .

The discussion above leads naturally to introduce the following definition, which is analogous to
the unipotent radical.

Definition 4.3.8. Let G be any smooth algebraic group over k. The subgroup Rus,kpGq is the maximal
k-split smooth connected unipotent normal k-subgroup of G.

Notice that this is well defined thanks to [Mil17, Proposition 6.42] : one proceeds in the same way
as for the unipotent radical in Corollary 1.1.12.

Corollary 4.3.9. For any smooth algebraic group G over k,

Rus,kpGq “ Ru,kpGqsplit.

In particular, the quotient Ru,kpGq{Rus,kpGq is k-wound and the formation of Rus commutes with separable
extensions of the base field k.

Proof. For any algebraic field extension k1{k, the subgroup Rus,kpGqk1 is k1-split hence contained in
Rus,k1pGk1q. Now, let us take k1 “ ks and consider Rus,kspGksq. By its uniqueness and maximality, it is
invariant by the Galois action so it descends to a k-subgroup H of G, i.e. Hks “ Rus,kspGksq. Thus, H
is necessarily smooth, unipotent and normal in G. Moreover, by Theorem 4.3.7p3q, the subgroup
H is k-split hence contained in Rus,kpGq. This gives the inclusion Rus,kspGksq Ď Rus,kpGqks . By these
observations, we may assume k “ ks. The inclusion Rus,kpGq Ď Ru,kpGqsplit holds by definition of
RuspGqsplit; conversely, notice that F :“ Ru,kpGqsplit is a characteristic k-subgroup of G, hence in
particular Fpkq is normal in Gpkq. Since k is separably closed and G is smooth, by Zariski density of
its rational points we can conclude that F is normal in G so in particular F Ď Rus,kpGq and the first
statement is proved.
Once we have this equality, the formation of Rus is compatible with any separable extension of the
ground field because such a compatibility holds

• for the unipotent radical Ru, by Theorem 3.2.2,

• for Usplit, by Theorem 4.3.7.

4.4 Tori acting on unipotent groups
In this last section, the setting will be that of a k-torus acting on a smooth connected unipotent

k-group.

Definition 4.4.1. Let T be a k-torus and pV, rq a finite dimensional linear representation of T. If T is
k-split, then r is diagonalizable : with respect to a suitable basis of V, it is given by

T −! GLV , t 7−!

¨

˚

˚

˝

χ1ptq 0
. . .

0 χnptq

˛

‹

‹

‚
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for some characters (eventually admitting repetitions) χi : T ! Gm. These characters are called the
weights of T in V.

Whenever an action of a k-split torus T on an algebraic group G is given, it induces a linear
representation of T on the Lie algebra LiepGq, hence a weight space decomposition, as in Definition
4.4.1, of the latter.
Let us start by the simplest case we are interested in, i.e. assume the unipotent group U equipped
with a T-action is a vector group over k, so that LiepUq » U. Recall that a linear structure on a vector
group V is the Gm-action on it arising from a fixed isomorphism Gn

a » V. The base field being of
positive characteristic, there exist nonlinear automorphisms of Gn

a for n ą 1, hence the T-action on U
may not respect an initial choice of linear structure, as illustrated in the following example.

Example 4.4.2. Let U “ G2
a with its standard linear structure

Gm ˆG2
a −! G2

a, pa, px, yqq 7−! pax, ayq

and consider T “ Gm acting on U as

TˆU −! U, pt, px, yqq 7−! t ¨ px, yq “ ptx´ pt´ tpqyp, tyq.

Clearly, the T-action is not linear. However, by differentiating, since k is of characteristic p, one
obtains that the corresponding linear representation of T on LiepUq is trivial. Notice that this action
becomes linear after composition with the k-group automorphism of G2

a given by

α : G2
a −! G2

a, αpx, yq “ px` yp, yq, α´1pz, wq “ pz´wp, wq.

Indeed, for all k-algebras R, we have

α´1pt ¨ αpx, yqq “ α´1pt ¨ px` yp, yqq “ α´1ptx``typ ´ pt´ tpqyp, tyq “ α´1ptx` tpyp, tyq “ ptx, tyq,

for all t P Rˆ “ GmpRq and x, y P R2 “ G2
apRq.

