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1
Introduction: Historical Summary and Current

State

Modular curves and their integral models have been intensively studied over the last few decades,
not only for its applications in arithmetic questions, but also for its own geometric interests. In
order to treat the Ramanujan conjecture for exceptional primes, Igusa studied in details about the
moduli schemes of elliptic curves with level N structures over Z[ 1

N ] in his a series of papers [12],
[11], [13], [14], and he obtained most of the main results, but no essential progress in understand-
ing the case at “bad” prime p, i.e., the case that p|N .

In Deligne and Rapoport’s paper [27], they use the language of algebraic stacks systematically in
moduli problems of elliptic curves, and studied the compactification of the modular curves over
Z[ 1

N ], namely, the moduli spaces that parameterize the so called generalized elliptic curves with
level structures, also with modular interpretation at the cusps, namely, they parameterizes the
Néron polygons with level structures. At that time, the level structure was still in the naïve sense,
which can hardly apply to the elliptic curves over bad primes.

In his paper [35], Drinfeld made the innovation, he introduced the general idea of level structure,
which is the so called Drinfeld level structure. Though originally his theory is served for ellip-
tic modules, the idea can apply to usual elliptic curves without any difficulties, and was known
to many experts at that time. The advantage of Drinfeld level structure is that it uses subgroup
schemes, instead of subgroups, which can be easily applied to the elliptic curves over bad primes.
In 1985, Katz and Mazur concluded the results of modular curves over Z in their significant book
[24], and analyzed the reduction modulo bad prime of the modular curves. Though Katz and
Mazur studied the compactification of modular curves over Z, their normalization process does
not admit modular interpretations.

In order to fully understand the subject, one needs to not only construct proper flat models of
modular curves, but also ensure the modular interpretation at the cusps. In an unpublished paper
of Edixhoven [15], he treated the case for the level structures Γ(N ), Γ1(N ) and Γ0(n) with square-
free n, and some mixtures of then, in which he showed that the modular curves are all proper flat
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regular Deligne-Mumford stacks. In 2007, Conrad successfully eliminated the defects in his pa-
per [6], he used a different approach, and constructed moduli stacks of generalized elliptic curves
with Drinfeld level structures, which turn out to be proper Artin stakcs. Recently, in a preprint
of Česnavičius [19], he constructed a refinement of the moduli stack X0(n) with arbitrary n (not
necessarily square-free) which admits modular interpretation, and also gave different proofs of
the main results in Conrad’s paper [6]. So far the subject is basically well-understood.

Organization of the thesis

In this article, we will only deal with open modular curves over Z, following Katz-Mazur [24].
Moreover, we adopt the language of algebraic stacks, to discuss various moduli problems of el-
liptic curves.

• Chapter 2: In this chapter, we carefully develop the general theory of A-structures and A-
generators, together with their representability results. In the last section, we turn to focus
on the four basic Drinfeld level structures, which play the central roles in the later parts.

• Chapter 3: In this chapter, firstly we formulate the setting of moduli theory using the lan-
guage of algebraic stacks. The main results are the representability theorem and regularity
theorem for modular curves. We prove the regularity theorem for the modular curves Y (N ),
Y1(N ) and Y bal

1 (N ) in the current chapter. As for the case of Y0(N ), it requires deeper un-
derstanding about cyclic group schemes, which is the central topic of Chapter 4. In the last
section, we study the relations and induced morphisms between modular curves.

• Chapter 4: We study in details about the theory of cyclic group schemes in this chapter,
especially about the scheme of generators, and the structure of cyclic isogenies.

• Chapter 5–6: In the last two chapters, firstly we introduce the Igusa curve and exotic Igusa
curves in Chapter 5, which form the “building blocks” of the reduction modulo p of modular
curves. Combine the results that we developed in previous parts, we analyze the reduction
modulo p of modular curves in details, and summarize the results in the last section.

What’s next?

Elliptic curves can be generalized at least in two directions, namely,

(1) as abelian varieties of dimension g = 1, and

(2) as algebraic curves of genus g = 1.

For the first case, we shall deal with the moduli spaces of abelian varieties Ag (N ) of dimension g
with level N structures. And in the second case, we need to construct appropriate level N struc-
tures on the moduli spaces of curves Mg of genus g , and study their reduction modulo bad primes.
Things are more complicated in both cases, and few works are available so far.

In the work of Abramovich and Romagny [8], they constructed a proper model of Mg (p), but there
are still some properties that we need to prove, like flatness, regularity, etc., and furthermore, the
study of its reduction modulo p. In general case, i.e., with level pn for n > 1, it is still a problem to
construct appropriate level structures.
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2
Drinfeld Level Structure

Firstly we shall explain the motivation of Drinfeld level structure.

The modular group SL2(Z) and its congruence subgroups naturally act on the Poincaré half plane
H . The resulting quotient Γ \ H is a noncompact Riemann surface (denoted by Y (Γ)), and the
term modular curve (over C) is sometimes also used to refer to the compactification X (Γ) of Y (Γ),
which is done by adding cusps of the congruence subgroup Γ.

Among all the congruence subgroups of SL2(Z), there are so called full congruence subgroups

Γ(N ) :=
{(

a b
c d

)∣∣∣∣ a ≡ d ≡ 1 (mod N ), c ≡ b ≡ 0 (mod N )

}
where N is the level. There are also other interesting congruence subgroups

Γ0(N ) :=
{(

a b
c d

)∣∣∣∣ c ≡ 0 (mod N )

}
Γ1(N ) :=

{(
a b
c d

)∣∣∣∣ a ≡ d ≡ 1 (mod N ), c ≡ 0 (mod N )

}
,

which play important roles in arithmetic geometry. The resulting modular curves of the above
congruence subgroups have nice modular interpretations, i.e., they parameterize elliptic curves
with some additional structures:

- The (open) modular curve Y (N ) := Y
(
Γ(N )

)
parameterizes elliptic curves with a level N

structure, which is an isomorphism between Z/NZ×Z/NZ and N -torsion points.

- The (open) modular curve Y0(N ) := Y
(
Γ0(N )

)
parameterizes elliptic curves with a cyclic sub-

group of order N .

- The (open) modular curve Y1(N ) := Y
(
Γ1(N )

)
parameterizes elliptic curves with a point of

exact order N , or equivalently, an injective homomorphism to the subgroup of N -torsion
points of an elliptic curve E

Z/NZ −→ E [N ].

7
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The situation over an algebraically closed field is well-behaved, but if we replace it by an arbitrary
scheme, i.e., we consider the moduli problems of elliptic curves over general base with additional
structures, then the notion such as a cyclic subgroup of order N is no longer worked out well.

For example, a supersingular elliptic curve over a field k of characteristic p has no non-trivial
k-rational pn-torsion points, hence such elliptic curves have no “naïve” level pn structures. In
general case, it is more reasonable to consider subgroup schemes rather than subgroups.

However, one cannot simply replace “a cyclic subgroup of order N ” by “a subgroup scheme of
rank N over the base” neither, because generally there are too many such subgroup schemes. The
most important features that they should capture are “cyclicity” and “exact orders”, i.e., we need to
develop these concepts in the setting of finite locally free group schemes. This leads to the notion
of Drinfeld level structure.

2.1 Points of “exact order N ” and cyclic group schemes

Suppose C /S is a smooth curve over S together with a structure of commutative S-group scheme.
A point P ∈C (S) has “exact order N ” if the effective Cartier divisor

D :=
N∑

i=1
[i P ]

is a subgroup scheme of C /S, in which case we call D the cyclic subgroup scheme “generated” by
P .

Definition 2.1.1. A closed subgroup scheme G ⊂ C which is finite locally free of rank N is called
cyclic, if there exists some fppf morphism T → S and a point P ∈C (T ) of exact order N such that P
generates the subgroup scheme GT /T , i.e., fppf-locally, G admits a “generator”.

Like in the theory of finite groups, we also have the “Lagrange theorem” for finite flat commutative
group schemes.

Lemma 2.1.2. If P ∈C (S) has exact order N , then N ·P = 0.

The lemma is implied from the following theorem

Theorem 2.1.3 (Deligne). Any finite flat commutative S-group scheme of rank N is killed by N .

Proof: The proof is according to [17], which is originally due to P. Deligne.

Let G be a finite locally free commutative S-group scheme of rank N . We need only to prove that
for any section u ∈ G(S), uN = 1. Before the demonstration, we firstly define the trace map of a
finite morphism f : T → S, where T is a finite S-scheme with structure morphism f .

By our assumption, the structure morphism G → S is finite which is automatically affine, hence G
has the form Spec (A ), where A is a finite OS -algebra of rank N . Similarly, T = Spec (B) with B
a finite OS -algebra, say with rank m. On the one hand, we have the following inclusion

G(S) =HomSch/S
(S,G) =HomOS -Alg(A ,OS ) HomOS

(A ,OS ) =A ∨(S),

8
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on the other hand, there is the norm map of commutative A ∨-algebras

N : B(S)⊗OS (S) A
∨(S) −→ A ∨(S).

Now let us define the trace map Tr f of f as the unique map such that the diagram

G(T ) (OT ⊗OS
A ∨)(T ) = (B⊗OS

A ∨)(S)

G(S) A ∨(S)

Tr f N

commutes. The uniqueness is obvious, since Tr f is given by nothing but the restriction of the
norm map N . From our definition, it is also clear that the trace map is a group homomorphism.
Moreover, the norm map is invariant under composing with an OS (S)-automorphism, say φ, of
B(S), since the left multiplication by some element b ∈B(S) is conjugate with that by φ(b)

B(S)⊗OS (S) A
∨(S) B(S)⊗OS (S) A

∨(S)

B(S)⊗OS (S) A
∨(S) B(S)⊗OS (S) A

∨(S)

b×

φ⊗1 φ⊗1

φ(b)×

which shows that the norm map is independent with φ, since two conjugate matrices have the
same determinant.

Back to the theorem. We denote ru for the right multiplication by u

G ×S S G ×S G

G G

(idG ,u)

o
ru

Consider the case that T =G , and now f is the structure morphism G → S, the diagram becomes

G(G) (A ⊗OS
A ∨)(S)

G(S) A ∨(S)

Tr f N

Consider idG ∈ G(G). Notice that Tr f (1G ) = Tr f (1G ◦ ru), because ru is a S-automorphism of G .
Moreover we have

idG ◦ ru = idG × f ∗u,

where the “×” on the right side is the multiplication in the group G(G), this can be easily deduced
from the following commutative diagram

G ×S G

G G ×S S G ×S G G ,

(idG , f )
(idG , f ∗u)∆

∼ (idG ,u) m

9
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where the composition of the bottom line is the left side, and

G G ×S G G ×S G G∆ (idG , f ∗u) m

is the right side. Thus

Tr f (idG ) = Tr f (idG ◦ ru)

= Tr f (idG × f ∗u)

= Tr f (idG )×Tr f ( f ∗u)

= Tr f (idG )×uN ,

which shows uN = 1 after cancelling Tr f (idG ).

Remark: Unlike abstract groups, a S-valued point of a finite locally free commutative S-group
scheme can have many different exact orders. For example, let S be a Fp -scheme, in the case
which we have the relative Frobenius morphism FC /S . Then the zero section 0 ∈ C (S) has exact
order pn for any integer n Ê 1, because the section 0 generates the S-subgroup scheme ker(F n

C /S ).

Lemma 2.1.4. Let G be a finite locally free commutative group scheme of rank N over a henselian
local ring R, with maximal ideal m and residue field k, where the characteristic of k is prime to N
(including the case of zero characteristic). Then G is étale over R.

Proof: See Tate [16] 3.7 (II).

Lemma 2.1.5. Suppose S is a Z[ 1
N ]-scheme, and P ∈ C (S) is a point satisfying N ·P = 0. Then the

following conditions are equivalent:

(1) P has exact order N in C /S;

(2) For every geometric point Spec (k) → S, the point Pk ∈C (k) has exact order N in Ck /k;

(3) For every geometric point Spec (k) → S, the point Pk has exact order N in the usual sense,

equivalently,
{

aPk
}N

a=1 is a subgroup (as an abstract group) of C (k) with exactly N elements;

(4) The effective Cartier divisor
∑N

a=1[aP ] in C /S is finite étale over S;

(5) The S-group morphism

Z/NZ −→ C

1 7−→ P

is a closed S-immersion, and it identifies the constant S-group schemeZ/NZwith the effective
Cartier divisor

∑N
a=1[aP ].

Proof: (1) =⇒ (2): Being a subgroup scheme is stable under base changes, i.e.

[Pk ]+ [2Pk ]+ ...+ [N Pk ]

is a closed k-subgroup scheme of Ck /k, hence Pk has exact order N as required.

10
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(2) =⇒ (3): Thanks to the Lemma 2.1.4, since N is invertible on S, the k-subgroup scheme Dk =∑N
a=1[aPk ] is étale over k. The number of geometric points on Dk is then equal to its rank N , which

implies that
{

aPk
}N

a=1 are all distinct.

(3) ⇐⇒ (4): The condition (3) is equivalent to say that all geometric fiber Dk is étale over k. This
is already an equivalent condition of D = ∑N

a=1[aP ] being étale over S (cf. [5] EGA IV4, Corollaire
(17.6.2) (c”)).

(3) ⇐⇒ (5): We can certainly define the homomorphism between abstract groups

Z/NZ −→ C (S)

1 7−→ P

and then induces the S-group homomorphism

Ψ : Z/NZ −→ C .

The image ofΨ is the effective Cartier divisor D , it suffices to prove is thatΨ is a closed immersion
if and only ifΨk is a closed immersion over any geometric point Spec (k) → S. The latter assertion

is equivalent to say that
{

aPk
}N

a=1 are N distinct points in C (k).

Closed immersion is preserved under base changes, hence (5) =⇒ (3). For the opposite direction,
notice that being a closed immersion is a local property for the target, we may assume S = Spec (R)
where R is a local ring, and then D = Spec (A) for some finite R-algebra A of rank N which is free
as a R-module. The S-group homomorphism is then given by

Ψ∗ : A −→ RN

between R-algebras of rank N . Let us denote d = det(Ψ∗) ∈ R to be the determinant of the R-linear
map Ψ∗. The condition (3) says that for any geometric point,

Ψ∗ : Ak −→ kN

is an isomorphism of R-algebras, i.e., dk is a unit for any k. Indeed, d can’t belong to the unique
maximal ideal m of R, otherwise over the geometric point given by

R � R/m = κ ,→ κ̄,

dκ̄ would be 0. Thus d ∈ R −m is a unit, which means Φ∗ is an isomorphism, i.e., (3) =⇒ (5).

(5) =⇒ (1): This is trivial, since in the condition (5), D already has a structure of S-subgroup
scheme.

Remark: If we remove the condition that S being a Z[ 1
N ]-scheme, we will only have the following

implications
(3) ⇐⇒ (4) ⇐⇒ (5) =⇒ (1) =⇒ (2),

since we used that condition only in the step (2) =⇒ (3). It also tells us that we cannot simply
define the level N structure of an elliptic curve E/S as an isomorphism

Z/NZ −→ E [N ],

because the isomorphism may not exist if N is not invertible on the base.

11
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2.2 A-structures, A-generators and representability theorems

Now we are ready to define general “level structures”. Let C /S be a smooth curve over S with a
structure of commutative S-group scheme, and A an abstract finite abelian group.

Definition 2.2.1. An A-structure on C /S is a homomorphism

φ : A −→ C (S)

of abstract abelian groups, such that the effective Cartier divisor D = ∑
a∈A[φ(a)] is a S-subgroup

scheme of C /S. In this case, D is called an A-subgroup of C /S generated by φ, where φ is called an
A-generator of the subgroup scheme D.

Definition 2.2.2. A closed S-subgroup scheme G ⊂C which is finite locally free over S of rank #(A)
is called an A-subgroup if there exists a fppf morphism T → S and an A-structure

φ : A −→ CT (T )

on CT , such that φ generates the T -subgroup scheme GT of CT .

If we let A = Z/NZ, then given a point of exact order N in C (S) is equivalent to give a Z/NZ-
structure on C /S, with specifying the image of 1 ∈Z/NZ as the point having exact order N . So we
can restate the Lemma 2.1.5 as following

Lemma 2.2.3. Supposeφ : A →C (S) is a group homomorphism. Consider the following conditions:

(1) φ is an A-structure on C /S;

(2) For every geometric point Spec (k) → S, the induced group homomorphism

φk : A −→ C (k)

is an A-structure on Ck /k;

(3) For every geometric point Spec (k) → S, the induced group homomorphism

φk : A −→ C (k)

is injective;

(4) The effective Cartier divisor
∑

a∈A[φ(a)] is finite étale over S;

(5) φ induces a closed S-immersion

AS C

which identifies AS with the effective Cartier divisor
∑

a∈A[φ(a)].

We have the following implications

(3) ⇐⇒ (4) ⇐⇒ (5) =⇒ (1) =⇒ (2).

Moreover, if #(A) is invertible on S, then all the conditions are equivalent.

12
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Next we study the representability of A-structures and A-generators.

As a finite abelian group, we have an isomorphism

A ' Z/N1Z× ...×Z/NrZ,

where
{

Ni
}r

i=1 are coprime, and each Ni is a power of some prime number. Consider the functor
on the category SchS

HomS-Grp(A, C ) : T 7−→ HomGrp
(

A, C (T )
)
,

we claim that the functor HomS-Grp(A,C ) is represented by the S-scheme

C [N1] ×S ... ×S C [Nr ],

where S-subgroup scheme C [Ni ] is defined by

C [N ](T ) := ker
{

[N ] : C (T ) → C (T )
}
.

P 7→ N ·P

Indeed, for any S-scheme T

HomS-Grp

(
A,C (T )

) '
r∏

i=1
HomGrp

(
Z/NiZ, C (T )

)
'

r∏
i=1

C [Ni ](T )

=
r⊕

i=1
HomSch/S

(
T, C [Ni ]

)
' HomSch/S

(
T, C [N1]×S ...×S C [Nr ]

)
which shows our claim.

Proposition 2.2.4. The functor A-Str(C /S) defined on the category Sch/S

T 7−→ {
A-structures on CT /T

}
is represented by a closed subscheme of C [N1]×S ...×S C [Nr ], which is locally defined by 1+#(A)+(
#(A)

)2 equations.

Proof: The functor A-Str(C /S) is a subfunctor of HomS-Grp(A,C ), where a homomorphism φ ∈
HomS-Grp(A,C (T )) belongs to A-Str(C /S)(T ) if and only if the subscheme

∑
a∈A[φ(a)] is a T -

subgroup scheme of CT .

Since the functor HomS-Grp(A,C ) is representable, consider the universal homomorphism

φuniv ∈ HomGrp
(

A, C (C [N1]×S ...×S C [Nr ])
)

which is defined as the identity element in

HomSchS

(
C [N1]×S ...×S C [Nr ], C [N1]×S ...×S C [Nr ]

)
.

By the Corollary 7.4.9, there exists a unique closed subscheme Y of C [N1]×S ...×S C [Nr ] which is
universal for the relation

“
∑

a∈A
[φuniv(a)] is a subgroup scheme”

13
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and it is defined by 1+#(A)+ (
#(A)

)2 equations. It is clear that the subscheme Y represents the
functor A-Str(C /S).

From now on, we do not distinguish the functor A-Str(C /S) and the S-scheme represents it.

Proposition 2.2.5. Suppose that N is invertible on S, and C [N ] is finite over S. Then the S-scheme
A-Str(C /S) is finite étale over S.

Proof: We claim that under the assumption, the morphism of multiplying by N

[N ] : C −→ C

is étale. We use the characterization of étale morphisms which says that a morphism is étale if and
only if it is formally étale and locally of finite presentation 1. Since the structure morphism C → S
is finitely presented

C C

S

[N ]

then [N ] being finitely presented is indicated from [22] Proposition 1.10.

For the formal étaleness, it is a little bit more complicated. We shall firstly prove that C [N ] is étale
over S. Let Spec (B) be an affine scheme over S, and J ⊂ B is an ideal such that J 2 = 0. Suppose we
have the following commutative diagram

Spec (B/J ) C [N ]

C

Spec (B) S

ḡ

i

g

g0

with given morphisms g and ḡ . Notice that we can always lift g to C (B), because of the smoothness
hence formal smoothness of C /S. Let us fix a lifting g0 of g . Since C → S is not étale, the lifting is
never unique. Let

V = {
g1 ∈C (B)

∣∣ g1 ◦ i = ḡ ∈C (B/J )
}
,

given any g1 ∈V , the difference g1 − g0 always belongs to

H := ker
{
C (B) →C (B/J )

}
,

thus V = g0 +H .

1cf. [5] EGA IV4 17.6.

14
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Now we assume S = Spec (R), and C ⊃ Spec (A). Denote ε : S →C and ε̃ : A → R to be the unit and
counit, and I := ker(ε̃) is the augmentation ideal. It is clear that A ' R ⊕ I . Take an element h ∈ H

B/J

A

B R

h#

i #

g #

it is by definition that
i # ◦h# = i # ◦ g # ◦ ε̃,

or equivalently
h ◦ i = ε◦ g ◦ i .

It is easy to see that h# maps I to J , and consequently maps I 2 to J 2 = 0, hence it induces a R-
homomorphism

h# : J/J 2 −→ I ,

i.e., we have defined a map explicitly

H −→ HomR (J/J 2, I ) =DerR (A, I )

h 7−→ {
a 7→ h#(a)− g #(ε̃(a)

)}
it is actually bijective, we can construct its inverse explicitly

DerR (A, I ) −→ H
D 7−→ (

a 7→ D(a)+ g #(ε̃(a))
)∗ 2

in fact these two mutually inverse maps are group homomorphisms, with natural group structures
on H and DerR (A, I ).

Now we are trying to find a lifting g1 ∈V of g , such that g1 ∈C [N ](C ), and to prove the uniqueness.
Such g1 should satisfy [N ]◦ g1 = 0 ∈ C (B), and vice versa. Hence equivalently, we want to find an
h ∈ H such that [N ]◦ (g0 +h) = 0 which ought to be unique. Using above identification of H and
DerR (A, I ) as groups, composing h with [N ] is nothing but the multiplication by N in DerR (A, I ),
and as we assumed that N is invertible in R, hence

h = N−1 · (− [N ]◦ g0
)
, 3

which is obviously unique. Thus it means that for every given morphisms g and ḡ ,

Spec (B/J ) C [N ]

Spec (B) S

ḡ

g

g1

2Here the upper star means the morphism of affine schemes corresponding to the given homomorphism of rings of
global sections.

3Note that we use “◦” for composition of morphisms, and “·” for the corresponding scalar multiplication in DerR (A, I ).

15
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we can always find a unique lifting g1, which shows C [N ] → S is formally étale. Combining with
finite presentation we already showed, C [N ] is then étale over S.

To prove [N ] is étale, we must show that given diagram

Spec (B/J ) C

Spec (B) C

ḡ

[N ]

g

g ′

with J 2 = 0, there is a unique lifting g ′ of ḡ . As a consequence of C [N ] being étale over S, we can
certainly find a unique lifting for the zero section

Spec (B) C0

i.e., when g ∈ C (B) is the zero element in the group. For general B-valued point g of C , we can
simply imitate above process, aiming to the diagram

Spec (B/J ) [N ]−1g

CB C

Spec (B) Spec (B) S

ḡ

id g

where the right side square is cartesian. The unique lifting is ensured by the invertibility of N on
the base S in a similar way. Thus we have proved our claim.

Return to the proposition. It is clear that the S-scheme C [N1]×S ... ×S C [Nr ] is finite and finite-
ly presented (as each C [Ni ] is so). As we showed in the Proposition 2.2.4, A-Str(C /S) is a closed
subscheme of C [N1]×S ...×S C [Nr ] locally defined by finitely many equations, hence it is finitely
presented. In order to show that A-Str(C /S) is étale, we need only to verify the formal étaleness.

Suppose T is a S-scheme, and T0 is a closed S-subscheme of T defined by some nilpotent ideal
sheaf. Given any commutative diagram

T0 A-Str(C /S)

T S

we want to lift T0 → A-Str(C /S) to T → A-Str(C /S) which ought to be unique. That is to say, given
any A-structure

φ0 : A −→ C (T0)

on CT0 , we want to show that it extends uniquely to an A-structure

φ : A −→ C (T )

16
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on CT . Obviously, φ0 and φ both factor through C [N ]. Notice that φ0,φ are determined by the
images of finitely many generators of A, and for each image of φ0, i.e., each T0-valued point in
C [N ], it extends uniquely to a T -valued point

T0 C [N ]

T S

since we already know C [N ] is étale over S. Therefore A-Str(C /S) is formally étale, hence étale
since it is also finitely presented.

Proposition 2.2.6. Suppose G is a closed S-subgroup scheme of C which is finite flat over S of rank
#(A). Then the functor A-Gen(G/S) on Sch/S

T 7−→ {
A-generators of GT in CT

}
is represented by a finite and finitely presented S-subscheme of HomS-Grp(A,G), which is locally
defined by #(A) equations.

Proof: The functor A-Gen(G/S) is indeed a subfunctor of HomS-Grp(A,G), and a homomorphism
φ ∈HomGrp

(
A,G(T )

)
is an A-generator of GT if and only if

GT = ∑
a∈A

[φ(a)]

as effective Cartier divisors in CT . Like what we did in the proof of Proposition 2.2.4, we con-
sider the universal homomorphism φuniv, and according to Corollary 7.4.9, there exists a unique
closed subscheme of HomS-Grp(A,G) (i.e., G[N1]×S ...×S G[Nr ]) which is locally defined by #(A)
equations, and it is universal for the relation

Duniv := ∑
a∈A

[φuniv(a)] = G

as effective Cartier divisors. This closed subscheme of HomS-Grp(A,G) certainly represents the
functor A-Gen(G/S).

Similar to the Proposition 2.2.5, we have

Proposition 2.2.7. If G is finite étale over S, then A-Gen(G/S) is also finite étale over S.

The proof is not only similar but even easier, we skip it.

Another natural question to consider is, if we factorize A as A1 × A2 with coprime orders, what is
the relation between A-structures (resp. A-generators) and Ai -structures (resp. Ai -generators)?
It turns out that they have the similar way of factorizations, which we call it the principle of fac-
torization. It always allows us to reduce many questions concerning level N structures to the case
that N = pn is a prime power.

Proposition 2.2.8. Suppose A ' A1 × A2, such that N1 := #(A1) and N2 := #(A2) are coprime. Then
a group homomorphism

φ : A −→ C (S)

17
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is an A-structure if and only if the two induced homomorphisms

φi : Ai −→ C (S), i = 1,2

are respectively Ai -structures on C /S. In this case, the groups G1, G2 and G generated by φ1, φ2 and
φ respectively, satisfy G =G1 ×S G2.

Proof: We have the canonical factorization of S-group scheme G generated by φ

G ' G[N1]×S G[N2],

this can be deduced from the factorization of abstract abelian groups 4

HomSch/S
(S,G) ' HomSch/S

(S,G)[N1]×HomSch/S
(S,G)[N2],

and notice that HomSch/S
(S,G[Ni ]) = HomSch/S

(S,G)[Ni ], the latter are the Ni -torsions of G(S).
Hence

HomSch/S
(S,G) ' HomSch/S

(S,G[N1])×HomSch/S
(S,G[N2]),

and the factorization of G follows from it.

The S-subgroup schemes G[Ni ] are finite over S since G is. They are also finitely presented, since
they are kernels of the morphisms

G G .
[Ni ]

Moreover, locally speaking, the sheaf of OS -algebras defining G[Ni ] are summands of the sheaf of
OS -algebras defining G , thanks to the factorization of G , hence G[Ni ] are both flat over S. Let us
now determine the ranks of G[Ni ], which we need only to treat the case of geometric fibers. From
the factorization, we have

rk(G[N1]) · rk(G[N2]) = rk(G) = N1 ·N2,

while G[Ni ] are killed by Ni . We then claim that

If a finite flat commutative group scheme G over an algebraically closed field k is killed
by N , then there is k Ê 1 such that rk(G)|N k .

Also, by factorization, it suffices to assume N is a power of a prime number pn . When char(k) 6= p,
by Lemma 2.1.4, G is étale over k, the claim follows from elementary argument of abstract groups.
Now assume char(k) = p, then the claim follows from Waterhous [36] Theorem 14.4. Therefore,
as the claim states, rk(G[Ni ]) divides some power of Ni , and since N1, N2 are coprime, it can only
happen that rk(G[Ni ]) = Ni (i = 1,2).

To show φi are Ai -structure on C /S respectively, notice that N1, N2 are coprime, hence after local-
ization on S, it is always possible to assume one of them is invertible on the base. So let us assume
N1 is invertible on S, and therefore G[N1] is étale over S. To show that φ1 is an A1-structure and
generates the S-group scheme G[N1], it suffices to check the geometric fibers. For any geometric
point Spec (k) → S, the geometric fiber

Gk = G[N1]k ×G[N2]k

4Note that according to Theorem 2.1.3, G(S) is killed by N .

18
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contains exactly N1 points which are killed by N1. On the other hand, since we have the equality
of effective Cartier divisors

G = ∑
a1∈A1,a2∈A2

[φ(a1)+φ(a2)],

the k-group scheme Gk is exhausted by (not necessarily all distinct){
φ(a1)k +φ(a2)k

}
a1∈A1,a2∈A2

,

where among these points, only {φ(a1)}a1∈A1 are killed by N1, thus they must run out of N1 distinct
points, which indicates that they are all distinct. That is to say, the restriction homomorphism

φ1 : A1 −→ G[N1]

is isomorphic on each geometric fiber, which justifies (3) in Lemma 2.2.3, hence equivalent to that
φ1 is an A1-structure, and generates G1 =G[N1].

To show that φ2 is an A2-structure and generates the S-group scheme G[N2], we need to show the
equality of effective Cartier divisors

D2 := ∑
a2∈A2

[φ(a2)] = G[N2].

Observe that since G[N1] =∑
a1∈A1 [φ(a1)] is étale over S, we can write G as 5

G = ∑
a1∈A1

φ(a1)∗(D2),

where pieces of D2 are all disjoint, simply because G[N1] is isomorphic to a constant S-group
scheme (cf. Lemma 2.2.3 (5)). Therefore

G ' ∐
a1∈A1

φ(a1)∗(D2).

Let T be any S-scheme, and P ∈G[N2](T ). Since G(T ) =∐
a1∈A1 φ(a1)∗(D2(T )), we know that

P −φ(a1) ∈ D2(T )

for some a1 ∈ A1. For any geometric point Spec (k) → T , we have

Pk −φ(a1)k = φ(a2)k

for some a1 ∈ A2. But both Pk andφ(a2)k are killed by N2, which impliesφ(a1)k is also killed by N2.
This forces φ(a1)k = 0 because φ(a1)k is also killed by N1 which is coprime to N2. Thus P ∈ D2(T ),
i.e., G[N2] É D2, and since both sides have the same rank, they are equal G[N2] = D2.

It remains to show the converse. Suppose givenφ : A →C (S) such thatφ1,φ2 are A1-,A2-structures
respectively on C /S, and they generate S-subgroup schemes G1,G2 respectively. As before, we may
assume N1 is invertible on S. The sum of G1,G2 defines a closed immersion 6

G1 ×S G2 C ,

5Here each φ(a1) is viewed as a translation by multiplication on G .
6Because their ranks are coprime.
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with the image G in C . Since G1 ' A1, we can write G as disjoint unions

G = ∐
a1∈A1

φ(a1)∗(D2),

which is also the sum as effective Cartier divisors

G = ∑
a1∈A1

φ(a1)∗(D2)

= ∑
a1∈A1

φ(a1)∗
( ∑

a2∈A2

[φ(a2)]
)

= ∑
a1∈A1,a2∈A2

[φ(a1)+φ(a2)] = ∑
a∈A

[φ(a)],

which shows that φ is an A-structure on C /S and generates G =G1 ×S G2.

Corollary 2.2.9. Suppose A is a finite abelian group of order N =∏r
i=1 pni

i , and

A = A1 × ... × Ar

is the corresponding factorization, i.e., each Ai has order pni
i , where {pi }r

i=1 are primes. Then the
factorization of A defines a canonical isomorphism

A-Str(C /S) A1-Str(C /S) ×S ... ×S Ar -Str(C /S)∼

of S-schemes. Moreover, for any closed S-subscheme G of C /S which is finite flat over S of finite
presentation and has rank N , let

G = G[pn1
1 ] ×S ... ×S G[pnr

r ] =: G1 ×S ... ×S Gr ,

then there is a canonical isomorphism

A-Gen(G/S) A1-Gen(G1/S) ×S ... ×S Ar -Gen(Gr /S)∼

of S-schemes.

2.3 Intrinsic description of A-generators: full set of sections

In our previous discussion about A-generators, it seems depending on the ground group scheme
C /S in the definition, while in the expression of the representable functor A-Gen(G/S), it makes
no references on C /S. Instead of previous extrinsic description of A-generators, now we shall see
that there is another approach to discuss them intrinsically, namely, using the concept of full set
of section.

Suppose Z is a finite flat and finitely presented S-scheme of rank N .

Definition 2.3.1. A set of N sections P1, ...,PN ∈ Z (S) (not necessarily distinct) is called a full set of
sections of Z /S if the following two equivalent conditions hold:
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1) For any affine S-scheme Spec (R), and any f ∈ Γ(ZR ,OZR ), we have

det (T − f ) =
N∏

i=1

(
T − f (Pi )

)
,

where the left side is the characteristic polynomial of f treated as a R-linear endomorphism
of Γ(ZR ,OZR ).

2) For any affine S-scheme Spec (R), and any f ∈ Γ(ZR ,OZR ), we have

N ( f ) =
N∏

i=1
f (Pi ),

where N is the norm map.

Remark: The equivalence is clear, since the map det(·) is nothing but the norm map of the R[T ]-
algebra Γ(ZR[T ],OZR[T ] ).

Lemma 2.3.2. Suppose moreover Z is étale over S, then TFAE:

(1) P1, ...,PN form a full set of sections of Z /S;

(2) For every geometric point Spec (k) → S, the N points (Pi )k ∈ Z (k) are all distinct.

(3) The S-morphism ∐
N

S −→ Z

defined by P1, ...,PN is an isomorphism;

Proof: (1) =⇒ (2): It suffices to consider the case S = Spec (k) with k = k̄. Then Z consists of N
distinct reduced points, say Q1, ...,QN . We might choose a function f on Z with distinct nonzero
values on Q1, ...,QN . On the one hand, by the definition of full set of sections

N ( f ) =
N∏

i=1
f (Pi ).

On the other hand, Γ(Z ,OZ ) is an étale k-algebra, hence isomorphic to kN with the structure of
product k-algebra. The k-linear endomorphism of multiplication by f can be represented as a
diagonal matrix with diagonal entries f (Q1), ..., f (QN ), thus

N∏
i=1

f (Qi ) = N ( f ) =
N∏

i=1
f (Pi )

which indicates that P1, ...,PN must be distinct.

(2) =⇒ (3): Only need to check the case S = Spec(R). The morphism
∐

N S → Z then corresponds
to the homomorphism of two étale algebras of rank N , whose determinant is invertible over any
geometric point, hence invertible in R, which deduces that it is an isomorphism.

(3) =⇒ (1): It is trivial.
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Remark: When we do not have the étale condition, we can still prove that the morphism defined
by a full set of sections ∐

N
S −→ Z

is surjective, while the converse is generally not true.

Example 2.3.3. Let E/R be an elliptic curve over a Fp -algebra R. The kernel of the relative Frobenius
FE/R lies in the formal group Ê, it is visibly that

ker (FE/S ) ' αp,R = Spec
(
R[X ]

/
(X p )

)
.

We claim that the p zero sections form a full set of sections of ker(FE/S ). Take any function

f =
n∑

i=1
ai X i mod X p in R[X ]

/
(X p ),

we have

N ( f ) = ap
0 =

p∏
i=1

f (0),

which shows our claim.

Example 2.3.4. 7 Let S = Spec
(
k[ε]/(ε2)

)
, where k is a field, and X = Spec

(
k[ε,ε′]/(ε2,ε′2)

)
. Con-

sider two sections

Spec
(
k[ε]/(ε2)

) −→ Spec
(
k[ε,ε′]/(ε2,ε′2)

)
P1 : ε′ 7−→ 0

P2 : ε′ 7−→ ε

the map
P1

∐
P2 : S

∐
S −→ X

is certainly surjective. But
N (1+ε′) = 1 6= 1+ε = f (P1) · f (P2),

therefore {P1,P2} is not a full set of sections.

Lemma 2.3.5. Suppose Z1, Z2 are finite flat and finitely presented S-schemes of rank N1, N2 respec-
tively, and P (i )

1 , ...,P (i )
Ni

∈ Zi (S) are sections (i = 1,2). Then the following two conditions are equiva-
lent:

(1) The set of sections
{
P (i )

1 , ...,P (i )
Ni

}
is a full set of sections of Zi /S, i = 1,2;

(2) The set of sections
{
P (1)

1 , ...,P (1)
N1

,P (2)
1 , ...,P (2)

N2

}
is a full set of sections of (Z1

∐
Z2)

/
S.

Moreover, if Z1 is étale, then the above conditions are also equivalent to

(3) The set of sections
{
P (1)

j ×P (2)
k

}
1É jÉN1,1ÉkÉN2

is a full set of sections of (Z1 ×S Z2)
/

S.

7This example is took from Saito’s book [33].
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Proof: Suppose S = Spec (R) and Zi = Spec (Bi ) (i = 1,2), where Bi are finite R-algebras which are
free as R-modules.

(1) ⇐⇒ (2): Notice that Z1
∐

Z2 = Spec (B1 ⊕B2), and for any element f = f1 ⊕ f2 ∈ B1 ⊕B2,

NB1⊕B2/R ( f ) = NB1/R ( f1) ·NB2/R ( f2),

and the equivalence between (1), (2) now is obvious.

Moreover, if Z1 is étale over R:

(1) =⇒ (3): According to Lemma 2.3.2, we have the isomorphism of S-schemes∐
N1 S Z1

∼

which is defined by sections P (1)
1 , ...,P (1)

N1
. This also induces the isomorphism

∐
N1 Z2 Z1 ×S Z2,∼

hence the implication follows from (1) ⇐⇒ (2).

(3) =⇒ (1): Firstly we show that
{
P (1)

1 , ...,P (1)
N1

}
is a full set of sections of Z1/S. In order to do so,

we can restrict us to the case R = k with k = k̄, thanks to Lemma 2.3.2. For any f1 ∈ B1, consider
f1 ⊗1 ∈ Z1 ×S Z2, from condition (3), it is known that

det (T − f1 ⊗1) =
( N1∏

i=1
(T − f1(P (1)

i ))

)N2

.

On the other hand, indeed we have

det (T − f1 ⊗1) =
(
det(T − f1)

)N2
,

hence det(T − f1) = ∏N1
i=1(T − f1(P (1)

i )) since k[T ] is a UFD and these two polynomials are both
monic, which shows the assertion.

So now we have the isomorphism of S-schemes∐
N1 S Z1

∼

and consequently ∐
N1 Z2 Z1 ×S Z2,∼

the rest deduction follows from (1) ⇐⇒ (2).

Remark: Without étale condition, we only have (1) =⇒ (3).

We will see that being a full set of sections is a closed condition on the base.

Proposition 2.3.6. Let Z /S be a finite flat S-group scheme of finite presentation. Suppose rk(Z ) =
N , and P1, ...,PN ∈ Z (S) is a set of sections which are not necessarily distinct. Then there exists a
unique closed subscheme W ⊂ S which is locally defined by finitely many equations on S, such that
it is universal for that {P1, ...,PN } being a full set of sections of Z /S.
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Proof: After localization, we may assume S = Spec(R) and Z = Spec(B), where B is a finite R-
algebra, and is free of rank N as a R-module. Choose a R-basis b1, ...,bN of B . Consider the uni-
versal element

f =
N∑

i=1
Ti bi ∈ B ⊗R R[T1, ...,TN ],

the set of sections {P1, ...,PN } forms a full set of sections if and only if

N ( f ) =
N∏

i=1
f (Pi )

in R[T1, ...,TN ]. Observe that both sides are homogeneous polynomials of degree N in variables
T1, ...,TN . The subscheme W ⊂ S defined by the ideal generated by the coefficients is certainly
universal for the required relation.