Tits’ idea consists in considering an action of a split torus T such that the induced linear represen-
tation of T on Lie U has only nontrivial weights, and to deduce from it some properties of the action
on the group U. In particular, the existence of such an action imposes some important obstructions
on the k-group structure of U.
Let us start, analogously to the preceding sections, by looking at the commutative p-torsion case:
later we will proceed with a similar result in the wound case, dropping the assumption of being
commutative nor p-torsion. The following proposition is a refinement of Theorem 4.1.12 obtained by
adding a given action of a k-group H. Later on, we will restrict to the case of a torus.

Proposition 4.4.3. Let U be a smooth commutative p-torsion k-group and consider a k-group H acting on U.
Then there exists a linear representation of H on a finite dimensional vector space V and an H-equivariant
embedding

U VH
ψ

H

of U as a k-subgroup of the vector group V.
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Proof. Let us consider the functor

HompU, Gaq : pk´Algq −! pGrpq, R 7−! HompR´GrpqpUR, Ga ,Rq.

Fix a k-algebra R and consider an element of HompU, GaqpRq i.e. a R-group morphism φ : UR ! Ga,R:
it corresponds to a R-linear map φ# : RrTs −! Rbk OpUq, which is determined by f :“ φ#pTq. This
gives a natural injective map

jR : HompU, GaqpRq −! Rbk OpUq, φ 7−! φ#pTq. (4.1)

Notice that a R-group morphism φ corresponds precisely to giving a primitive element in OpURq, i.e.
to asking that φ#pTq belong to the R-submodule

PR “ t f P OpURq : ∆Rp f q “ f b 1` 1b f u,

where ∆ denotes the comultiplication map in OpUq. The condition on f is R-linear and it is functorial
in R, so since k! R is flat, we obtain

PR “ Pk b R “ t f P OpUq : “ f b 1` 1b f u b R.

In what follows, we will denote the vector space Pk “ Hompk´GrpqpU, Gaq simply as P. In particular,
this shows that

HompU, GaqpRq » Hompk´GrpqpU, Gaq b R » Pb R,

so the functor is a vector group associated to the k-vector space P. Now, let us denote the action of
H on U as ph, uq 7−! h ¨ u and consider the induced action on the k-group scheme HompU, Gaq “ P
given on the functor of points by

HpRq bHompR´GrpqpUR, Ga,Rq −! HompR´GrpqpUR, Ga ,Rq, ph, φq 7−! h ¨ φ

with ph ¨ φqpuq :“ φph´1 ¨ uq for all u P UR. The collection of maps jR defined by 4.1 give a k-group
scheme morphism

j : HompU, Gaq ã−! OpUq,

which we can simply see as being induced by the inclusion of k-vector spaces P Ă OpUq. Since the
action we just defined is the restriction of the natural induced action of H on OpUq, it makes j into a
H-equivariant morphism.
We now apply the following result (see [CGP15, Proposition A.2.3]): for any k-group G acting on
an affine k-scheme X, the coordinate ring OpXq is the directed union of G-stable finite dimensional
k-linear subspaces.
In our case, since j is H-equivariant, we conclude that the same holds for P “ Hompk´GrpqpU, Gaq.
The group U being smooth, commutative and p-torsion, by Theorem 4.1.12 there exists a k-group
closed immersion i : U ã−! Gn

a for some n ě 1, which corresponds to a k-algebra epimorphism

i# : krX1, . . . , Xns −! OpUq.

By the above considerations, we can fix a H-stable finite dimensional k-linear subspace W Ă P
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containing the set ti#pX1q, . . . , i#pXnqu, which generates OpUq as a k-algebra. The k-linear inclusion
W Ă OpUq gives by universal property of the symmetric algebra a H-invariant k-algebra homomor-
phism

ψ# : SympWq −! OpUq,

which is surjective by how we defined W and whose corresponding k-scheme morphism

ψ : U −! V :“ W_ “ SpecpSympWqq

is thus a closed immersion. Moreover, it is H-invariant because ψ# is, and a k-homomorphism
because W consists of primitive elements.

From now on, we will keep the following setting : the group H in Proposition 4.4.3 is assumed to
be a k-torus T, acting on the unipotent U admitting a T-equivariant embedding into a vector group
V. The aim is to decompose the vector space V by isolating the part on which the action has only
nontrivial weights, in such a way that this decomposition descends to an analogous T-equivariant
splitting for the group U.