As an immediate corollary, when the base is reduced, it suffices to verify the equality on geometric
fibers.

Corollary 2.3.7. Suppose the base scheme S is reduced. The set of S-valued points
{
P1, ...,PN

}
forms a full set of sections of Z /S, if and only if that for any geometric point Spec(k) → S, the set{
(P1)k , ..., (PN )k

}
forms a full set of sections of Zk /k.

Now back to the case of smooth curves. We will see that the equality of effective Cartier divisors
can be reinterpreted by using the concept of full set of sections.

Lemma 2.3.8. Suppose R is a ring and F (X ) ∈ R[X ] is a monic polynomial of degree N Ê 1, and
a1, ..., aN ∈ R. Denote B = R[X ]/(F (X )). Then the following two conditions are equivalent:

(1) F (X ) = ∏N
i=1(X −ai );

(2) For any f ∈ B,

det (T − f ) =
N∏

i=1
(T − f (ai )).

Proof: (1) =⇒ (2): Firstly it suffices to reduce to the universal case, i.e., let

R = Z[A1, ..., AN ,B0, ...,BN−1],

(a1, ..., aN ) = (A1, ..., AN ),

F (X ) = ∏N
i=1(X − Ai ),

f = ∑N−1
i=0 Bi X i ,

where Ai ,Bi are free variables. To verify (2), it suffices to verify it under any injective scalar exten-
sion R ,→ R ′, in particular, we can choose R ′ to be the fraction field of R. By Chinese Remainder
Theorem for PIDs,

R ′[X ]
/(

F (X
)
) '

N∏
i=1

R ′[X ]
/

(X −ai ),

and f ∈ R ′[X ]
/(

F (X )
)

corresponds to
(

f (a1), ..., f (aN )
)
, therefore it is clear that

det (T − f ) = det

 T − f (a1)
. . .

T − f (aN )

 =
N∏

i=1
(T − f (ai )).
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(2) =⇒ (1): We set F (X ) = X N +∑N−1
i=0 ci X i . Then

det (T −X ) = det



T −1
T −1

. . .
. . .
. . . −1

a0 a1 . . . aN−2 T +aN−1

 = F (T ),

by substituting f to X , we deduce (1).

Theorem 2.3.9. Let C /S be a smooth curve over the base S, Z ⊂C is a finite flat and finitely present-
ed closed subscheme of rank N , and {P1, ...,PN } is a set of points of C (S) (not necessarily distinct).
Then the following two conditions are equivalent:

(1) Z = ∑N
i=1[Pi ] as effective Cartier divisors in C /S;

(2) The set of points
{
P1, ...,PN

}
forms a full set of sections of Z /S.

Proof: By a “standard reduction” argument (see [37] for details), it suffices to reduce to the case
S = Spec (R) such that R is an artin local ring with maximal idealm and algebraically closed residue
field k.

We have the decomposition of Z into disjoint union of connected components

Z =
r∐

j=1
Z j ,

each Z j is supported at a k-valued point z j ∈ Z (k). Since in either conditions, P1, ...,PN are al-
l lying in Z (R), and the conditions (1) and (2) are equivalent if and only if they are equivalent
on each connected component of Z , we may furthermore assume Z is connected, supported at
z ∈ Z (k) ⊂C (k).

As C is a smooth curve, the complete local ring ÔC ,z at z is isomorphic to the formal power series
in one variable, i.e., by choosing a uniformizing parameter X at z, we have the (non-canonical)
isomorphism

ÔC ,z ' R[[X ]].

According to the Weierstrass Preparation Theorem for complete local rings (cf. Lang [31] Chapter
5, Theorem 2.2), Z is defined in Spec (R[[X ]]) by a unique monic polynomial F (X ) of degree N ,
which has the form

F (X ) = X N + lower terms with coefficients in m.

On the other hand, the effective Cartier divisor
∑N

i=1[Pi ] is also supported at z, which is defined in
Spec (R[[X ]]) by the monic polynomial

G(X ) =
N∏

i=1
(X −X (Pi ))

of degree N . Notice that since
∑N

i=1[Pi ] lies inside Z (R), each X (Pi ) is a root of F (X ), which must
belong to m.
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Now the condition (1) is equivalent to that Z and
∑N

i=1[Pi ] are equal inside Spec (R[[X ]]), i.e.,

F (X ) = G(X ) =
N∏

i=1
(X −X (Pi )).

Let ai := X (Pi ) for i = 1, ..., N . The condition (2) is by definition

det (T − f ) =
N∏

i=1
(T − f (ai ))

for any f ∈ R[[X ]]
/(

F (X )
)' R[X ]

/(
F (X )

)
. Thus the equivalence of (1) and (2) follows from Lemma

2.3.8.

Corollary 2.3.10. Let Z /S be a finite flat S-group scheme of finite presentation and of rank N , and
{P1, ...,Pr } is a set of S-valued points of Z . Suppose Z /S is embedded as a closed subscheme of a
smooth curve C /S, then there exists at most one closed subscheme W ⊂ Z , such that the following
two conditions hold:

(1) W /S is locally free (over S) of rank r ;

(2) P1, ...,Pr lie in W (S), and they form a full set of sections of W /S.

Moreover, the closed subscheme W exists, if and only if fppf-locally on S, {P1, ...,Pr } can be completed
to a full set of sections {P1, ...,Pr ,Pr+1, ...,PN } of Z /S. And there exists a unique closed subscheme
S′ ⊂ S locally defined by finitely many equation, which is universal for the existence of W .

Proof: The first assertion is fairly clear, since if such W exists, then it has to be the closed sub-
scheme

W ′ =
r∑

i=1
[Pi ] ⊂ C .

For the second assertion, the “if” part is obvious, by Theorem 2.3.9, that W =W ′ in Z /S. As for the
“only if” part, we firstly claim that:

For any effective Cartier divisor D in C /S, fppf-locally, it admits a full set of sections.

If rk(D) = 1, it then comes from a section S → C , which already forms a full set of sections. And
if rk(D) > 1, fppf-locally, we can always find a section σ : S → D of D , and then D −σ is still an
effective Cartier divisor. It is easy to show the claim by induction. Back to the case, if we know that
W exists and

{
P1, ...,Pr

}
is a full set of sections of W /S, then W É Z , and hence D := Z −W is an

effective Cartier divisor. Therefore fppf-locally, we can find a full set of sections
{
Pr+1, ...,PN

}
of

D/S, and so that
{
P1, ...,PN

}
completes

{
P1, ...,Pr

}
as a full set of sections of Z /S.

For the last assertion, the closed subscheme S′ should exactly be the locus where the relation
W ′ É Z holds. It follows from 7.4.8.

Remark: If the finite flat S-group scheme Z does not come from a closed subscheme of a smooth
curve, then the uniqueness of W might be false. Let us see a counterexample. Suppose k is field
of characteristic p > 0, recall that the finite flat k-group scheme αp is defined by

αp := Spec
(
k[T ]/(T p )

)
.
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Consider the finite flat k-group scheme αp ×αp , it has a unique k-valued point 0 ∈ (αp ×αp )(k).
Then the p points

{
0, ...,0

}
is a full set of sections of both αp ×Spec (k) and Spec (k)×αp .

Now we can give an intrinsic definition of A-generators.

Definition 2.3.11. Suppose G/S is a finite flat S-group scheme of finite presentation, and has rank
N Ê 1. Let A be an (abstract) abelian group of order N , a group homomorphism

φ : A −→ G(S)

is called an A-generator of G/S, if
{
φ(a)

}
a∈A is a full set of sections of G/S.

As the consequence of our discussions so far, the two definitions of A-generators are equivalent:

Proposition 2.3.12. Let C /S be a smooth curve with structure of commutative S-group scheme, and
G ⊂ C is a closed subscheme which is finite flat and of finite presentation over S, whose rank is N .
Let A be an (abstract) abelian group of order N , and

φ : A −→ C (S)

is a group homomorphism. Then the following two conditions are equivalent:

(1) φ is an A-generator of G/S in the sense of Definition 2.2.1, 2.2.2;

(2) φ is an A-generator of G/S in the sense of Definition 2.3.11.

Corollary 2.3.13. Let C /S,C ′/S be smooth curves with structure of commutative S-group scheme,
and N Ê 1 is an integer. If we have an isomorphism

C [N ] ' C ′[N ]

of S-group schemes, then it induces an isomorphism

A-Str(C /S) ' A-Str(C ′/S)

of S-schemes, for any abstract finite abelian group A of order N .

Corollary 2.3.14. Let C /S be a smooth curve with structure of commutative S-group scheme, and
A is an (abstract) abelian group of order N Ê 1. Suppose the N -torsion subgroup scheme C [N ] is
finite flat over S, and

φ : A −→ C [N ](S)

is a group homomorphism. Then

(1) If there exists a closed S-subgroup scheme G ⊂ C [N ], such that (G ,φ) is an A-structure on
C [N ]/S, then it must be unique;

(2) There exists a unique closed subscheme of S, locally defined by finitely many equations, which
is universal for the existence of G in (1).

Proof: This is immediately deduced from Corollary 2.3.10.
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2.4 Extension of an étale group scheme

We fix the base scheme S to be connected in this section.

Suppose H ,G ,E are finite flat and finitely presented commutative S-group schemes, which fit into
a short exact sequence

0 H G E 0,

here we mean precisely the short exact sequence of sheaves of abelian groups on the small site
Sfppf

8

0 hH hG hE 0,

i.e., the morphism hG → hE is locally surjective, and hH is the kernel sheaf of it.

Suppose moreover E is étale over S. Given any group homomorphism from an abstract abelian
group A to G(S)

φ : A −→ G(S),

it induces the morphism of étale S-schemes

A −→ E

from the composition A → G(S) → E(S). Since S here is connected, the kernel as a S-subgroup
scheme of the constant S-group scheme AS should also be constant, which we denote it by K as
an abstract subgroup of A. Therefore we obtain the following diagram

0 K A A/K 0

0 H(S) G(S) E(S)

φ|K φ φ|A/K

Proposition 2.4.1. A group homomorphism φ : A →G(S) is an A-generator if and only if

(1) #(K ) = rk(H), and φ|K is a K -generator of H/S, and

(2) #(A/K ) = rk(E), and φ|A/K is an A/K -generator of E/S.

Proof: The “only if” part: By passing the base to any geometric point Spec (k) → S, we have the
diagram

0 K A A/K 0

0 H(k) G(k) E(k) 0

Since φ is an A-generator of G/S, φk : A →G(k) must be surjective. Then it is easy to deduce from
the diagram that φk |A/K is also surjective, hence an isomorphism. This shows (2). To show (1),
choose any set-theoretic section

0 K A A/K 0,

σ

8Representable functors are indeed sheaves under fppf topology, cf. [7] Theorem 2.55.
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we claim that it induces a splitting (only in the sense of S-schemes) of the exact sequence of S-
group schemes

G ' H ×S E .

Explicitly, name the morphisms in the exact sequence by i : H →G and j : G → E , observe that the
diagram

H ×S E

G E

H S

pr1

(i ,σ)

pr2

j

1−σ◦ j

commutes, then it is immediate to check that the compositions

H ×S E G H ×S E

G H ×S E G

(i ,σ) (1−σ◦ j , j )

(1−σ◦ j , j ) (i ,σ)

are identities. Therefore G ' H ×S E .

Then by Lemma 2.3.5, that φ|K being a K -generator of H/S is indicated from that φ and φ|A/K

being A-,A/K -generators of G/S,E/S respectively.

The “if” part: Similarly, using the splitting trick, the assertion is implied by Lemma 2.3.5.

If we drop the conditions that S being connected and E being étale, we still have some partial
results.

Proposition 2.4.2. Let S be any scheme, and G ,G1,G2 are finite flat commutative S-group schemes
of finite presentation with ranks N , N1, N2 respectively, which fit into a short exact sequence

0 G1 G G2 0.

Moreover, suppose A, A1, A2 are abstract finite abelian groups of order N , N1, N2, and we have the
commutative diagram

0 A1 A A2 0

0 G1(S) G(S) G2(S)

φ1 φ φ2

If φ1,φ2 are A1- and A2-generator of G1/S,G2/S respectively, then φ is an A-generator of G/S.

Proof: Observe that the fiber of G →G2 over any S-valued point φ2(a2) ∈G2(S) for some a2 ∈ A2 is
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G1 → S. Therefore for any function f on G ,

NG/S ( f ) = NG2/S (NG/G2 ( f ))

= ∏
a2∈A2

NG/G2 ( f )
(
φ2(a2)

)
= ∏

a2∈A2

( ∏
a∈A, a 7→a2

f (φ(a))

)
= ∏

a∈A
f (φ(a)).

The opposite direction of Proposition 2.4.2 might be false. Even if φ is a generator, either φ1 or φ2

might not be a generator, or both of them.

Example 2.4.3. Let S = Spec(R) where R is a Fp -algebra, p is a prime number. One has the short
exact sequence for group schemes of roots of unity:

0 µp µp2 µp 0,

and an exact sequence for finite abelian groups:

0 Z/pZ Z/pZ⊕Z/pZ Z/pZ 0,

they fit into the commutative diagram for any p-th root of unity ζ ∈µp (R):

0 Z/pZ Z/pZ⊕Z/pZ Z/pZ 0

0 µp (R) µp2 (R) µp (R)

φ1 φ φ2

(−)p

where

φ1(1) = ζ,

φ(1,−) = ζ,

φ2(−) = 1.

Since µp = Spec
(
R[T ]/(T p2 −1)

)
, and we have

T p2 −1 =
p−1∏
k=0

(T −ζk )p = ∏
(a,b)∈Z/pZ⊕Z/pZ

(T −φ(a,b)),

then it follows from Lemma 2.3.8 that φ is a (Z/pZ⊕Z/pZ)-generator of µp2 /R.

Moreover, φ1 is a Z/pZ-generator of µp /R if and only if

T p −1 =
p−1∏
k=1

(T −ζk ).

This could be false, for example, take R = Fp [X ]/(X p −1), and ζ= X . In such case, φ1 is not aZ/pZ-
generator of µp /R.
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Example 2.4.4. Still take R an Fp -algebra, and S = Spec(R). Consider the group schemeαp , and fix
a R-valued point Y ∈αp (R) such that Y p−1 6= 0. We have the diagram

0 Z/pZ Z/pZ⊕Z/pZ Z/pZ 0

0 αp (R) (αp ×αp )(R) αp (R)

φ1 φ φ2

(−)p

where

φ1(−) = 0,

φ(−,1) = (0,Y ),

φ2(1) = Y .

In this case, φ1 and φ are Z/pZ-,(Z/pZ⊕Z/pZ)-generators respectively. But since

T p 6=
p−1∏
k=0

(T −kY ),

φ2 is not a Z/pZ-generator of αp /R.

Example 2.4.5. Take R =Z/p2Z, consider the diagram

0 Z/pZ Z/pZ⊕Z/pZ Z/pZ 0

0 µp (R) (µp ×µp )(R) µp (R)

φ1 φ φ2

where we let φ=φ1 =φ2 ≡ 1. Then immediately, since

T p −1 6= (T −1)p

in R =Z/p2Z, φ1,φ2 are not Z/pZ-generators of µp /R.

To show that φ is a generator, we need to check for any f (X ,Y ) ∈ R[X ,Y ]/(X p −1,Y p −1) that

N ( f ) ≡ f (1,1)p2
mod p2.

Using a property of norm map, we calculate it through the composition:

R[X ,Y ]/(X p −1,Y p −1) R[Y ]/(Y p −1)

R

NX

N
NY

Observe that the zero map Z/pZ→ µp is always a Z/pZ-generator when the basis is a Fp -algebra,
so at least we have

NX ( f ) ≡ f (1,Y )p mod p,
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i.e., NX ( f ) = f (1,Y )p +pg (Y ) for some g ∈ R[Y ]/(Y p −1). For any F,G ∈ R[Y ]/(Y p −1), the norm of
F +TG in R[T ][Y ]/(Y p −1) has the form

NY (F +TG) = NY (F )+
p−1∑
i=1

T i Fi (X ,Y )+T p NY (G),

and on the other hand,

NY (F +TG) ≡ (F (1)+TG(1))p ≡ F (1)p +T pG(1)p mod p,

so it can only be that Fi (X ,Y ) ≡ 0 mod p for all 1 É i É p −1. Take T = p,

NY (F +pG) ≡ NY (F ) mod p2.

Then

N ( f ) = NY (NX ( f ))

= NY ( f (1,Y )p +pg (Y ))

≡ NY ( f (1,Y )p )

≡ (
NY ( f (1,Y ))

)p

≡ f (1,1)p2
(mod p2)

therefore φ is indeed a generator.

2.5 Roots of unity

Recall that the group scheme (over any base S) of N -th roots of unity µN is the kernel of the multi-
plication by N of the multiplicative group scheme Gm , i.e., we have the exact sequence

0 µN Gm Gm .N

If the base scheme is affine S = Spec (R), then explicitly we have

µN = Spec R[T,T −1]/(T N −1) = Spec R[T ]/(T N −1).

In particular, µN is a finite flat group scheme of finite presentation over S, and it has rank N .

Lemma 2.5.1. The S-group scheme of N -th roots of unity µN is the unique closed S-subgroup
scheme of Gm which is finite flat of finite presentation over S, and has rank N .

Proof: Suppose G is a S-subgroup scheme of Gm with those properties. Then by Theorem 2.1.3, G
is killed by N , hence

G ⊂ Gm[N ] = µN .

Moreover, since G ,µN have the same rank, they have to be equal.

Corollary 2.5.2. Let A be any finite (abstract) abelian group of order N , then

A-Str(Gm/Z) = A-Gen(µN /Z).
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Definition 2.5.3. The scheme of primitive N -th roots of unity µ×
N (over Z) is defined to be

µ×
N := Z/NZ-Str(Gm/Z) = Z/NZ-Gen(µN /Z).

Therefore for any ring R, the R-valued points of µ×
N are

µ×
N (R) =

{
ζ ∈ R

∣∣∣∣ T N −1 =
N∏

k=1
(T −ζk ) in R[T ]

}
.

Remind that the R-valued points of µ×
N are exactly those who are Z/NZ-generators of µ×

N /R.

Theorem 2.5.4. The scheme µ×
N is regular of dimension 1, and finite flat over Z with rank ϕ(N ).

Moreover, µ×
N ⊗ZZ[ 1

N ] is finite étale over Z[ 1
N ].

Proof: By Corollary 2.2.9, it suffices to assume N = pn is some power of a prime number. The last
assertion is proved in Proposition 2.2.5. Moreover, to obtain the rank, we calculate it on the gener-
ic fiber µ×

pn (Q). The rank of µ×
pn (over Z[ 1

N ]) is the number of primitive pn-th roots of unity in Q,

which is apparently ϕ(pn) = pn−1(p −1).

We have shown in Proposition 2.2.6 that µ×
pn is finite over Z. The finiteness implies that the struc-

tural morphism
µ×

pn −→ Spec (Z)

is surjective, since its image is closed and contains Spec (Z[ 1
p ]). So in order to show that µ×

pn is

regular, it remains to check the dimension of the local rings of points over Fp . And notice that µ×
pn

has a unique Fp -valued closed point ζ(p) = 1. 9

As µ×
pn is finite over Z, we have dim Oµ×

pn ,ζ(p) Ê 1. In order to prove the equality, we show that

mµ×
pn ,ζ(p) is principal, so that

1 É dim Oµ×
pn ,ζ(p) É dim

(
mµ×

pn ,ζ(p) /m2
µ×

pn ,ζ(p)

)
É 1.

The affine coordinate ring ofµ×
pn is Oµ×

pn
=Z[ζ]/a, where a is the ideal generated by the coefficients

of the polynomial

T pn −1−
pn∏

k=1
(T −ζk ).

We claim that the regular function ζ−1 generates the maximal ideal mµ×
pn ,ζ(p) . The quotient ring

Oµ×
pn

/(ζ−1) = Z/a′,

where a′ is the the ideal generated by the coefficients of the polynomial

T pn −1− (T −1)pn
.

Observe that the coefficient of T pn−1
is

( pn

pn−1

)
, and

ordp

(
pn

pn−1

)
=

∞∑
k=1

⌊
pn

pk

⌋
−

⌊
pn−1

pk

⌋
−

⌊
pn −pn−1

pk

⌋
= 1,

9The notation ζ(p) is only to indicate that it is over Fp .
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hence Z/a′ is a quotient of Fp . Apparently ζ−1 is not invertible, so it forces

Oµ×
pn

/
(ζ−1) = Z/a′ = Fp ,

which shows that Oµ×
pn ,ζ(p) /(ζ−1) ' Fp as well, hence ζ−1 generates the maximal ideal mµ×

pn ,ζ(p) .

So far we have proved that µ×
pn is regular of dimension 1.

To show that µ×
pn is flat over Z, using the fact that any finite morphism between regular schemes

of the same dimension is flat (cf. [2] V, Corollary 3.6). Hence µ×
pn ,→µpn is flat, and since µpn is flat

over Z, the flatness of µ×
pn over Z follows.

It is possible to clarify the affine coordinate ring of µ×
N , namely, it is the ring of algebraic integers

ON in the N -th cyclotomic field Q(ζN ). Recall that the N -th cyclotomic polynomial is

ΦN (X ) = ∏
1ÉkÉN , (k,N )=1

(X −e2πi k
N ),

whose coefficients belong to Z, so that one can define the N -th cyclotomic field as

Q(ζN ) = Q[X ]
/(
ΦN (X )

)
,

and its ring of algebraic integers
ON = Z[X ]

/(
ΦN (X )

)
.

Theorem 2.5.5. There is an isomorphism between schemes (over Z)

Spec (ON ) µ×
N .∼

Proof: After embeddingQ(ζN ) ,→C, given by that

ON = Z[X ]
/(
ΦN (X )

) 3 X 7−→ e
2πi
N ∈ C,

it is obvious that T N −1 =∏N
k=1(T −X k ). Hence X lies in µ×

N (ON ), and it defines a morphism

ψ : Spec (ON ) −→ µ×
N ,

whose corresponding homomorphism of global sections is

ψ∗ : Z[ζ]/a −→ Z[X ]
/(
ΦN (X )

)
ζ 7−→ X

(recall the notation in the proof of Theorem 2.5.4).

In order to show that ψ is an isomorphism, we try to find its inverse. At first thought, we could
define

(ψ∗)−1 : Z[X ]
/(
ΦN (X )

) −→ Z[ζ]/a

X 7−→ ζ
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but it is not clear whether if it is well-defined, we have to show that ζ ∈ Oµ×N satisfies ΦN (ζ) = 0 in

Oµ×N . By Theorem 2.5.4, Oµ×N is a flat Z-module, and the natural inclusion Z ,→Z[ 1
N ] induces

Oµ×N Oµ×N ⊗ZZ
[

1
N

]
Thus one only needs to verify the conditionΦN (ζ) = 0 in Oµ×N ⊗ZZ[ 1

N ]. We claim that the restriction
morphism

ψ
∣∣∣
Z[ 1

N ]
: Spec

(
ON ⊗ZZ

[ 1

N

])
−→ µ×

N ⊗ZZ
[ 1

N

]
is an isomorphism. Indeed, in Theorem 2.5.4 we already proved that µ×

N ⊗Z Z[ 1
N ] is finite étale

over Z[ 1
N ]. And for any algebraically closed field k with characteristic coprime to N , the N -th

cyclotomic polynomial ΦN (X ) has no multiple roots, hence the finite k-algebra k[X ]/(ΦN (X )) is
étale, i.e., it is isomorphic to the product k-algebra kϕ(N ). This shows that Spec

(
ON ⊗Z Z[ 1

N ]
)

is
finite étale over Z[ 1

N ].

Now both sides of ψ
∣∣∣
Z[ 1

N ]
are finite étale, it suffices to check on any geometric fiber over Z[ 1

N ]

that it is an isomorphism, in other words, to verify that the roots of ΦN (X ) in an algebraically
closed field k with characteristic coprime to N are exactly all the primitive N -th roots of unity in
k. Observe that in this case, the roots of X N −1 are all distinct, hence each root is simple. Suppose
ξ ∈ k is a root of ΦN (X ), use the property that

ΦN (X ) · ∏
d |N , d 6=N

Φd (X ) = X N −1,

as a root of X N −1, ξ is simple, which deduces that Φd (ξ) 6= 0 for any d |N and d 6= N , i.e.,

ξd −1 = ∏
d ′|d

Φd ′ (X ) 6= 0.

2.6 Four basic Drinfeld level structures

In this section, we study the four basic Drinfeld level structures on elliptic curves, and their repre-
sentability, which will be the central objects in later chapters.

Let E/S be an elliptic curve, and N Ê 1 an integer.

Definition 2.6.1. A Γ(N )-structure (full level N structure) on E/S is a Z/NZ×Z/NZ-generator of
the finite flat S-group scheme E [N ]/S:

φ : Z/NZ×Z/NZ −→ E [N ](S),

i.e., we have the equality of effective Cartier divisors

E [N ] = ∑
a,b mod N

[φ(a,b)],

or intrinsically, the N 2 sections φ(a,b) form a full set of sections of E [N ]/S. The two sections

P = φ(1,0), Q = φ(0,1)

are called a Drinfeld basis of the Γ(N )-structure.
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Definition 2.6.2. A Γ1(N )-structure on E/S is a Z/NZ-structure on E/S:

φ : Z/NZ −→ E [N ](S),

i.e., the effective Cartier divisors
∑

a mod N [φ(a)] is a S-subgroup scheme of E/S.

Definition 2.6.3. A Γbal
1 (N )-structure (balanced Γ1(N )-structure) on E/S is an exact sequence of

S-group schemes

0 K E [N ] K ′ 0,

together with specified K -, K ′-generators P ∈ K (S), P ′ ∈ K ′(S). Here both K and K ′ are required to
be locally free of rank N .

Definition 2.6.4. A Γ0(N )-structure on E/S is a cyclic S-subgroup scheme K ⊂ E [N ] of rank N .

Remark:

• A Γ1(N )-structure on E/S is equivalently given by a N -isogeny of elliptic curves over S:

φ : E −→ E ′,

together with a specified generator P ∈ ker(φ)(S), i.e., there is an equality of effective Cartier
divisors:

ker(φ) = ∑
a mod N

[aP ].

• A Γbal
1 (N )-structure is equivalently given by a N -isogeny φ

E E ′,
φ

φt

together with specified generators of ker(φ) and ker(φt ), where φt is the dual isogeny (cf.
Definition 8.4.6) of φ.

• A Γ0(N )-structure on E/S is equivalently given by a N -isogeny of elliptic curves φ : E → E ′.

Fix an elliptic curve E/S, we denote the following contravariant functors

Sch/S −→ Set

T 7−→


Γ(N )-structures on ET /T
Γ1(N )-structures on ET /T
Γbal

1 (N )-structures on ET /T
Γ0(N )-structures on ET /T

by Γ(N )-Str(E/S), Γ1(N )-Str(E/S), Γbal
1 (N )-Str(E/S) and Γ0(N )-Str(E/S) respectively. By definition,

we know that

Γ(N )-Str(E/S) = (Z/NZ×Z/NZ)-Gen(E [N ]/S)

Γ1(N )-Str(E/S) = Z/NZ-Str(E/S).
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Lemma 2.6.5. Let E/S be an elliptic curve, and N Ê 1 is an integer. Suppose N = N1N2 with
(N1, N2) = 1, then we have the functorial factorizations of S-schemes

Γ(N )-Str(E/S) ' Γ(N1)-Str(E/S)×S Γ(N2)-Str(E/S)

Γ1(N )-Str(E/S) ' Γ1(N1)-Str(E/S)×S Γ1(N2)-Str(E/S)

Γbal
1 (N )-Str(E/S) ' Γbal

1 (N1)-Str(E/S)×S Γ
bal
1 (N2)-Str(E/S)

Γ0(N )-Str(E/S) ' Γ0(N1)-Str(E/S)×S Γ0(N2)-Str(E/S).

Proof: The first two cases are implied by Corollary 2.2.9. The last case is by canonical factorization
of cyclic group schemes, i.e., the isomorphism is given by

Γ0(N )-Str(E/S) ' Γ0(N1)-Str(E/S)×S Γ0(N2)-Str(E/S).

K 7−→ K [N1]×K [N2].

For the balanced structures, given a Γbal
1 (N )-structure on E/S

0 K E [N ] K ′ 0,

it naturally induces a Γbal
1 (Ni )-structure

0 K [Ni ] E [Ni ] K ′[Ni ] 0.

Conversely, given a Γbal
1 (N1)-structure and a Γbal

1 (N2)-structure on E/S, one takes the product of
two exact sequences, then it is a Γbal

1 (N )-structure. It is obvious that the two maps are mutually
inverse.

Next we study the representability of these functors, except for the Γ0[N ]-structures, which we
leave to later section, after we further develop the theory of cyclic group schemes.

Theorem 2.6.6 (Relative Representability Theorem). The functors Γ(N )-Str(E/S), Γ1(N )-Str(E/S)
and Γbal

1 (N )-Str(E/S) are all represented by finite S-schemes.

Proof: The first two cases have already been proved in Proposition 2.2.4 and Proposition 2.2.6. It
remains to treat the balanced level structures. The finite S-scheme Z/NZ-Str(E [N ]/S) classifies
all the cyclic subgroup scheme of E [N ] of rank N , with a specified generator. Let Kuniv be the
universal family, which is a closed subscheme of Z/NZ-Str(E [N ]/S)×E [N ]:

Kuniv ⊂

��

Z/NZ-Str(E [N ]/S)×E [N ]
p1

tt
Z/NZ-Str(E [N ]/S)

and let
K′

univ = Z/NZ-Str(E [N ]/S)×E [N ]
/

Kuniv

be the universal quotient. Then it is straightforward that the functor Γbal
1 (N )-Str(E/S) is represent-

ed by the
(
Z/NZ-Str(E [N ]/S)

)
-scheme:

Z/NZ-Gen
(
K′

univ

/
Z/NZ-Str(E [N ]/S)

)
,

which is finite over Z/NZ-Str(E [N ]/S), and since Z/NZ-Str(E [N ]/S) is finite over S, the scheme
Γbal

1 (N )-Str(E/S) is therefore also finite over S.
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Theorem 2.6.7 (Relative Representability Theorem over Z[ 1
N ]). Assume that N is invertible on the

base S, then the functors Γ(N )-Str(E/S), Γ1(N )-Str(E/S), Γbal
1 (N )-Str(E/S) and Γ0(N )-Str(E/S) are

all represented by finite étale S-schemes.

Proof: The first two cases have already been proved in Proposition 2.2.5 and 2.2.7. The case
for balanced level structures is a consequence of Proposition 2.2.5 and 2.2.7, since in the case
that N is invertible on S, the scheme Z/NZ-Gen

(
K′

univ

/
Z/NZ-Str(E [N ]/S)

)
is finite étale over

Z/NZ-Str(E [N ]/S), and the scheme Z/NZ-Str(E [N ]/S) is finite étale over S.

It remains to treat the case of Γ0(N )-structures. Firstly, observe that the functor Γ0(N )-Str(E/S) is
a sheaf for the fppf topology. Indeed, by faithfully flat descent for affine morphisms (cf. Theorem
9.1.12), one can glue a finite locally free subgroup scheme from local data, 10 and the concept
of cyclicity is already fppf-local. Thus, in order to show the representability of Γ0(N )-Str(E/S), it
suffices to do so after a fppf base change. By Theorem 8.4.1, in the case that N is invertible, E [N ]
is fppf-locally isomorphic to the constant group scheme Z/NZ×Z/NZ, so after some fppf base
change, we assume E [N ] =Z/NZ×Z/NZ. Let

CycN (Z/NZ×Z/NZ) :=
{

all cyclic S-subgroup schemes
of order N in E [N ].

}
,

which is a finite set. We claim that for any connected S-scheme T , any cyclic T -subgroup scheme
K of order N in ET [N ] is constant. One can immediately reduce the case to where T is noetherian,
since we have the condition of finite presentation. As a closed subgroup scheme of a finite étale
group scheme ET [N ] which is also flat over T , K is finite étale over T . Hence K is an étale covering
of T . Choose any geometric point t ∈ T , let C be the category of étale coverings of T , recall that
the functor

Ft : C π1(T, t )-FSet

defines an equivalence between the category C and the category π1(T, t )-FSet of finite π1(T, t )-
sets. Since K is a subgroup scheme of ET [N ], the finite π1(T, t )-set F (K ) is naturally a π1(T, t )-
subset of F (ET [N ]). But the π1(T, t )-action on F (ET [N ]) is trivial, hence so is F (K ), which deduces
that K is also a trivial étale covering. Thus we proved the claim.

Now it is clear that the functor Γ0(N )-Str(E/S) is represented by the constant finite S-scheme
S ×CycN (Z/NZ×Z/NZ).

Étale-locally, all the four Drinfeld level structures are represented by constant schemes.

Corollary 2.6.8. Assume that N is invertible on the base S, and E [N ]/S is isomorphic to the constant
group scheme Z/NZ×Z/NZ. Then the functors Γ(N )-Str(E/S), Γ1(N )-Str(E/S), Γbal

1 (N )-Str(E/S)
and Γ0(N )-Str(E/S) are represented by constant S-schemes:

• S ×{
all Drinfeld basis of Z/NZ×Z/NZ

}
,

• S ×{
all the points P ∈ E [N ](S) of exact order N

}
,

• S ×
{

all triples (K ,P,P ′), where K is a subgroup of Z/NZ×Z/NZ, and P is a
generator of K , P ′ is a generator of the quotient (Z/NZ×Z/NZ)

/
K

}
,

• S ×CycN (Z/NZ×Z/NZ)

10We can ensure the group structure, since a group structure is given by a unit morphism, a multiplication morphism
and an inverse morphism, satisfying some commutative diagrams, which all can be descended along a fppf covering.
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respectively.

Remark: As an immediate consequence, the three representable moduli problems that we have
discussed in Appendix II.3 are all étale over the base. Moreover, the elementary moduli schemes
Spec (R2) and Spec (R3) are GL(2,F2)× {±1}-, GL(2,F3)-torsors respectively, in the sense that for
any morphism S →M1,1 from a scheme S to the stack M1,1, the morphism of schemes

S ×M1,1 Spec Ri −→ S (i = 2,3)

is a
(
GL(2,F2)× {±1}-, GL(2,F3)-

)
torsor.
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3
Moduli Stacks of Elliptic Curves

In this chapter, we come to deal with various moduli problems of elliptic curves. The moduli stack
of elliptic curves (without extra structures) is M1,1, which is a special case of moduli stack of n-
pointed smooth genus g curves Mg ,n . In Katz-Mazur [24], they define a moduli problem P of
elliptic curves as a functor

P : Ell −→ Set

where Ell is the category consists of objects as elliptic curves over schemes

E

S

π

and morphisms as Cartesian diagrams

E ′ E

S′ S

φ

π′ π

f

equivalently this means we have an isomorphism of S′-schemes

E ′ E ×S S′(φ,π′)
∼

An element of P(E/S) is called a level P structure on E/S.

Here the category Ell is exactly the moduli stack M1,1, and a moduli problem is given equivalently
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by a CFG 1 P over Sch

P

Sch

p

whose fiber over a scheme S has objects (E/S, a), where a ∈ P(E/S) is a level P structure, and
morphisms are compatible with pull-back of respective level P structures. Moreover, there is a
morphism of CFGs

F : P −→ M1,1

given by forgetting the level P structures.

What we concern is when is P a stack, an algebraic stack, and further more, represented by a
scheme. In the second case, we call the moduli problem P algebraic, and in the latter case it is
called representable. If P is represented by a scheme M(P), then the morphism M(P) → M1,1

provides (through Yoneda Lemma 9.2.6) the universal family of the moduli problem P :

E

M(P)

which is also the object representing the functor P : M1,1 →Set, i.e.,

P(−) ' HomM1,1

( − ,E/M(P)
)
.

3.1 Representability of modular curves

From now on, we do not distinguish the moduli functor P and its associated CFG.

Any moduli problem P of elliptic curves gives a moduli functor on Sch:

P̃ : Sch −→ Set

S 7−→
{

(E/S, a)

∣∣∣∣ E is an elliptic curve over
S, and a ∈P(E/S).

}/
'

If P is represented by a scheme M(P), then M(P) certainly represents the moduli functor P̃ ,
and the image of the identity under the isomorphism

HomSch(M(P), M(P)) P̃(M(P))

id auniv

'

7−→

∈ ∈

is the universal level P structure on E/M(P). But conversely, even if the moduli functor P̃ is
representable, P is not necessarily representable. One needs a condition of rigidity to ensure the
converse.

1“CFG” stands for “categories fibered in groupoids”, cf. 9.2
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Definition 3.1.1. The moduli problem P is called rigid, if any object of P has no non-trivial
automorphisms.

Remark:

• It is easy to see that any representable P has to be rigid. Conversely, if we only know that
the moduli functor P̃ is representable, say by (E/M(P), auniv), a priori we only have the
natural transformation of functors

Ψ : HomM1,1

( − ,E/M(P)
) −→ P(−),

by representability of P̃ , Ψ(E/S) is surjective for any elliptic curve E/S. If moreover P is
rigid, then Ψ(E/S) is also injective, hence bijective, which shows the representability of P .

• A moduli CFG P being rigid means exactly that it is a CFS 2 over M1,1, i.e., it comes from a
functor, which is just P̃ .

Definition 3.1.2. The moduli problem P is called relatively representable, if the morphism of
CFGs

F : P −→ M1,1

is representable.

Remark:

• Relative representability is also equivalent as following: the moduli problem P is relatively
representable, if for any elliptic curve E/S, the functor

Sch/S −→ Set

T 7−→ P(E ×S T /T ) =P(ET /T )

is represented by a S-scheme PE/S . Observe that PE/S is nothing but the fiber product
P ×M1,1 S, since in the Cartesian diagram

P ×M1,1 S S

P M1,1

the first row is a morphism of schemes, which is exactly the structure morphism of PE/S .

• Any representable moduli problem P is relatively representable, this is a consequence of
that M1,1 has representable diagonal morphism, 3 by Lemma 9.3.3, any morphism from a
scheme to M1,1 is representable, which implies that

P ' M(P) −→ M1,1

is representable.

2“CFS” stands for “categories fibered in sets”.
3cf. Example 9.4.3.
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• Another immediate consequence is that, if P is a relatively representable moduli problem,
and P ′ is a representable moduli problem, then the simultaneous moduli problem

E/S 7−→ P(E/S)×P ′(E/S)

is representable, and it is represented by the M(P ′)-scheme

PE′/M(P ′) = P ×M1,1,E′ M(P ′),

where E′/M(P ′) is the universal family of P ′.

Proposition 3.1.3. Any relatively representable moduli problem P of elliptic curves is a Deligne-
Mumford stack.

Proof: Firstly we show that any étale morphism is of effective descent for P . Let S′ → S be an
étale morphism, and ((E ′/S′,α),θ) is a descent datum of an elliptic curve with a level P structure.
By étale descent, we can descend E ′ to an elliptic curve E/S. To descend the level P structure, it
amounts to prove that the following sequence is exact:

P(E/S) −→ P(E ′/S′) â P(E ′′/S′′).

This is automatically satisfied by the relative representability of P . To show that we can also
glue morphisms, it suffices to prove the representability of the diagonal morphism. Let S be any
scheme and S →P ×P be a morphism. From the cartesian diagram

P ×P×P S S

P P ×P

M1,1 M1,1 ×M1,1

∆P

∆M1,1

it is clear that P ×P×P S =M1,1 ×M1,1×M1,1 S is a scheme. Therefore P is a stack.

It remains to find an étale atlas for P . Let U →M1,1 be an étale atlas for M1,1, then obviously that

P ×M1,1 U −→ P

is an étale atlas for P .

Definition 3.1.4. A relatively representable moduli problem P is said to have property 4 P if the
representable morphism of Deligne-Mumford stacks

F : P −→ M1,1

has property P.