Proposition 4.4.4. Within the same setting as in Proposition 4.4.3, let the group H be a k-torus T and
consider the T-invariant decomposition of V of the form

V “ V0 ˆV1,

where V0 “ VT is the subspace fixed by the T-action and V1 the span of the isotypic subspaces of the nontrivial
irreducible representations of T occurring in V.

(a) The product map
m : pU XV0q ˆ pU XV1q −! U

is an isomorphism of k-groups.

(b) There is a T-equivariant linear decomposition

V1 “ V11 ˆV12

and a T-equivariant automorphism α of V such that

αpUq “ pαpUq XV0q ˆV11.

Proof. paq : Let us denote U0 :“ UXV0 and U1 :“ UXV1. Since V0 “ VT “ ZTpVq and the embedding
of U in V is T-equivariant, we have U0 “ ZTpUq. Moreover, U is smooth so by [Mil17, Theorem 13.9]
the centralizer U0 is also smooth. If we prove that m is a k-group isomorphism this will imply that
U1 is smooth too. Consider the vector space V1 : it is the span of the vector subspaces

Vχi :“ tv P V : g ¨ vR “ χipgqvR, for all g P GpRq, for all k-algebras Ru,

for some nontrivial characters χi, so its formation commutes with any extension of the base field and
we may assume k to be algebraically closed. In particular, the torus T is split hence the representation
T ! GLV is a sum of one-dimensional representations. Thus, we can fix a basis pe1, . . . , ed, f1, . . . , frq
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of V “ V0 ˆV1 such that T acts through the character χr on k fi for all i “ 1, . . . , r. Since k “ k and T
is smooth, the subset

Tpkqz ppχ1 “ 1q Y ¨ ¨ ¨ Y pχr “ 1qq Ă T

is nonempty, so we can fix a rational point s P Tpkq such that χipsq “ 1 for all i “ 1, . . . , r. Now, let us
consider the k-linear application

ϕ : V −! V, v −! s ¨ v´ v,

which sends V to V1 with kernel V0, because ϕpejq “ 0 and ϕp fiq “ pχipsq ´ 1q fi ‰ 0. By restriction,
it defines a linear automorphism of V1, hence a k-group automorphism f : V1 ! V1. Since U is
smooth, the image f pUq is a smooth k-subgroup of V1, which must be contained in U because the
embedding of the latter inside of V is chosen to be T-stable. Now, let us consider the T-equivariant
decomposition

V1 “ k f1 ‘ ¨ ¨ ¨ ‘ k fr,

which expresses V1 as direct sum of one-dimensional vector groups, having nontrivial T-action due
to how we chose s P Tpkq. In particular, since f pUq is a T-stable k-subgroup of V1, this decomposition
implies that f pUq is connected. Moreover, U0 X f pUq Ă V0 X V1 “ 0, hence the direct product
U0 ˆ f pUq is a k-subgroup of U. Restricting f to f pUq gives an endomorphism of the latter with
trivial kernel, hence a k-group automorphism by smoothness and connectedness. In particular,
f : U ! f pUq is, up to an automorphism of its image, a quotient map. Since UX ker f “ UXV0 “ U0,
the inclusion U0 ˆ f pUq ã! U becomes an isomorphism, and finally

f pUq “ pU0 ˆ f pUqq XV1 “ U XV1

and we conclude that m is an isomorphism.
pbq : recall that we have denotes U1 :“ U X V1 and set V11 :“ LiepU1q. Since T is k-split, all its
linear representations are sum of simple subrepresentations, so the T-stable V11 admits a T-stable
complement V12 in V1. In particular, the projection

ρ : U1 ã−! V1 � V11

gives an isomorphism Lie ρ on Lie algebras by definition of V11, so as we already argued in previous
proofs, the subgroup H :“ ker ρ is étale. Moreover, since ρ is T-equivariant, H is T-stable, hence
contained in the centralizer ZTpV1q, which is trivial by definition of V1. Hence, ρ is an isomorphism.
Let us reformulate the inclusion U1 Ă V1 as

U ã−! V11 ˆV12, x 7−! pρpxq, x´ ρpxqq.

The second component gives a T-equivariant k-homomorphism

g : V11 ! V12, v1 7−! ρ´1pv1q ´ v1,

so we can identify U1 with the graph of g inside of V1. Finally, let us set α : V “ V0 ˆV11 ˆV12 −! V
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as being the identity of the factor V0 and the inverse of the map

pv1, v2q 7−! pv1, gpv1q ` v2q

on V11 ˆ V12. In particular, for u0 ` x P U “ U0 ˆU1, since x “ ρ´1pv1q “ pv1, gpv1qq for a unique
v1 P V11, we have

αpuq “ u0 ` αpv1, gpv1qq “ u0 ` v1 P U0 ˆV11

as desired.

In particular, suppose that the linear representation of T on V is sufficiently nontrivial, i.e. that V0 “

0. This implies that U “ U1, and the T-equivariant automorphism α gives a k-group isomorphism
between U and the vector group V11. Thus, the above result has the following consequence.

Corollary 4.4.5. Let U be a smooth commutative p-torsion k-group and T a k-torus acting on it. Consider a
T-equivariant embedding of U into a vector group V equipped with a linear representation of T. If VT “ 0,
then U is a vector group. Moreover, U admits a T-equivariant linear structure.

Finally, the following result realizes the desired T-equivariant decomposition of the group U,
which is independent of any choice of embedding into a vector group.

Theorem 4.4.6. Let U be a smooth commutative p-torsion k-group equipped with the action of a k-torus T.
Then

U “ U0 ˆU1,

with U0 “ ZTpUq and U1 a T-stable subgroup which is a vector group and admits a linear structure relative
to which T acts linearly. Moreover, the subgroup U1 is uniquely determined and functorial in U.

Proof. The existence of such a U1 “ U XV1 is given by Proposition 4.4.3 and 4.4.4, so it suffices to
prove that it is unique and functorial by finding a description of U1 that does not involve any choice
of embedding into a vector group V. For this, we may extend scalars to ks and suppose k is separably
closed. Let us consider a T-equivariant linear structure on the vector group U1: the weight space
decomposition given by this action must include only nontrivial weights, due to how we defined U0.
In particular, the map

TˆU −! U, pt, uq 7−! t ¨ u´ u

will have as image the whole U1. This definition only depends on the action of T on U, hence it
shows uniqueness and functoriality of U1.

Let us apply Theorem 4.3.7 to a smooth commutative p-torsion U that is also k-wound. In this
case, clearly U1 must vanish because a wound group cannot contain any subgroup isomorphic to a
vector group: this implies that U “ ZTpUq i.e. the action is necessarily trivial. Actually, the same is
still true for any wound group, even without assuming it is commutative nor p-torsion.

Before precisely stating the result, let us introduce a subgroup associated to a cocharacter λ for a
smooth connected k-group G, which is an essential element of the proof.

Let λ : Gm ! G be a cocharacter : it gives rise to the action by conjugation

Gm ˆ G −! G, pt, gq 7−! t ¨ g “ λptqgλptq´1,
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which induces a linear representation of Gm on Lie G, hence a weight space decomposition

Lie G “
à

nPXpGmq“Z

pLie Gqn “ pLie Gq´ ‘ pLie Gq0 ‘ pLie Gq`.

Definition 4.4.7. Let g P Gpkq be a rational point: we say that the limit limt!0 t ¨ g exists if there is a
Gm-equivariant k-scheme morphism f : A1

k ! G such that f p1q “ g, where the action of Gm on the
affine line is by scalar multiplication. In other words, this means that we can extend the action of Gm

to the whole A1
k . If this condition is verified,

f ptq “ f pt ¨ 1q “ t ¨ f p1q “ t ¨ g “ λptqgλptq´1

for all t ‰ 0, and we define the limit as limt!0 t ¨ g :“ f p0q.

Now, the following

Ppλq :“tg P G : lim
t!0

t ¨ g existsu,

Upλq :“tg P G : lim
t!0

t ¨ g “ 1u Ď Ppλq

are k-subgroups of G. In particular, Upλq is unipotent and Lie Upλq “ pLie Gq`; in other words, we
have defined a subgroup such that its Lie algebra is the span of the weight spaces having positive
weights. For the detailed statements and proofs of these results, see [CGP15, §2.1].
In order to give an idea of what these subgroups look like, let us illustrate the example of the general
linear group. The base field k is supposed to be separably closed, because this is the case that will be
relevant in the proof.

Example 4.4.8. Let λ be a nontrivial character of GLn: its image is a smooth connected subgroup of
multiplicative type in GLn and it is different than 1, hence it must be a copy of Gm, in particular
contained in a maximal torus. Since all maximal tori are conjugated by a ks-rational (hence rational
since k “ ks) point, we may suppose that the image of λ is contained in the maximal torus consisting
of invertible diagonal matrices. In particular, there exist integers a1, . . . , an such that

λ : Gm −! GLn, t 7−!