4Here P is some property for morphisms of schemes, which is preserved under any base change, e.g., affine, finite,
étale... etc.
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Our main result of this section is the following representability theorem:

Theorem 3.1.5. Let P be a moduli problem of elliptic curves, which is relatively representable and
affine. Then P is representable if and only if it is rigid.

Proof: To make the proof clear, we divide it into three steps.

Step 1: Observe that we only need to prove the representability of P⊗Z[ 1
2 ] and P⊗Z[ 1

3 ]. Because
the surjective family

Spec
(
Z

[1

2

]) ∐
Spec

(
Z

[1

3

])
−→ Spec (Z)

is a morphism of effective descent, and by rigidity, the affine morphism

P ⊗Z
[1

2

] ∐
P ⊗Z

[1

3

]
−→ Spec

(
Z

[1

2

]) ∐
Spec

(
Z

[1

3

])
obviously satisfies the cocycle condition. Thus P is represented by the scheme which is descent
from the above affine scheme over Spec (Z[ 1

2 ])
∐

Spec (Z[ 1
3 ]).

Step 2: Descending the universal family. Use the elementary moduli schemes Spec (R2), Spec (R3)
as auxiliaries. We have the cartesian diagram for i = 2,3

P ×M1,1 Spec (Ri ) Spec (Ri )

P M1,1

and Spec (Ri ) →M1,1 is a Gi -torsor, where

Gi =
{

GL(2,F2)× {±1} i = 2
GL(2,F3) i = 3

We aim to show that
P ' (

P ×M1,1 Spec (Ri )
)/

Gi , (∗)

and the simultaneous universal family of P ×M1,1 Spec (Ri ) descends through the quotient by Gi .
The right side of (∗) is a quotient of an affine scheme by finite group action, which is indeed an
affine scheme. Let

(Ei ,αuniv,βuniv)

P ×M1,1 Spec (Ri )

be the simultaneous universal family, where αuniv,βuniv are the universal objects of respective
factors. An element g ∈Gi acts on the universal objectβuniv, the resulting family (Ei ,αuniv, g ·βuniv)
corresponds to an isomorphism

P ×M1,1 Spec (Ri ) P ×M1,1 Spec (Ri ),
g
∼

which induces an isomorphism

g∗(Ei ,αuniv,βuniv) (Ei ,αuniv, g ·βuniv),
θ(g )
∼
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take restriction on the first universal object, it gives an isomorphism

g∗(Ei ,αuniv) (Ei ,αuniv).
θ(g )
∼

By rigidity of P , θ(g ) is the unique isomorphism between these two families, so it is necessarily
compatible with the group structure of G , i.e., for any elements g , g ′ ∈Gi , the diagram

g ′∗g∗(Ei ,αuniv) g ′∗(Ei ,αuniv)

(Ei ,αuniv)

g ′∗θ(g )

θ(g g ′)
θ(g ′)

commutes. Therefore
(
(Ei ,αuniv),θ

)
is a descent datum of the finite étale 5 morphism

P ×M1,1 Spec (Ri ) −→ (
P ×M1,1 Spec (Ri )

)/
Gi ,

by faithfully flat descent, we obtain a family

(E′
i ,α′

univ)

(
P ×M1,1 Spec (Ri )

)/
Gi .

Step 3: Universality. It remains to prove the universality of the family (E′
i ,α′

univ) with respect to the

moduli problem P ⊗Z[ 1
i ]. Let S be a Z[ 1

i ]-scheme, and (E/S,α) is an elliptic curve over S with a
level P structure α. Denote

π : Si := S ×M1,1 Spec (Ri ) −→ S,

which is a finite étale Gi -torsor. Base change E/S to Ei /Si := E ×S Si /Si , one obtains a family

(Ei ,π∗α,βE )

Si

where βE is the universal object of Ei with respect to the moduli problem Spec (Ri ). This family
corresponds to a Gi -equivariant morphism 6

f : Si = S ×M1,1 Spec (Ri ) −→ P ×M1,1 Spec (Ri )

taking the quotient by Gi , one has the cartesian diagram

Si P ×M1,1 Spec (Ri )

S
(
P ×M1,1 Spec (Ri )

)/
Gi

f

π πuniv

f0

5By rigidity of P , the action of Gi on P ×M1,1 Spec (Ri ) is free, hence the quotient morphism is finite étale (cf.
Demazure-Gabriel [22] III, 2.6.1).

6Indeed, Gi acts only on the second factor.
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It is immediate to see that

π∗(E ,α) = (Ei ,π∗α) = f ∗(Ei ,αuniv)

= f ∗π∗
univ(E′

i ,α′
univ)

= π∗ f ∗
0 (E′

i ,α′
univ),

by finite étale descent, (E ,α) ' f ∗
0 (E′

i ,α′
univ), i.e., the family (E/S,α) comes from the morphism f0.

Finally we need to verify the uniqueness of such morphism f0. Suppose

h0 : S −→ (
P ×M1,1 Spec (Ri )

)/
Gi

is another such morphism, i.e., (E ,α) ' h∗
0 (E′

i ,α′
univ). Let h be the lifting of h0,

R P ×M1,1 Spec (Ri )

S
(
P ×M1,1 Spec (Ri )

)/
Gi

h

π′ πuniv

h0

where R is the fiber product. Then ER carries the level structure h∗βuniv, which corresponds to a
Gi -equivariant morphism of Gi -torsors:

R Si

S
π′ π

which is necessarily an isomorphism. Hence one has the cartesian diagram

Si P ×M1,1 Spec (Ri )

S
(
P ×M1,1 Spec (Ri )

)/
Gi

h

π πuniv

h0

consequently h∗(Ei ,αuniv) = π∗(E ,α) = f ∗(Ei ,αuniv), which forces f = h by the universality of
P ×M1,1 Spec (Ri ). Therefore h0 = f0.

Consider the moduli problems of Γ(N )-, Γ1(N )-, Γbal
1 (N )- and Γ0(N )-structures on elliptic curves,

let us denote their moduli stacks by Y (N ), Y1(N ), Y bal
1 (N ) and Y0(N ) respectively. Combine the

previous theorem and the rigidity results (cf. Corollary 8.4.12, 8.4.13) of the four basic Drinfeld
level structures, we immediately have the following representability results: 7

Corollary 3.1.6 (Representability of modular curves). (1) If N Ê 3, the modular curve Y (N ) is
represented by an affine curve Y (N );

(2) If N Ê 4, the modular curve Y1(N ) is represented by an affine curve Y1(N );

7We also call the Deligne-Mumford stacks Y (N ), Y1(N ), Y bal
1 (N ) and Y0(N ) as modular “curves”, even though they are

not always representable. Since we use different fonts, this won’t cause any ambiguity.
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(3) If N Ê 4, the modular curve Y bal
1 (N ) is represented by an affine curve Y bal

1 (N ).

Moreover, the affine curves Y (N )⊗Z[ 1
N ], Y1(N )⊗Z[ 1

N ] and Y bal
1 (N )⊗Z[ 1

N ] are smooth over Z[ 1
N ].

Proof: By Theorem 2.6.6, these three moduli problems are all relatively representable, and finite,
hence affine. The first part of the corollary follows from Theorem 3.1.5.

For the last part, e.g., for the affine curve Y (N ), it suffices to prove that Y (N )×M1,1 Spec (Ri ) for
i = 2,3 are smooth, then as a quotient of free action by a finite group Gi , Y (N ) is also smooth. To
see that Y (N )×M1,1 Spec (Ri ) is smooth, notice that we have the finite étale morphism

Y (N )×M1,1 Spec (Ri ) −→ Spec (Ri ),

and combine that Spec (Ri ) is a smooth affine curve, the assertion follows.

Remark: As for the modular curve Y0(N ), it is never representable. Indeed, for an elliptic curve
E/S, the [−1] morphism preserves any Γ0(N )-structure.

3.2 Regularity

As we proved in Proposition 3.1.3, any relatively representable moduli problem P is Deligne-
Mumford, hence admits an étale atlas. If P is a property of schemes which is local for the étale
topology (e.g., regularity, normality...), we say that the moduli stack P has the property P , if for
some étale atlas U →P , U has the property P . So it makes sense to talk about the regularity of a
moduli stack.

In this subsection, the main result is:

Theorem 3.2.1 (Regularity Theorem). Let Y be either of four modular curves (i.e., Y (N ), Y1(N ),
Y bal

1 (N ) or Y0(N )). Then Y is relatively representable, finite flat of constant rank (Ê 1) over M1,1,
and regular of dimension two. Moreover,

Y ⊗Z
[ 1

N

]
−→ M1,1 ⊗Z

[ 1

N

]
is finite étale.

Due to our previous discussions, we already proved the Regularity Theorem over Z[ 1
N ] (i.e., the

last part). For the first part, we focus on the case where N is a power of some prime p (due to
the principle of factorization). The main idea of the proof is Deligne’s homogeneity principle, we
present the axiomatic form of it.

Lemma 3.2.2. Let k = F̄p , and W (k) its ring of Witt vectors. Then for any scheme X of finite type
over Z, we have the following bijective correspondences:

{
closed points x̄ of X ⊗W (t )
with residue field k

}
←→ X (k) ←→


pairs (x0, i ), where x0 is closed
point of X with residue char. p,
and i : Fp (x0) ,→ k is the inclusion
of the finite field into k.
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Moreover, under these correspondences, we have

OX⊗W (k),x̄ = Osh
X ,x0

,

where x̄ is the closed point of X ⊗W (k) that corresponding to the pair (x0, i ).

Proof: Without loss of generality, we assume X = Spec (A) is affine, where the ring A is of finite
type over Z. To show the first bijective correspondence, from the diagram

Spec (k)

X ⊗W (k) X

Spec
(
W (k)

)
Spec (Z)

x

x̄

we know that a k-rational point x of X uniquely corresponds to a k-rational point x̄ of X ⊗W (k),
it remains to show that x̄ is indeed a closed point. Look at the diagram of global sections:

k

A⊗ZW (k) A

W (k) Z

x̄

x

suppose the prime ideal of x is I ⊂ A, then the prime ideal of the point x̄ is A⊗(p)+I⊗W (k), which
is indeed a maximal ideal of A⊗W (k), and clearly that we have the isomorphism

A⊗W (k)
/(

A⊗ (p)+ I ⊗W (k)
) ' k.

Therefore x̄ is a closed point of X ⊗W (k) with residue field k. Conversely, given a closed point of
X ⊗W (k), it gives a k-rational point by composing X ⊗W (k) → X .

The second bijective correspondence is obvious. The residue field Fp (x0) being finite is because
that A is of finite type over Z.

For the last assertion, recall the fact that the ring of Witt vectors W (k) is isomorphic to the strict
henselization of OZ,(p) =Z(p), therefore the result follows from the cartesian diagram:

Spec
(
OX⊗W (k),x̄

)
Spec

(
OX ,x0

)

Spec
(
OW (k),(p)

)
Spec

(
OZ,(p)

)
.

Theorem 3.2.3 (Axiomatic Regularity Theorem). Fix a prime number p. Any moduli stack P over
M1,1 which satisfies following axioms
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R1: P is relatively representable and finite over M1,1;

R2: P ⊗Z[ 1
p ] is finite étale over M1,1 ⊗Z[ 1

p ];

R3: For any two elliptic curves E ,E ′ : S âM1,1 over S which have isomorphic p-divisible groups,
then

P ×M1,1,E S ' P ×M1,1,E ′ S,

i.e., the level P structures only depend on the underlying p-divisible groups;

R4: Let E0/k be a supersingular elliptic curve over an algebraically closed field k of characteristic
p, and E/W (k)[[T ]] its universal formal deformation, then:

R4-1: The k-scheme P ×M1,1,E0 k consists of one point;

R4-2: The W (k)[[T ]]-scheme P ×M1,1,E W (k)[[T ]] is the spectrum of a 2-dimensional regular
local ring.

is finite flat over M1,1 of constant rank (Ê 1), and regular of dimension two.

Proof: Consider the étale atlas of M1,1:

Spec (R2)
∐

Spec (R3) −→ M1,1,

and the induced étale atlas of P :(
Spec (R2)

∐
Spec (R3)

)×M1,1 P −→ P .

Denote Si = Spec (Ri ) and S′
i = Si ×M1,1 P for i = 2,3, we must show that the morphism of schemes

fi : S′
i −→ Si

is finite flat, and S′
i is regular of dimension 2. Since fi is already finite by conditions, and Si is an

affine smooth curve, in particular it is regular of dimension 2, hence we only need to show the
regularity of S′

i .

Let
Ui :=

{
y ∈ Si

∣∣∣ ∀x that fi (x) = y , OS′
i ,x is regular, and flat over OSi ,y

}
⊂ Si .

This is an open subset of Si . Indeed, since Si is of finite type over Z, both regular and flat loci are
open in S′

i (cf. [1, Tag 07R2] and [1, Tag 0398]), hence as the image of irregular and non-flat loci
under a finite morphism, Si \Ui is closed in Si . We aim to show that Ui = Si , and since Si is of
finite type over Z, it suffices to show that Ui contains every closed point of Si . By R2, Ui already
contains Si ⊗Z[ 1

p ], hence it remains to show that Ui contains every closed point with residue field
of characteristic p, i.e., Ui contains Si ⊗Fp .

There are two kinds of points on Si⊗Fp , namely, the ordinary points, which correspond to ordinary
elliptic curves (with level structures), and the supersingular points, which correspond to supersin-
gular elliptic curves (with level structures). The supersingular locus is finite (cf. Silverman [10]).
We shall prove that Ui satisfies the following homogeneity properties:

H1: If Ui contains one supersingular point of Si ⊗ Fp , then it contains all the supersingular
points;

H2: If Ui contains one ordinary point of Si ⊗Fp , then it contains all the ordinary points.
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If the homogeneity properties hold, one only needs to verify H1 for the case, since then by the
openness of Ui , it must contain some ordinary points, hence verifies H2 as well.

Recall that both regularity and flatness are preserved by passing to the completion and strict
henselization (cf. [1, Tag 06LN] for regularity), so we have to prove:

For any closed point y0 ∈ Si , and any closed point x0 ∈ S′
i that lying over y0, the com-

plete noetherian local ring Ôsh
S′

i ,x0
is regular, and flat over Ôsh

Si ,y0
.

According to Lemma 3.2.2, this is equivalent to

For any closed point ȳ ∈ Si ⊗W (k), and any closed point x̄ ∈ S′
i ⊗W (k) that lying over

ȳ , the complete noetherian local ring ÔS′
i⊗W (k),x̄ is regular, and flat over ÔSi⊗W (k),ȳ .

Let E0/k be the elliptic curve that corresponding to the closed point y0 ∈ Si . Since Si is étale over
M1,1, we have an isomorphism of complete noetherian local rings

ÔSi⊗W (k),ȳ ' W (k)[[T ]],

and by the universal property, the universal formal deformation E/W (k)[[T ]] of E0/k exactly corre-
sponds to the pull-back of the universal family of Si ⊗W (k) along

Spec
(
ÔSi⊗W (k),ȳ

)
−→ Si ⊗W (k).

Hence we have the identification

P ×M1,1,E W (k)[[T ]] = PE/W (k)[[T ]] = (
S′

i ⊗W (k)
)×Si⊗W (k) Spec

(
ÔSi⊗W (k),ȳ

)
,

where the right side is exactly the spectrum of the product of complete noetherian local rings of
those x̄ which lies over ȳ , i.e.,

(
S′

i ⊗W (k)
)×Si⊗W (k) Spec

(
ÔSi⊗W (k),ȳ

)
' Spec

(∏
x̄

ÔS′
i⊗W (k),x̄

)
.

By the axiom R3 and Serre-Tate Theorem 8.6.3, the isomorphism class of PE/W (k)[[T ]] only depends
on whether E0/k is ordinary or supersingular, and the regularity and flatness of PE/W (k)[[T ]] would
imply the same for any ÔS′

i⊗W (k),x̄ (over ÔSi⊗W (k),ȳ ). This proves the homogeneity properties.

Finally, the fact that Ui contains at least one (in fact, any) supersingular point is already implied
by the axiom R4-2.

Thanks to the Axiomatic Regularity Theorem, in order to prove Theorem 3.2.1, it suffices to verify
the four axioms R1-R4 for the modular curves Y (N ), Y1(N ), Y bal

1 (N ) and Y0(N ). However, the
case for Y0(N ) is more complicated than others, we shall prove the first three cases and leave the
last one to the next chapter.

The first three axioms are immediate. It remains to verify R4-1 and R4-2.

Lemma 3.2.4. Let Y be either of three modular curves Y (pn), Y1(pn) or Y bal
1 (pn). Let k be a field of

characteristic p, and E0/k is a supersingular elliptic curve. Then the k-scheme Y ×M1,1,E0 k consists
of one point.
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Proof: The pn-torsion subgroup scheme E0[pn] of a supersingular elliptic curve E0/k is supported
at the zero section, i.e., it has 0 as the unique k-rational point. The k-scheme Y (pn)×M1,1,E0 k is the
moduli scheme of Drinfeld basis of E0[pn], which only consists of one point, i.e., the Drinfeld basis
(0,0). The k-scheme Y1(pn)×M1,1,E0 k is the moduli scheme of points of exact order pn in E0[pn],

since 0 indeed has exact order pn , it consists of one point. For the k-scheme Y bal
1 (pn)×M1,1,E0 k, it

is the moduli scheme of triples (K ,P,P ′), where K is a cyclic subgroup scheme of E0[pn] with rank
pn , and P,P ′ are generators of K ,E0[pn]/K respectively. Indeed, K is unique, which is generated
by 0, and K ′ is also supported at the zero section, the choice of a generator is therefore unique, i.e.,
the zero section.

Lemma 3.2.5. Let R be a unital commutative ring, and C /R is a smooth 1-dimensional commu-
tative R-group scheme. Suppose the zero section 0 ∈ C (R) has exact order pn , then p = 0 in R, and
pn[0] = ker (F n

C /S ) as subgroup schemes.

Proof: Choose a formal parameter X for the formal group of C /R, and let

F (X ,Y ) = X +Y + ... ∈ R[[X ,Y ]]

be the formal group law. By the condition, the effective Cartier divisor pn[0] is a R-subgroup
scheme of C , which is visibly defined by X pn = 0. Hence, for any R-algebra B , and any x, y ∈ B
with xpn = y pn = 0 in B , we always have(

F (x, y)
)pn = 0 in B .

It suffices to check the universal case, namely, in the case B = R[[X ,Y ]]/(X pn
,Y pn

). Then(
F (X ,Y )

)pn ∈ (
X pn

,Y pn )
,

and comparing the terms of degree pn , we have

(X +Y )pn = X pn +Y pn
,

i.e., (
pn

i

)
= 0, for i = 1, ..., pn −1.

Because

ordp

(
pn

pn−1

)
= 1,

hence
(pn

1

)= pn = 0 and
( pn

pn−1

)= 0 imply that p = 0 in R.

Since pn[0] is defined by the equation X pn = 0 in the formal group, which is also visibly ker(F n
C /S ),

hence they are equal.

Lemma 3.2.6. Let Y be either of three modular curves Y (pn), Y1(pn) or Y bal
1 (pn). Let E0/k be a

supersingular elliptic curve over an algebraically closed field k of characteristic p, and E/W (k)[[T ]]
is its universal formal deformation. Then the scheme Y ×M1,1,EW (k)[[T ]] is the spectrum of a regular
local ring of dimension 2, and it is flat over W (k)[[T ]].
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Proof: The scheme Y ×M1,1,E W (k)[[T ]] is finite over W (k)[[T ]], hence affine, say

Y ×M1,1,E W (k)[[T ]] = Spec (A).

By Lemma 3.2.4, the special fiber has only one point, hence A is a local ring. Let mA be the max-
imal ideal of A. We need to prove that A is a regular of dimension 2, and then since W (k)[[T ]] has
the same dimension, the flatness of A over W (k)[[T ]] automatically follows.

Observe that, since the morphism

Spec (A)

Spec
(
W (k)[[T ]]

)
is finite, and the image contains Spec

(
W (k)[[T ]]⊗Z[ 1

p ]
)
, it must be surjective. Hence the dimen-

sion of A is at least 2. We will show that mA is generated by two elements, and then

2 É dim A É dimk mA/m2
A É 2

indicates the result.