¨

˚

˚

˝

ta1 0
. . .

0 tan

˛

‹

‹

‚

Moreover, up to a coordinate permutation we can assume that a1 ěě an. Now, let us fix a rational
point g “ pxijq

n
i,j“1 P GLnpkq and consider the element t ¨ g “ λptqgλptq´1 : its pi, jq-th coordinate is

given by

pt ¨ gqij “
n
ÿ

l,h“1

δiltai δhjt´aj “ tai´aj xij.

Thus, the limit limt!0 t ¨ g exists if and only if xij “ 0 whenever ai ă aj, so the subgroup Ppλq consists
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of all matrices of the form

g “ pxijqi,j “

¨

˚

˚

˚

˚

˚

˝

B1 ˚ ¨ ¨ ¨ ˚

0 B2
...

...
. . . ˚

0 ¨ ¨ ¨ 0 Bm

˛

‹

‹

‹

‹

‹

‚

,

where the blocks Bi are invertible matrices of suitable order such that a new block begins over the
column corresponding to an exponent aj strictly smaller than aj´1. In particular, the limit of such a
matrix is

lim
t!0

t ¨ g “

¨

˚

˚

˚

˚

˚

˝

B1 0 ¨ ¨ ¨ 0

0 B2
...

...
. . . 0

0 ¨ ¨ ¨ 0 Bm

˛

‹

‹

‹

‹

‹

‚

,

hence the subgroup Upλq corresponds to the matrices having as each Bi the identity matrix of the
corresponding order. In this case, we see that Upλq is unipotent and k-split.

Let us come to an end with the following result and its proof; in particular, notice that a funda-
mental argument is the invariance of the k-wound property with respect to separable field extensions
of k, seen in Proposition 4.3.4.

Theorem 4.4.9. Let T be a k-torus and U a smooth connected unipotent algebraic group over k. If U is
k-wound, the only T-action on U is the trivial one.

Proof. Let us consider an action of T on U and denote its centralizer as Z: our aim is to prove
that Z “ U. Consider the k-group semidirect product H :“ U ¸ T : by [Mil17, Corollary 13.10],
the centralizer ZTpGq “ Z¸ T is smooth and connected, hence the same is true for Z. By [CGP15,
Corollary A.8.11], since T is of multiplicative type, to prove that Z “ U it suffices to prove that
LiepZq “ LiepUq, i.e. that T acts trivially on the Lie algebra of U. By Proposition 4.3.4, we can extend
scalars and assume that k “ ks, so in particular the torus T is k-split. If the T-action on LiepUq is
nontrivial, there exists a factor isomorphic to the multiplicative group which acts nontrivially, hence
we may replace T by such a copy of Gm and consider a nontrivial 1-parameter subgroup : Gm ! U.
By precomposing with the inversion in Gm if necessary, we can assume there exists a nontrivial
weight space in Lie U having a positive weight, i.e. that pLie Uq` ‰ 0. If we consider the semidirect
product G “ U¸Gm, we can apply the theory briefly illustrated above and consider Upλq Ă U: since
LiepUpλqq “ pLie Uq` ‰ 0, in particular it is a nontrivial k-subgroup. It suffices to prove that it is
k-split, because this leads to a contradiction with the fact that U is wound. Thus, let us consider the
maximal smooth connected normal k-split subgroup S “ Upλqsplit. By Theorem 4.3.7, the quotient
Upλq{S is k-wound. Let g P Upλqpkq : by definition of Upλq, there is a Gm-equivariant k-scheme
morphism f : A1

k ! Upλq ( question why does it go to Upλq and not simply into U?)
such that f p0q “ 1 and f p1q “ g. By composing it with the projection π : Upλq! Upλq{S, we must get
a constant map by definition of the wound property, which in particular means that g “ f p1q P Spkq.
Having assumed the base field to be serparably closed, this is enough to conclude that Upλq “ S i.e.
that Upλq is split.
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mathematicae 78.1 (1984), pp. 13–88.

[Rab14] J. Rabinoff, The theory of Witt vectors, In: arXiv preprint arXiv:1409.7445 (2014).

[Rom12] M. Romagny, Géométrie Algébrique 2, Lecture notes for a Master course at UPMC, 2012,
available here.
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