Notice that the elliptic curve EA = E⊗ A carries a universal level structure αuniv with respect to the
moduli problem Y , i.e., the level structure corresponds to the identity morphism 8

Spec (A) Spec (A).
idA

Consider the following moduli problem:

Art(W (k);k) −→ Set

R 7−→



all triples (E/R,α, i ), where E/R is
an elliptic curve over R, α is a level
structure on E/R, and i is an isom.

i : E ⊗R k E0
∼

which pulls back the unique level
structure on E0/k to α⊗k.


where Art(W (k);k) is the category of artinian local W (k)-algebras with residue field k. This is the
moduli problem of “deformation with level structures”, it is straightforward that (EA/A,αuniv) pro-
represents the above moduli functor.

Now we are going to prove the lemma, dividing into three cases. From now on, we choose a formal
parameter X for the formal group of EA/A.

Case I: Y (N ) Let (P,Q) be the universal Drinfeld basis of EA[pn]/A, which is just the univer-
sal level structure αuniv in our previous discussion. Since A is a complete local ring, and E0/k
has a unique Drinfeld basis, the points P,Q both lie in the formal group of EA/A. We claim that
X (P ), X (Q) ∈mA generate mA .

8Recall that the scheme Spec (A) =Y ×M1,1 ,E W (k)[[T ]] is the moduli scheme of level structures (w.r.p. Y ) on the elliptic
curve E/W (k)[[T ]].
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Let R be any artinian local W (k)-algebra with residue field k, and supposeφ : A → R is a homomor-
phism who kills X (P ) and X (Q). By the pro-representability of (EA/A, (P,Q)), the homomorphism
φ corresponds to a triple (E/R, (0,0), i ), where (0,0) is a Drinfeld basis of E [pn]/R. And we have the
equality of effective Cartier divisor

p2n[0] = E [pn],

in particular, the zero section 0 has exact order p2n . Applying Lemma 3.2.5, we have p = 0 in R,
which means that R is a W (k)/(p) ' k-algebra. Moreover we have

ker (pn) = p2n[0] = ker (F 2n
E/R ).

In the following commutative diagram,

0 ker (pn) E E 0

0 ker (F 2n
C /S ) E E (p2n ) 0

id

pn

idE o
F 2n

E/R

it naturally induces an isomorphism

E ' E (p2n ),

and consequently

E ' E (p2n ) ' E (p4n ) ' ... ' E (p2kn ) ' ...

As k becomes sufficiently large, the elliptic curve E (p2kn ) turns to “constant”, in the sense that it is
the pull back of E0/k along the trivial homomorphism of k-alegbras

k −→ R,

because the maximal ideal of R is nilpotent. This means that any homomorphismφ : A → R which
kills X (P ), X (Q) is corresponding to the trivial triple (E0⊗k R/R,α⊗R, i ), in other words, X (P ), X (Q)
generate mA .

Case II: Y1(N ) Let P ∈ EA(A) be the universal point of exact order pn . As before, P lies in the

formal group of EA/A. We claim that mA is generated by X (P ) and T . 9

Let φ : A → R be a homomorphism which kills X (P ) and T . In this case, the homomorphism φ

corresponds to a triple (E/R,0, i ), where 0 has exact order pn in E/R. By Lemma 3.2.5, p = 0 in R,
and hence R is a k-algebra. Consider the composition

W (k)[[T ]] A

R
φ̃

φ

where the top homomorphism is local, which is the structure homomorphism of A as a finite
W (k)[[T ]]-algebra. The homomorphism φ̃ kills both p and T , and because the image of (p,T ) in A
generates mA , hence φ kills mA . This shows our claim.

9The element T indeed lies in mA , since it belongs to the maximal ideal of W (k)[[T ]], and the homomorphism
W (k)[[T ]] → A is local.
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Case III: Y bal(N )
1 Let (K,P,P ′) be the universal Γbal

1 (pn)-structure on EA/A, where K is a cyclic

subgroup scheme of EA/A with rank pn , and P ∈ K(A), P ′ ∈ K′(A) = (
EA[pn]/K

)
(A) are generators.

Choose a formal parameter X ′ for the formal group of the elliptic curve E′
A = EA/K. As before, the

points P,P ′ lie in the formal groups of EA ,E′
A respectively. We claim that A is generated by X (P )

and X ′(P ′).

Let φ : A → R be a homomorphism which kills X (P ) and X ′(P ′). Like in the Case I, we aim to
show that the triple corresponding to φ is trivial. The homomorphism φ corresponds to a triple
(E/R, (K ,0,0′), i ), or equivalently (K = ker(φ))

E E ′,
φ

φt

where the zero sections 0, 0’ generate the cyclic subgroup schemes ker(φ), ker(φt ) respectively.
The zero section 0 has exact order pn in E/R, which implies p = 0 in R, hence R is a k-algebra.
Moreover, we have

ker (φ) = ker (F n
E/R ).

Similarly, the zero section 0’ has exact order pn in E ′/R, and it implies that

ker (φt ) = ker (F n
E/R ).

Therefore
ker (pn) = ker (F 2n

E/R ),

and we only need to follow the arguments that we used in Case I.

Proof of Theorem 3.2.1: Theorem 3.2.3 + Lemma 3.2.4 + Lemma 3.2.6.

3.3 More properties of modular curves

In this section, we study more properties and relations among the three modular curves Y (N ),
Y1(N ) and Y bal

1 (N ).

Theorem 3.3.1. Let E/S be an elliptic curve over an arbitrary scheme S, and let (P,Q) be a Drinfeld
basis of E [N ]/S (N > 1). Then

(1) The point P has exact order N ;

(2) Let K be the cyclic S-subgroup scheme of E/S generated by P, and let E ′ be the quotient elliptic
curve of E by K . Then the image Q ′ of Q has exact order N , and it generates K ′ = E [N ]/K .

Proof: We claim that it suffices to assume the base S is affine and flat over Z. Since having exact
order is a fppf-local property, we may assume that some prime ` is invertible on S, and E/S equips
with a naïve full level ` structure, i.e., an isomorphism of S-group schemes

Z/`Z×Z/`Z ' E [`].
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By passing to the universal case, we may assume that

S = Y (N )×M1,1

(
Y (`)⊗Z

[ 1

`

])
,

and E is the corresponding universal elliptic curve, equipped with a universal full level ` structure
and a universal Drinfeld basis (Puniv,Quniv). Indeed, when ` Ê 3, the moduli stack Y (`)⊗Z[ 1

` ] is
representable, and in the case `= 2, we may replace it by the Legendre moduli scheme Spec (R2).
In any case, S is affine and flat over Z, thus our claim follows. We denote S = Spec (A).

To prove the theorem, firstly observe that the theorem is clearly true over Z[ 1
N ], by Corollary 2.6.8.

(1) By Proposition 2.2.4, the moduli of Γ1(N )-structures on E/A is represented by a closed sub-
scheme of the affine scheme

HomS-Grp(Z/NZ, E) = E [N ],

let us assume that it is defined by functions f1, ..., fr ∈ A. We already know that for any 1 É i É r

fi (P ) = 0 in A
[ 1

N

]
By flatness of A, the homomorphism A → A[ 1

N ] is injective. Therefore fi (P ) = 0 in A for any i .

(2) By Proposition 2.2.6, Z/NZ-Gen(K ′/A) is represented by a closed subscheme of the affine
scheme

HomS-Grp(Z/NZ, K ′) = K ′.

Similarly, by flatness of K ′ over Z, to check that P is a generator of K ′/S, it suffices to check it on
Z[ 1

N ], which is already clear.

Remark: By the theorem, fppf-locally, it is always possible to extend aΓ1(N )-structure to aΓbal
1 (N )-

structure, by choosing a generator of K ′/S. Moreover, we can also extend a Γbal
1 (N )-structure to

a Γ(N )-structure. Suppose Q ′ is a generator of K ′, and Q lies over Q ′ under the quotient by K .
Applying Proposition 2.4.2 to the diagram

0 Z/NZ Z/NZ⊕Z/NZ Z/NZ 0

0 K (S) E [N ](S) K ′(S)

P (P,Q) Q′

thus (P,Q) is a Drinfeld basis extended by the Γbal
1 (N )-structure.

Corollary 3.3.2. There are natural morphisms of moduli stacks

Y (N ) −→ Y bal
1 (N ) −→ Y1(N ) −→ M1,1

(P,Q) 7−→ (P,Q ′) 7−→ P

which are all finite flat, of degree N , ϕ(N ) and N 2 ·∏d |N (1− 1
d 2 ) respectively.

Proof: By the Regularity Theorem 3.2.1, all the moduli stacks are finite flat over M1,1. Moreover,
since they are all regular with the same dimension, the morphisms are automatically flat. Finally,
to count the degree, one only needs to restrict on Z[ 1

N ].
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Theorem 3.3.3. Let E/S be an elliptic curve over an arbitrary scheme S, and let (P,Q) be a pair of
points in E [N ](S) (N > 1). Suppose d is any divisor of N , then:

(1) The pair (P,Q) is a Drinfeld N -basis if and only if (dP,dQ) is a Drinfeld N /d-basis;

(2) The point P has exact order N if and only if dP has exact order N /d.

Proof: By the principle of factorization, we may assume N = pn and d = p. And since (2) can be
deduced from (1) by Theorem 3.3.1, we shall concentrate on (1).

The “only if” part: Apply the same strategy as we did in the proof of Theorem 3.3.1, we reduce to
the case that S is affine and flat over Z. The moduli of Γ(pn−1)-structure on E/S is represented by
a closed subscheme of the affine scheme E [pn−1]×E [pn−1], and the assertion is clear over Z[ 1

p ].
Hence by flatness, the conclusion extends to Z.

The “if” part: As before, we assume that the base S is affine and flat over Z. Observe that the fiber
product SE/S

SE/S E [pn]×E [pn]

Y (pn−1)×M1,1,E S E [pn−1]×E [pn−1]

([p], [p])

represents the following moduli problem:

Sch/S −→ Set

T 7−→
{

all pairs (P,Q) in E [pn](S) such that
(pP, pQ) is a Drinfeld pn−1-basis

}
The scheme SE/S is the closed subscheme of the affine scheme E [pn]×E [pn] which is flat over Z.
Since the assertion is clear over Z[ 1

p ], by flatness, it extends to Z.

Corollary 3.3.4. Let N > 1 be an integer and d a divisor of N . Then there is a commutative diagram
of modular curves

Y (N ) Y (N /d)

Y1(N ) Y1(N /d),

d

d

where the vertical morphisms are from Corollary 3.3.2, and the horizontal morphisms are finite flat.

Proof: The horizontal morphisms are just by sending a Drinfeld N -basis (P,Q) (resp. a point P of
exact order N ) to the Drinfeld N /d-basis (dP,dQ) (resp. a point dP of exact order N /d). Let U be
an étale atlas of M1,1, and E/U the elliptic curve inherits from the morphism U →M1,1. Consider
the cartesian diagrams:

Y (N )×M1,1 U E [N ]×E [N ] Y1(N )×M1,1 U E [N ]

Y (N /d)×M1,1 U E [N /d ]×E [N /d ] Y1(N /d)×M1,1 U E [N /d ]

([d ], [d ]) [d ]
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it is known that the morphisms [d ] and ([d ], [d ]) are finite flat, hence so are both the left side
morphisms. This implies that the horizontal morphisms in the corollary are finite flat. The com-
mutativity of the diagram is obvious.

Theorem 3.3.5. Let E/S be an elliptic curve over an arbitrary scheme S, and N Ê 1 is an integer.

(1) Let (P,Q) be a Drinfeld N -basis of E/S, then eN (P,Q) is a primitive N -th root of unity;

(2) Let (φ,P,P ′) be a Γbal
1 (N )-structure 10 on E/S, then < P,P ′ >φ is a primitive N -th root of unity.

Proof: Use the intrinsic description of Γbal
1 (N )-structures, and the fact that we can complete a

Γbal
1 (N )-structure to a Γ(N )-structure, it suffices to prove (1).

The assertion is obviously true overZ[ 1
N ]. Apply the same reduction, we may assume that the base

S = Spec (A) is affine and flat overZ. LetΦN be the cyclotomic polynomial. Since we already know
that ΦN (eN (P,Q)) = 0 in A[ 1

N ], by flatness of A, it is also zero in A, i.e., eN (P,Q) is primitive.

Definition 3.3.6. The primitive N -th root of unity eN (P,Q) is called the determinant of the Drinfeld
basis (P,Q).

Corollary 3.3.7. The moduli stacks Y (N ) and Y bal
1 (N ) are naturally defined over Z[ζN ], in other

words, their structure morphisms naturally factor through M1,1 ⊗Z[ζN ]:

Y (N ) M1,1 Y bal
1 (N )

M1,1 ⊗Z[ζN ]

Proof: It is straightforward, since by Theorem 3.3.5, in these cases, the primitive root ζN lies in the
base S of an elliptic curve E/S with a Γ(N )- or a Γbal

1 -structure.

10Here φ is a N -isogeny E → E ′, and P,P ′ are generators of ker(φ) and ker(φt ) respectively.
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4
Theory of Cyclic Group Schemes: Revisited

In this chapter, we will study cyclic group schemes in details. In previous chapter, we have proved
the Regularity Theorem 3.2.1 except for the modular curve Y0(N ), which we shall complete the
case in current chapter.

4.1 The scheme of generators

Recall that by Proposition 2.2.6, the functor Z/NZ-Gen(G/S) of a finite flat commutative cyclic S-
group scheme of rank N is represented by a closed subscheme of HomS-Grp(Z/NZ, G) =G , which
locally on S is defined by finitely many equations. From now on, we call it the scheme of generators
of G , and denote by G×. We know that the S-scheme G× is finite and finitely presented over S, and
its formation commutes with any base change, that is to say, for any base change S′ → S, we have

(G ×S S′)× = G××S S′.

In this section, we will give a concrete characterization of G×. Remind that the generators of the
finite abelian group Z/NZ are exactly those numbers 1 É d É N such that (d , N ) = 1. In the case
that G is étale over S, the situation is obviously similar. In the étale case, let P be a (fppf-local)
generator of G , then the scheme of generators is

G× = ∑
(d ,N )=1, d mod N

[dP ],

in particular, it is locally free of rank ϕ(N ). In general case, this is still true, but not so obvious.

Theorem 4.1.1. Let E/S be an elliptic curve over an arbitrary scheme S, and G ⊂ E [N ] (N Ê 1) is a
cyclic S-subgroup scheme of rank N over S which is generated by P ∈G(S). Then

G× = D := ∑
(d ,N )=1, d mod N

[dP ],

in particular, G× is finite locally free of rank ϕ(N ) over S.
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Proof: As we have seen, the situation is obvious if N is invertible on S. Firstly, we show that the
effective Cartier divisor D lies inside G×. By passing to the universal case, we may assume that the
base S is affine and flat over Z. Consider the pull-back of G along the structure morphism of D :

G GG GD

S G D

∆G σ

where ∆G is the diagonal morphism of G , which is the tautological section of GG /G , and σ is the
pull-back of ∆G to GD . We claim that the relation D ⊂G× is equivalent to that the D-valued point
σ generates the cyclic D-group scheme GD . Indeed, the fact that section σ generates GD means
that

σ ∈ (GD )×(D) = (G××S D)(D),

which by the definition of σ, it means exactly that the image of D ,→G lies in G×.

Since the base S is affine and flat over Z, the finite group scheme G/S is affine, say G = Spec (B).
Let { fi } be the defining equations of the closed subscheme G× in G , since we already know that

fi (σ) = 0 in Γ(D,OD )⊗Z
[ 1

N

]
,

by flatness, we have
fi (σ) = 0 in Γ(D,OD ),

which shows that D ⊂G×.

Now let us consider the following two moduli stacks over M1,1:

P1: The objects are quadruples (E/S,G/S,P,Q), where E/S is an elliptic curve over a scheme
S, G ⊂ E [N ] is a cyclic S-subgroup scheme of rank N , P ∈ G(S) is a generator of G/S, and
Q ∈ D(S). Morphisms are obvious cartesian diagrams, such that they are compatible with
the quadruples.

P2: The objects are quadruples (E/S,G/S,P,Q), where E/S is an elliptic curve over a scheme S,
G ⊂ E [N ] is a cyclic S-subgroup scheme of rank N , and P,Q ∈ G(S) are generators of G/S.
Morphisms are obvious cartesian diagrams, such that they are compatible with the quadru-
ples.

As we already proved that D ⊂G×, there is a natural morphism

Φ : P1 −→ P2,

we need to prove that it is an isomorphism. In order to prove it, we apply a similar strategy as in
the Axiomatic Regularity Theorem. By the principle of factorization, we may assume that N is a
prime power pn .

Theorem 4.1.2 (Axiomatic Isomorphism Theorem). Fix a prime number p. Let

Φ : P1 −→ P2

be a morphism of moduli stacks of elliptic curves. Suppose that Φ satisfies the following axioms:
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I1 P1, P2 satisfies R1, R3 and R4-1 (cf. Theorem 3.2.3);

I2 Φ⊗Z[ 1
p ] is an isomorphism;

I3 Let E0/k be a supersingular elliptic curve over an algebraically closed field k of characteristic
p, and E/W (k)[[T ]] its universal formal deformation, then the morphism

Φ×E W (k)[[T ]] : MP1
×M1,1,E W (k)[[T ]] −→ MP2

×M1,1,E W (k)[[T ]]

is an isomorphism.

Then Φ is an isomorphism.

Proof: The argument is essentially the same as in the proof of the Axiomatic Regularity Theorem
3.2.3, except for that the open subset Ui ⊂ Si now stands for the locus of the morphism Φ× Si

being isomorphic, which is indeed open.

It remains to verify these axioms for the morphism Φ. Observe that we have natural morphisms
from Pi to Y1(pn), which are given by forgetting the point Q:

Pi −→ Y1(pn)

(E/S,G/S,P,Q) 7−→ (E/S,G/S,P ),

and these morphisms are both representable and finite, concretely,

P1 ×Y1(N ),E S = D

P2 ×Y1(N ),E S = G×

Therefore the compositions
Pi −→ Y1(pn) −→ M1,1

are also representable, and finite. This verifies the axiom R1. The axioms R3 and R4-1 are obvious.

Let Ai be the affine coordinate rings of Pi ×M1,1,E W (k)[[T ]] respectively, and let A be the affine
coordinate ring of Y1(pn) ×M1,1,E W (k)[[T ]]. We transform the diagram of morphisms of affine
schemes into the diagram of homomorphisms of local rings:

A1 A2

A

W (k)[[T ]]

Φ∗

we need to show that Φ∗ is an isomorphism. In order to do so, we give concrete characterizations
of these local rings. Choose a formal parameter X of the formal group Ê of E/W (k)[[T ]].

• Recall that A is regular of dimension 2, where T and the coordinate of P are parameters (cf.
Lemma 3.2.6 Case II). The coordinate of P should satisfy the following condition: the closed
subscheme defined by

pn∏
d=1

(
X − [d ](P )

) = 0
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is a subgroup scheme. Let a be the ideal which expresses this condition. Then

A =W (k)[[T,P ]]
/
a.

• A1 = A[[Q]]
/
a1, where a1 is the principal ideal generated by∏

(d ,N )=1, d mod N

(
Q − [d ](P )

)
.

• A2 = A[[Q]]
/
a2, where a2 is the ideal generated by the coefficients of the polynomial:

pn∏
d=1

(
X − [d ](Q)

) −
pn∏

d=1

(
X − [d ](P )

) = 0.

By the fact that D ⊂G×, we have a1 ⊃ a2, hence the homomorphismΦ∗ is surjective. Therefore we
have the short exact sequence:

0 ker (Φ∗) A2 A1 0,Φ∗

and we want to prove that ker(Φ∗) = 0. As a finitely generated A[[Q]]-module, it suffices to show
that ker(Φ∗)/(Q) = 0, by Nakayama’s Lemma.

Consider the endomorphism of multiplying Q on the A-algebra A1. We claim that it is injective.
Since A is regular, therefore integral, we only need to show that the determinant of multiplying Q
is not zero. The calculation is straightforward:

det (Q) = ∏
(d ,N )=1, d mod N

[d ](P ),

it is indeed nonzero.

By the Snake Lemma, from the diagram

0 ker (Φ∗) A2 A1 0

0 ker (Φ∗) A2 A1 0,

×Q ×Q ×Q

we obtain a short exact sequence:

ker
{
Q : A1 → A1

}= 0 ker (Φ∗)
/

(Q) A2
/

(Q) A1
/

(Q) 0.
Φ∗/

(Q)

Therefore it remains to show that the homomorphism Φ∗/(Q) is an isomorphism.

It is clear that

• A1
/

(Q) = A
/
a′1, where a′1 is the principal ideal generated by∏

(d ,N )=1, d mod N
[d ](P ).
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• A2
/

(Q) = A
/
a′2, where a′2 is the ideal generated by coefficients of the polynomial:

X pn −
pn∏

d=1

(
X − [d ](P )

) = 0.

and a′1 ⊃ a′2, we need to show the inverse, i.e., a′1 ⊂ a′2.

The coefficient of the degree pn −ϕ(pn) term in the polynomial X pn −∏pn

d=1

(
X − [d ](P )

)
is∑{

d1,...,dϕ(pn )

}
⊂
{

1,...,pn
}( ϕ(pn )∏

i=1

[di ](P )

)
. (†)

Since we know that
[d ](X ) = d X +higher terms,

in particular, when (d , p) = 1,
[d ](X ) = unit ·X ,

and when p|d ,
[d ](X ) ∈ mA ·X .

Therefore the expression (†) is equal to

unit ·Pϕ(pn ) = unit · ∏
(d ,N )=1, d mod N

[d ](P ),

hence a′1 ⊂ a′2. This completes our proof for Theorem 4.1.1.

4.2 Regularity of Y0(N )

In this section, we will complete the proof of Regularity Theorem 3.2.1 for the case of Y0(N ).

We introduce an auxiliary moduli problem Isog(N ), whose objects are pairs (E/S,G), where E/S is
an elliptic curve over S, and G ⊂ E [N ] is a finite flat commutative S-subgroup scheme of rank N .

Lemma 4.2.1. The moduli problem Isog(N ) is relatively representable, and finite over M1,1.

Proof: The relative representability is a consequence of the representability of Quot schemes. 1

The finite flat group scheme E [N ]/S is the spectrum of an OS -algebra E , and given a finite flat
commutative S-subgroup scheme G of E [N ] is equivalent to give a quotient of E , whose kernel is
locally free of rank N . Hence Isog(N )×M1,1,E S is represented by a closed subscheme of QuotE /S/Z,
in particular, it is projective over S. It remains to check that it is quasi-finite.

By the principle of factorization, we may assume N = pn . Let E/k be any elliptic curve over an
algebraically closed field k. If char(k) 6= p, it is clear. If char(k) = p, and E is supersingular, then
the choice of G is unique. If E is ordinary, we have

E [N ] ' µpn ×Z/pnZ.

1For the definition and their representability, cf. Nitsure [7].
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Since k is perfect, the connected-étale exact sequence splits, i.e., we have an isomorphism

G ' G0 ×S Gét.

Therefore the only possible choices of G are of the form µpd ×pn−dZ/pnZ, which are indeed only
finitely many.

Lemma 4.2.2. Let E/S be an elliptic curve over S, N Ê 1 an integer, and G ⊂ E [N ] a finite flat
commutative S-subgroup scheme. Then there exists a closed subscheme W ⊂ S, which is locally on
S defined by finitely many equations, and is universal for the condition of cyclicity of G.

Proof: This is an immediate consequence of the Flattening Stratification.2 We view G× as an OS -
algebra on S. Notice that any fiber of G× has either rankϕ(N ) or 0, and the required locus consists
of points s such that G×

s has rank ϕ(N ), by Flattening Stratification, this locus is a closed sub-
scheme W ⊂ S. Since the formation of G× commutes with any base change, W is indeed universal
for cyclicity of G .

Theorem 4.2.3. The moduli stack Y0(N ) is relatively representable, finite flat over M1,1 of rank

N 2

ϕ(N )

∏
d |N

(
1− 1

d 2

)
,

and it is regular of dimension two.

Proof: Let E/S be any elliptic curve. By Lemma 4.2.2, Y0(N )×M1,1,E S is represented by a closed
subscheme of Isog(N )×M1,1,E S. Therefore Y0(N ) is relatively representable and finite over M1,1.

There is a natural morphism
Y1(N ) −→ Y0(N ),

given by forgetting the generator. This morphism is representable, concretely, Y1(N )×Y0(N ),E S is
the scheme of generators of the universal cyclic group scheme over Y0(N ). Moreover, in this case,
Y0(N ) is also regular of dimension 2 (cf. Altman-Kleiman [2] VII, Theorem 4.8). In particular, as
Y0(N ) and M1,1 having the same dimension, Y0(N ) is automatically flat over M1,1.

Finally, to compute the rank of Y0(N ) over M1,1, one only needs to consider any geometric fiber,
i.e., the rank is equal to the number of cyclic subgroups of order N in Z/NZ×Z/NZ.

4.3 Standard factorization

In this section, we further investigate the structure theory of cyclic subgroup schemes and cyclic
isogenies of elliptic curves.

Lemma 4.3.1. Let E/S be an elliptic curve over S, and G ⊂ E [N ] a cyclic S-subgroup scheme of rank
N . Then

(1) For any divisor d of N , there exists a standard cyclic subgroup scheme Gd ⊂G of rank d, such
that fppf-locally, if P is a generator of G, then Gd is generated by (N /d)P.

2cf. Nitsure [7] Theorem 5.13.

64



MASTER THESIS, YULIANG HUANG

(2) The quotient group scheme G ′ = G/Gd is a cyclic subgroup scheme of E ′ = E/Gd with rank
N /d. And if P is a generator of G, then its image P ′ in G ′ is also a generator of G ′.

(3) If d |d ′|N , then Gd is the standard cyclic subgroup scheme of Gd ′ with rank d, and the quotient
group scheme Gd ′/Gd is the standard cyclic subgroup scheme of G/Gd with rank d ′/d.

Proof: (1) The question is fppf-local, we may assume that G admits a generator P . By Theorem
3.3.3 (2), the point (N /d)P has exact order d , hence it generates a cyclic subgroup scheme Gd ⊂G .
To show that it is “standard”, we need to show that Gd does not depend on the generator. Let P ′
be another generator of G , and it generates a cyclic subgroup scheme G ′

d . In order to show that
Gd =G ′

d , by reducing to the universal case, we may assume that S is noetherian and flat over Z.

The subgroup schemes Gd and G ′
d are indeed contained in G . We claim that the locus of the con-

dition Gd =G ′
d is closed.

Since G is affine over S, let E be the corresponding OS -algebra, and let I ,J be the ideal sheaves
of Gd ,G ′

d respectively. Then the locus of the condition Gd =G ′
d is exactly the closed subscheme of

S such that the homomorphisms

I E
/
J , J E

/
I

are zero homomorphisms. This shows the claim. Moreover, the locus obviously contains the dense
(by flatness) open subset S ⊗Z[ 1

N ], hence Gd =G ′
d holds on S.

(2) As before, by passing to the universal case, we assume that S is flat over Z. By Lemma 4.2.2,
the cyclicity is a closed condition. So the locus of G ′ being cyclic is closed on S, while the locus
obviously contains S ⊗Z[ 1

N ], it must be S itself. Therefore G ′ is a cyclic subgroup scheme of E ′.

Similarly, for the latter assertion, the locus of P ′ being a generator of G ′ is expressed by the equality
of effective Cartier divisors

G ′ = ∑
d mod N /d

[dP ],

which is indeed a closed condition. And the locus contains S ⊗Z[ 1
N ], hence it must be S itself, i.e.,

P ′ generates G ′.

(3) For the first assertion, it suffices to show that Gd = (Gd ′ )d is a closed condition, we already
proved it in (1). For the latter assertion, do the same for the condition Gd ′/Gd = (G/Gd )d ′/d .

Definition 4.3.2. The standard factorization of a cyclic N -isogeny

E E ′′φ

ker=G

with respect to a divisor d of N , is the factorization of φ

E E ′ E ′′φd

ker=Gd

φ′

ker=G ′

into a cyclic d-isogeny composed by a cyclic N /d-isogeny.
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Definition 4.3.3. A pair of composable isogenies (φ1,φ2)

E E ′ E ′′φ1

deg= d1

φ2

deg= d2

is called cyclic in standard order, if φ2 ◦φ1 is a cyclic d1d2-isogeny, and the above factorization is
standard (w.r.t. the divisor d1 of d1d2).

Example 4.3.4. Let E/S be an ordinary 3 elliptic curve over a Fp -scheme S. The morphism [p] is
cyclic (cf. Lemma 5.1.1), and its standard factorization is

E E (p) E ,
FE/S VE/S

where VE/S is the Verschiebung, i.e., the dual isogeny of the relative Frobenius FE/S . Whereas the
factorization

E (p) E E (p),
VE/S FE/S

is non-standard. For the reason, see the remark behind the Standard Order Criterion 4.3.9.

Proposition 4.3.5. Consider a pair of composable isogenies (φ1,φ2)

E E ′ E ′′.
φ1

deg= d1

φ2

deg= d2

Suppose that φ=φ2 ◦φ1 is a cyclic isogeny, and φ2 is étale, then (φ1,φ2) is cyclic in standard order.

Proof: The question is fppf-local, we may assume that G = ker(φ) admits a generator P =ψ(1):

ψ : Z/dZ −→ G(S),

where d = d1d2. The generator ψ induces the commutative diagram

0 d2Z
/

dZ Z
/

dZ Z
/

d2Z 0

0 ker (φ1) G ker (φ2) 0,

ψ

by Proposition 2.4.1, the left and right sides are generators, in particular, d2P generates ker(φ1),
hence ker(φ1) =Gd1 , i.e., (φ1,φ2) is cyclic in standard order.

Proposition 4.3.6. Consider a pair of composable cyclic isogenies (φ1,φ2) of elliptic curves over S

E E ′ E ′′,
φ1

deg= d1

φ2

deg= d2

and their dual isogenies

E E ′ E ′′.
deg= d1

φt
1

deg= d2

φt
2

Then (φ1,φ2) is cyclic in standard order if and only if (φt
2,φt

1) is cyclic in standard order.

3It means that any geometric fiber of E/S is an ordinary elliptic curve.
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Proof: Clearly we only need to prove the “only if” part. Denote φ = φ2 ◦φ1, and d = d1d2. By
passing to the universal case, we may assume that S is flat over Z. It amounts to prove the relation
ker(φt

2) = (
ker(φt )

)
d2

, which is a closed condition. Since the case is obviously true on S ⊗Z[ 1
d ],

hence by flatness of S, it is true on S.

Proposition 4.3.7. Consider a pair of composable isogenies (φ1,φ2)

E E ′ E ′′,
φ1

deg= d1

φ2

deg= d2

such that (d1,d2) = 1. Then TFAE:

(1) φ1,φ2 are cyclic;

(2) φ=φ2 ◦φ1 is cyclic;

(3) (φ1,φ2) is cyclic in standard order.

Proof: Letφ=φ2◦φ1, G = ker(φ). By the condition (d1,d2) = 1, we have the canonical factorization

G = G1 ×G2 = G[d1]×G[d2],

with rk(Gi ) = di .

(1) ⇐⇒ (2): Indeed, G is cyclic if and only if G1 and G2 are both cyclic. We know that ker(φ1) is
killed by d1, hence ker(φ1) ⊂ G1, and because ker(φ1) and G1 have the same rank, they must be
equal. Moreover, ker(φ2) 'G/ker(φ1) 'G2, hence φ is cyclic if and only if φ1,φ2 are cyclic.

(2) ⇐⇒ (3): This is straightforward. Suppose that (fppf-locally) P is a generator of G , then ker(φ1) =
G1 is generated by d2P , hence ker(φ1) =Gd1 .

Theorem 4.3.8 (Backing-Up Theorem). Let

E E ′ E ′′φd φ′

be the standard factorization of the cyclic N -isogeny φ = φ′ ◦φd with respect to the divisor d of N .
Then

(1) If a point P ∈ ker(φ)(S) generates G = ker(φ), then φd (P ) generates G ′ = ker(φ′);

(2) If N and N /d have the same prime factors, then the converse of (1) is also true.

Proof: (1) As usual, we assume that S is flat over Z. The condition that φd (P ) generates G ′ is a
closed condition, and its locus obviously contains S ⊗Z[ 1

N ], therefore by flatness, the condition is
true on S.

(2) Assume that S is flat over Z. The case over S ⊗Z[ 1
N ] claims that if G is a cyclic subgroup of

Z/NZ×Z/NZ of order d , where N and N /d have the same prime factors, then the preimage of
any generator of the cyclic group

G ′ = G
/

Gd
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is a generator of G . By the principle of factorization, we may reduce to the case that N = pn and
d = pk for k < n, whence the case is obvious. The question (2) amounts to prove that the diagram

G× (G ′)×

G G ′

φd

φd

is cartesian, i.e., to verify the relation

G× = G ×G ′ (G ′)×

inside G . As we have shown in the proof of Lemma 4.3.1, this is a closed condition. Since the case
is clear on S ⊗Z[ 1

N ], by flatness, it is also true on S.

Theorem 4.3.9 (Standard Order Criterion). Let (φ1,φ2) be a pair of composable cyclic isogenies

E E ′ E ′′.
φ1

deg= d1

φ2

deg= d2

Suppose that d1,d2 have the same prime factors. Then (φ1,φ2) being cyclic in standard order is
equivalent to one of the following equivalent conditions:

(1) For any generator P ′ ∈ ker(φ2)(S) of ker(φ2), and any P ∈ E(S′) for a fppf base change S′ → S
such that φ1(P ) = P ′, the point d2P generates ker(φ1)×S S′/S′;

(2) For some generator P ′ ∈ ker(φ2)(S) of ker(φ2), and some P ∈ E(S′) for a fppf base change S′ → S
such that φ1(P ) = P ′, the point d2P generates ker(φ1)×S S′/S′;

Proof: Numbering the assertion “(φ1,φ2) is cyclic in standard order” by (0).

(1) =⇒ (2): Trivial.

(2) =⇒ (0): Base change to S′, we may assume that P ∈ E(S).

Since d2P generates ker(φ1), it has exact order d1. By Theorem 3.3.3 (2), the point P has exact
order d = d1d2. Let G be the cyclic group scheme generated by P . The standard rank d1 cyclic
subgroup scheme of G is clearly ker(φ1), hence the standard quotient G ′ =G/Gd1 is the cyclic sub-
group scheme of E ′/S generated by P ′ = φ1(P ), i.e., G ′ = ker(φ2). By Backing-Up Theorem 4.3.8,
the point P generates ker(φ), i.e., G = ker(φ). This shows that (φ1,φ2) is cyclic in standard order.

(0) =⇒ (1): If (φ1,φ2) is cyclic in standard order, by the Backing-Up Theorem 4.3.8, the condition
that P ′ = φ1(P ) generates ker(φ2) implies that P generates ker(φ). Therefore by the definition of
standard factorization, the point d2P generates ker(φ1).

Remark: In the Example 4.3.4, the factorization

E (p) E E (p)VE/S FE/S

of the p2-isogeny [p] is non-standard. Choose (fppf-locally) a generator Q ∈ E(S) of ker(FE/S ), and
a point P ∈ E (p)(S) such that VE/S (P ) =Q. By Standard Order Criterion 4.3.9, if the above factoriza-
tion is standard, then pP must generate ker(VE/S ). But pP = 0, this cannot be the case.
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Definition 4.3.10. A sequence of composable cyclic isogenies

E0 E1 ... En
φ1

deg= d1

φ2

deg= d2

φn

deg= dn

is called cyclic in standard order, if φ=φn ◦ ...◦φ1 is cyclic, and

ker (φi ◦ ...◦φ1) = Gd1·...·di for any 1 É i É n.

Theorem 4.3.11. Let (φ1, ...,φn) be a sequence of composable cyclic isogenies

E0 E1 ... En
φ1

deg= d1

φ2

deg= d2

φn

deg= dn

such that d1, ...,dn have the same prime factors. Then (φ1, ...,φn) is cyclic in standard order if and
only if (φi ,φi+1) is cyclic in standard order for any 1 É i É n −1.

Proof: The “only if” part is clear from the definition and Lemma 4.3.1 (3).

Now we show the “if” part by induction on n. When n = 2, there is nothing to prove. Assume that
any composable subsequence of (φ1, ...,φn) with length less than n is cyclic in standard order. It
amounts to show that the pair (φn−1 ◦ ...◦φ1,φn)

E0 En−1 En
φn−1 ◦ ...◦φ1 φn

is cyclic in standard order. The question is fppf-local, we may assume that ker(φn) admits a gen-
erator Pn−1 ∈ En−1(S), and choose a sequence of points (P0, ...,Pn−1) such that

Pi+1 = φi+1(Pi ) for any 0 É i É n −2.

By Standard Order Criterion 4.3.9, it remains to show that the point dnP0 generates ker(φn−1 ◦ ...◦
φ1). Consider the pairs (φn−2 ◦ ...◦φ1,φn−1) and (φn−1,φn)

E0 En−2 En−1 En ,
φn−2 ◦ ...◦φ1 φn−1 φn

by induction, these pairs are both cyclic in standard order. Since Pn−1 = φn−1(Pn−2) generates
ker(φn), by Standard Order Criterion 4.3.9, the point dnPn−2 generates ker(φn−1). And since

(φn−2 ◦ ...◦φ1)(dnP0) = dnPn−2,

by Backing-Up Theorem 4.3.8, the point dnP0 generates ker(φn−1 ◦ ...◦φ1).
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5
Igusa Curves

In this chapter, we study a new moduli problem of elliptic curves, the Igusa moduli problem, which
happens only in positive characteristic p > 0. The Igusa moduli problem plays an important role
in the study of reduction mod p of modular curves, more precisely, the Igusa moduli stacks are
the underlying reduced curves associated to the irreducible components of the reduction mod p
of the four basic modular curves.

5.1 Some properties of relative Frobenius

Let E/S be an elliptic curve over a Fp -scheme S. The relative Frobenius FE/S is a cyclic p-isogeny,
since the zero section 0 is a generator of ker(FE/S ). The relative Verschiebung VE/S , as the dual
isogeny of FE/S , is also a cyclic p-isogeny.

The iterated relative Frobenius F n
E/S and Verschiebung V n

E/S are cyclic pn-isogenies. The standard
factorization of the iterated relative Frobenius F n

E/S is

E E (p) E (p2) ... E (pn ),
FE/S FE/S FE/S FE/S

and the standard factorization of V n
E/S is

E (pn ) E (pn−1) E (pn−2) ... E .
VE/S VE/S VE/S VE/S

Lemma 5.1.1. Let E/S be an elliptic curve over a Fp -scheme S. Then the p2n-isogeny [pn] is cyclic,
and its standard factorization (w.r.t. the divisor pn of p2n) is

E E (pn ) E .
F n

E/S V n
E/S
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Proof: Choose (fppf-locally) a generator Q ∈ E (pn )(S) of ker(V n
E/S ), and P ∈ E(S) such that F n

E/S (P ) =
Q. Since pnP = 0 generates ker(F n

E/S ), by Standard Order Criterion 4.3.9, the pair (F n
E/S ,V n

E/S ) is
cyclic in standard order. In particular, [pn] is cyclic.

Corollary 5.1.2. Let E/S be an elliptic curve over a Fp -scheme S. Then S is a Fp -scheme if and only
if the p2n-isogeny [p] is cyclic.

Proof: Choose (fppf-locally) a generator P ∈ E(S) of ker([p]), then pnP = 0 has exact order pn . By
Lemma 3.2.5, p = 0 in S.

Proposition 5.1.3. Let E/S be an elliptic curve over a Fp -scheme S, and P ∈ E [pn](S) a pn-torsion
point. Then TFAE:

(1) P is a generator of E [pn];

(2) (0,P ) is a Drinfeld basis of E [pn]/S;

(3) There is an elliptic curve En/S with an isomorphism E ' E (pn )
n , and the image of P generates

ker(V n
En /S ).

Proof: (1) ⇐⇒ (2): By Backing-Up Theorem 4.3.8, (1) is equivalent to the condition that F n
E/S (P )

is a generator of ker(V n
E/S ), which means that

(
ker(F n

E/S ),0,F n
E/S (P )

)
is a Γbal

1 (pn)-structure on E/S.
This is equivalent to the condition (2). 1

(2) =⇒ (3): Since (0,P ) is a Drinfeld basis, the point P has exact order pn . Let K be the cyclic
subgroup scheme of E [pn] generated by P , and let En = E/K be the quotient elliptic curve. Let φn

be the pn-isogeny
φn : E −→ En ,

where ker(φn) = K . The point φn(0) = 0 necessarily generates ker(φt
n), while at the same time 0

generates the cyclic subgroup scheme ker(F n
En /S ), which has the same rank pn . Therefore F n

En /S is
the dual isogeny of φn , and

E ' E (pn )
n .

Moreover, because φn =V n
En /S , the point P generates ker(V n

En /S ).

(3) =⇒ (1): The standard factorization of [pn] on E is

E ' E (pn )
n E (p2n )

n E (pn )
n .

F n
E/S V n

E/S

On the one hand, pnP = 0 obviously generates ker(F n
E/S ). On the other hand, since P generates

ker(V n
En /S ), after the base change by the iterated absolute Frobenius F n

ab:

E (p2n )
n E (pn )

n S

E (pn )
n En S

V n
E/S

F n
ab

V n
En /S

the point F n
E/S (P ) generates ker(V n

E/S ). By Standard Order Criterion 4.3.9, P generates E [pn].

1See the remark behind Theorem 3.3.1.
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Proposition 5.1.4. Let E/S be an elliptic curve over a Fp -scheme S. Then:

(1) A point P ∈ E(S) is a generator of ker([pn]) if and only if pn−1P is a generator of ker([p]);

(2) A point P ∈ E(S) is a generator of ker([pn]) if and only if pn−1FE/S (P ) is a generator of ker(VE/S );

(3) A point Q ∈ E (pn )(S) is a generator of ker(V n
E/S ) if and only if V n−1

E/S (Q) is a generator of ker(VE/S ).

Proof: (1) By Proposition 5.1.3, (0,P ) is a Drinfeld basis of E [pn], hence by Theorem 3.3.3, (0, pn−1P )
is a Drinfeld basis of E [p]. Therefore, again by Proposition 5.1.3, pn−1P is a generator of ker([p]).

(2) Consider the standard factorization of [pn]:

E E (p) E ,
pn−1FE/S VE/S

by Backing-Up Theorem 4.3.8, P ∈ E(S) generates ker([pn]) if and only if pn−1FE/S (P ) generates
ker(VE/S ).

(3) Consider the standard factorization of V n
E/S :

E (pn ) E (p) E ,
V n−1

E/S VE/S

again, apply Backing-Up Theorem 4.3.8.

Now consider an elliptic curve E/k defined over an algebraically closed field of characteristic p.
Let P ∈ E (p)(k) be a generator of ker(VE/k ), then we have two possibilities:

1. P = 0. In this case, by Proposition 5.1.4, the zero section 0 generates ker([pn]) and ker(V n
E/k )

for any n Ê 1. In particular, ker([pn]) = ker(F 2n
E/k ) and ker(V n

E/k ) = ker(F n
E/k ).

2. P 6= 0. In this case, ker(VE/k ) is étale over k, and the generator P defines an isomorphism:

P : Z/pZ ker(VE/k ).∼

Moreover, choose a series of points Pi ∈ E (p i )(k) for i Ê 1, such that

P1 = P, V
E (pi )/k

(Pi+1) = Pi for i Ê 1.

Then by Proposition 5.1.4 (3), Pi generates ker(V i
E/k ) for any i Ê 1, and it defines an isomor-

phism

Pi : Z/p iZ ker(V i
E/k ).∼

The first (resp. second) case happens when E/k is supersingular (resp. ordinary). In the ordinary
case, ker(V n

E/k ) is isomorphic to the constant group scheme Z/pnZ, and ker(F n
E/k ) is its Cartier

dual, which is isomorphic to µpn . Thus we have the short exact sequence of k-group schemes:

0 µpn E [pn] Z/pnZ 0,

in particular, we have E [pn](k) 'Z/pnZ. Passing to the direct limit, the short exact sequence gives

0 µp∞ E [p∞] Qp /Zp 0,
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which is visibly splitting, i.e., we have the isomorphism

E [p∞] ' µp∞ ×Qp /Zp .

In particular, the p-divisible group E [p∞] has infinitely many k-rational points:

E [p∞](k) ' Qp /Zp .

By passing to geometric fibers, the above discussion immediately gives the following result:

Proposition 5.1.5. Let E/S be an elliptic curve over a Fp -scheme S. Then TFAE:

(1) E/S is ordinary;

(2) V n
E/S is étale for some n Ê 1;

(3) V n
E/S is étale for any n Ê 1;

(4) Lie(VE/S ) : Lie(E/S)(p) → Lie(E/S) is an isomorphism;

(5) Any geometric fiber Es contains infinitely many p-power order points.

Corollary 5.1.6. Let φ : E → E ′ be an isogeny of elliptic curves over a Fp -scheme S. Then E/S is
ordinary if and only if E ′/S is ordinary.

Proof: By passing to geometric fiber, we may assume that S is a geometric point Spec (k). The
isogeny φ induces an isogeny of p-divisible groups:

φ : E [p∞] −→ E ′[p∞],

taking the k-rational points, it gives a homomorphism

φ(k) : E [p∞](k) −→ E ′[p∞](k)

with finite kernel. In particular, E [p∞](k) and E ′[p∞](k) have the same cardinal. By Proposition
5.1.5 (5), this assertion is equivalent to say that E/S is ordinary if and only if E ′/S is ordinary.

5.2 Igusa moduli stack

Definition 5.2.1. Let E/S be an elliptic curve over a Fp -scheme S, n Ê 1 an integer. An Igusa level
pn structure on E/S is a generator P ∈ E (pn )(S) of ker(V n

E/S ). The corresponding Igusa moduli stack
is denoted by Ig(pn), which is naturally defined over M1,1 ⊗Fp .

Remark: The moduli problem Ig(pn) is indeed a Deligne-Mumford stack. To see this, it suffices to
show that Ig(pn) is relatively representable over M1,1, which is obvious:

Ig(pn)×M1,1⊗Fp ,E S = Z/pnZ-Gen
(
ker(V n

E/S )
/

S
)
.

In particular, Ig(pn) is finite and flat over M1,1 ⊗Fp , which has rank ϕ(pn).

Our main result about Igusa moduli stacks is
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Theorem 5.2.2 (Igusa). The Igusa moduli stack Ig(pn) is relatively representable, and finite flat of
rank ϕ(pn) over M1,1 ⊗Fp . Moreover, Ig(pn) is regular of dimension one.

Proof: It is already clear that Ig(pn) is relatively representable and finite flat of rank ϕ(pn) over
M1,1 ⊗Fp . It remains to show that it is regular of dimension one. It suffices to check the supersin-
gular points, since the ordinary part Igord(pn) is obviously étale over M1,1 ⊗Fp .

Let E0/k be a supersingular elliptic curve over an algebraically closed field k of characteristic p,
and E0/k[[T ]] its universal formal deformation to artinian local k-algebras with residue field k. We
must show that the finite flat k[[T ]]-scheme

Ig(pn)×M1,1⊗Fp ,E0 k[[T ]]

is regular of dimension one. Let A be the affine coordinate ring of the above k[[T ]]-scheme. The
ring A is indeed a local ring, since the only Igusa level pn structure on E0/k is the zero section. Let
mA be the maximal ideal of A. We fix a formal parameter X of the formal group Ê0 of the elliptic
curve E0/k[[T ]], then we claim that the maximal ideal mA is generated by the X coordinate of the
universal generator of ker

(
V n

E0/k[[T ]]

)
.

Like the proof of Regularity Theorem 3.2.1, we must show the following assertion:

If E/R is an elliptic curve over an artinian local k-algebra, and 0 generates ker(V n
E/R ),

then E/R is a constant family.

In this case, we have ker(V n
E/R ) = ker

(
F n

E (pn )/R

)
, therefore we have the isomorphism

E ' E (p2n ),

and consequently

E ' E (p2n ) ' E (p4n ) ' ... ' E (p2kn ) ' ...

which implies that E/R is a constant family 2.

Next natural question is the representability of the Igusa moduli stack Ig(pn). Unfortunately, the
Igusa moduli problem is not globally rigid. However, when we restrict on the ordinary part, it turns
out that the ordinary Igusa moduli stack Igord(pn) has a nice result of representability.

Theorem 5.2.3. If pn Ê 3, the ordinary Igusa moduli stack Igord(pn) is represented by a smooth and
geometrically connected curve over Fp .

Proof: We already know the relative representability and affineness of Igord(pn), by Theorem 3.1.5,
it remains to show that the ordinary Igusa moduli stack is rigid.

Let E/k be an ordinary elliptic curve over a field k of characteristic p, and P a generator of ker(V n
E/k ).

Then P defines an isomorphism

P : Z/pnZ ker (V n
E/k ) E (pn ).∼

Let
σ : End(E/k) −→ Z/pnZ

2cf. “Case I: Y (N )” of the proof of Regularity Theorem 3.2.1.
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be the action of End(E/k) on ker(V n
E/k ), it is a ring homomorphism. Let ε ∈ Aut(E/k) be an auto-

morphism of E/k, such that σ(ε) = 1 in Z/pnZ.

Since pn Ê 3, the automorphism ε 6= ±1. Then ε satisfies one of the following equations: 3

• ε2 +1 = 0 =⇒ 2 ≡ 0 mod pn ;

• ε2 +ε+1 = 0 =⇒ 3 ≡ 0 mod pn ;

• ε2 −ε+1 = 0 =⇒ 1 ≡ 0 mod pn .

Obviously, the first and the third situations cannot happen. For the second case, this happens only
if pn = 3, i.e., p = 3. In this case, it is the elliptic curve with CM byQ(ζ3), which is the unique super-
singular elliptic curve in characteristic 3, hence it is not in our consideration. Therefore the only
possible case is ε= 1, which shows the rigidity of the ordinary Igusa moduli stack Igord(pn).

5.3 Exotic Igusa moduli stacks

Let k be a perfect field of characteristic p > 0, and denote σ : k → k for the absolute Frobenius of

k. For any k-scheme S, let us denote S(σi ) for the pull-back along the iterated absolute Frobenius
σi :

S(σi ) S

Spec (k) Spec (k).σi

Similarly, for any moduli problem P over M1,1⊗k, we can define P (σi ) as the pull-back of P along
σi :

P (σi ) P

M1,1 ⊗k M1,1 ⊗k

Spec (k) Spec (k)σi

Given any elliptic curve E/S over a k-scheme S, we have

P (E/S) = P (σi )(E (σi )/S(σi )).

If P is relatively representable over M1,1 ⊗k, then(
P (σi ))

E (σi )/S(σi ) = (PE/S )(σi ).

In particular, if P is represented by a scheme M(P ), then P (σi ) is represented by the scheme

M
(
P (σi )

) = M(P )(σi ). Notice that if the moduli problem P is defined over Fp , then obviously

P (σi ) =P , e.g.,(
Y1(N )⊗Fp

)(σi ) = Y1(N )⊗Fp and
(
Y0(N )⊗Fp

)(σi ) = Y0(N )⊗Fp .

3Since we work only on ordinary elliptic curves, the situations #Aut(E/k) = 12 or 24 cannot happen.
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There is a natural map

P (E/S) −→ P (σi )(E (p i )/S)

α 7−→ α(p i )

which is given by the bijection P (E/S) =P (σi )(E (σi )/S(σi )), and the pull-back along F i
S/k :

E (p i ) E (σi ) E

S S(σi ) S
F i

S/k

Fab

Example 5.3.1. Let P =Y1(N ), the above map is given by

P ∈ E(S) of exact order N 7−→ F i
E/S (P ).

If N is prime to p, then there is an inverse map, given by

P ∈ E (p i )(S) 7−→ 1

p i
·V i

E/S (P ).

Example 5.3.2. Let P =Y (N ), the above map is given by

(P,Q) 7−→ (
F i

E/S (P ),F i
E/S (Q)

)
.

Similarly, if N is prime to p, then there is an inverse map, given by

(P,Q) 7−→
(

1

p i
·V i

E/S (P ),
1

p i
·V i

E/S (Q)

)
.

In fact, this map is always bijective when P is étale over M1,1 ⊗k.

Let P be a representable moduli stack over M1,1 ⊗k, then we have a natural morphism for any
i Ê 0:

pi : M(P )×M1,1⊗k Ig(pn) −→ M
(
P (σi ))

(E/S,α,P ) 7−→ (
E (p i )/S,α(p i )),

where α ∈ P (E/S) is a level P structure, and P ∈ E (pn )(S) is a generator of ker(V n
E/S ). Hence

M(P )×M1,1⊗k Ig(pn) can be viewed as a M
(
P (σi )

)
-scheme via pi . Even more, M(P )×M1,1⊗k Ig(pn)

can be interpreted as a moduli M
(
P (σi )

)
-scheme.

Definition 5.3.3. Let E/S be an elliptic curve over a Fp -scheme S, and n, i be positive integers with

1 É i É n. An exotic Igusa level (pn , i ) structure consists of two points P ∈ E(S) and Q ∈ E (pn−i )(S),
such that (0,P ) is a Drinfeld p i -basis of E/S, and V n−i

E/S (Q) = P. The corresponding exotic Igusa
moduli stack over M1,1 ⊗Fp is denoted by ExIg(pn , i ).
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Theorem 5.3.4. For any 1 É i É n, we have an isomorphism of moduli stacks over M1,1 ⊗Fp :

Θi : Ig(pn) −→ ExIg(pn , i )

(E/S, P ) 7−→ (
E (p i )/S, V n−i

E/S (P ), P
)
.

If P is a representable moduli stack over M1,1 ⊗k, where k is a perfect field of characteristic p, then

M(P )×M1,1⊗k Ig(pn) −→ M
(
P (σi ))×M1,1⊗k ExIg(pn , i )

(E/S, α ,P ) 7−→ (
E (p i )/S, α(p i ), V n−i

E/S (P ), P
)

defines an isomorphism of M
(
P (σi )

)
-schemes, i.e., the diagram

M(P )×M1,1⊗k Ig(pn) M
(
P (σi )

)×M1,1⊗k ExIg(pn , i )

M
(
P (σi )

)
∼

pi

commutes.

Proof: Firstly we show that the morphism Θi is well-defined, i.e., we need to show that if P is

a generator of ker(V n
E/S ), then

(
0,V n−i

E/S (P )
)

is a Drinfeld p i -basis of E (p i )/S. From the standard
factorization:

E (pn ) E (p i ) E ,
V n−i

E/S V i
E/S

by Backing-Up Theorem 4.3.8, the point V n−i
E/S (P ) generates ker(V i

E/S ), then applying Proposition

5.1.3,
(
0,V n−i

E/S (P )
)

is a Drinfeld p i -basis of E (p i )/S.

ThatΘi being an isomorphism (equivalence of categories) is easily deduced from Proposition 5.1.3
(3). The last assertion is obvious.

Corollary 5.3.5. The exotic Igusa moduli stack ExIg(pn , i ) is relatively representable, and finite flat
of rank p i ·ϕ(pn) over M1,1 ⊗Fp . Moreover, it is regular of dimension 1.

Proof: By Theorem 5.2.2 and Theorem 5.3.4, it is already clear that ExIg(pn , i ) is relatively repre-
sentable and finite flat over M1,1 ⊗Fp , and regular of dimension 1. To compute its rank, we pick
an auxiliary representable moduli stack P over M1,1 ⊗Fp which is finite étale, and use the com-
mutative diagram

M(P )×M1,1⊗Fp Ig(pn) M
(
P (σi )

)×M1,1⊗Fp ExIg(pn , i )

M(P ) M
(
P (σi )

)
∼

π
pi

F i
/k

then it is visibly that the rank of ExIg(pn , i ) over M1,1 ⊗Fp is equal to p i ·ϕ(pn).
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6
Reduction Mod p of Modular Curves

6.1 Crossings at supersingular points

Let us consider the following situation:

Fix a field k. Let Y /k be a curve, and {y0} is a set of k-rational points of Y , which we call them
“supersingular” points. Suppose that we are given the following morphisms of k-schemes:

∐
i∈I Zi X

Y

ψ

ψ′
φ

which satisfy the following conditions:

(a) Y is a smooth curve over k;

(b) φ is finite flat;

(c) For each supersingular point y0 of Y , there exists a unique closed point x0 of X which turns
out to be k-rational and lying over y0. Furthermore, the complete local ring of X at x0 has
the form

ÔX ,x0 ' k[[x, y]]
/

( f );

(d) Each (Zi )red is a smooth curve over k;

(e) Each ψ′
i =ψ′|Zi is finite flat, and each ψi =ψ|Zi is a closed immersion;

(f) For each supersingular point y0 of Y , and each i ∈ I , there exists a unique closed point zi ,0

of Zi which turns out to be k-rational and lying over y0;

(g) The morphism ψ|Y \{y0} is an isomorphism.
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A simple picture of X could be like the following:

In this situation, we call that X is the disjoint union of Zi ’s with crossings at supersingular points.
More precisely, we have the following theorem:

Theorem 6.1.1 (Crossings Theorem). Hypotheses and notations as above. Let y0 be a supersingular
point of Y , and x0 is the unique k-rational point of X that lies over y0. Then the complete local ring
of X at x0 has the form:

ÔX ,x0 ' k[[x, y]]
/(∏

i∈I
f ei

i

)
,

where fi ’s are distinct 1 irreducible elements in k[[x, y]], and

ÔZi ,zi ,0 ' k[[x, y]]
/(

f ei

i

)
for all i ∈ I .

Moreover, if Y is connected (resp. geometrically connected), then so are Zi ’s, and they are exactly all
the irreducible components of X .

Proof: Since Y is smooth over k, we fix an isomorphism

ÔY ,y0 ' k[[T ]].

Then as a k[[T ]]-algebra, k[[x, y]]/( f ) is finite and flat, say, of degree d over k[[T ]]. In particular, f is
neither a unit nor 0. Factorize f into product of irreducible elements:

f = ∏
j∈J

f
e j

j .

Choose an element T ′ ∈ k[[x, y]], such that T ′ ≡ T mod f . Then the k-algebra

k[[x, y]]
/(∏

i∈I
f ei

i ,T ′
)

has dimension d . In particular, T ′ cannot be a unit nor 0. We factorize T ′ =∏
g nk

k in k[[x, y]]. Then
the k-algebra k[[x, y]]/( f j , gk ), as a quotient of a finite-dimensional k-algebra

k[[x, y]]
/(∏

i∈I
f ei

i ,T ′
)
−→ k[[x, y]]

/
( f j , gk ),

is finite-dimensional. Therefore, any f j and gk are distinct irreducible elements.

Now consider the ring k[[x, y]][ 1
T ′ ], it is regular of dimension 1, and a UFD. The elements fi ’s are

still irreducible in k[[x, y]][ 1
T ′ ], since fi ’s do not divide T ′. By Chinese Remainder Theorem, we have

the isomorphism

k[[x, y]]
[ 1

T ′
]/(

f
) ' ∏

j∈J

(
k[[x, y]]

[ 1

T ′
]/(

f
e j

j

))
,

1When we work on the ring of formal power series, the distinction is always up to units.
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in particular,

ÔX ,x0 ⊗k[[T ]] k((T )) =
(
k[[x, y]]

/(
f
))⊗k[[T ]] k((T )) ' ∏

j∈J

(
k[[x, y]]

/(
f

e j

j

))⊗k[[T ]] k((T )).

Thus we have the diagram

∐
j∈J Spec

((
k[[x, y]]

/(
f

e j

j

))⊗k[[T ]] k((T ))

)
Spec (ÔX ,x0 ⊗k[[T ]] k((T ))) X

Spec (ÔY ,y0 ⊗k[[T ]] k((T ))) Y

∼

φ

By the condition (g), the morphism

ψ×Spec
(
k((T ))

)
:

∐
i∈I Zi ×Y Spec

(
k((T ))

)
X ×Y Spec

(
k((T ))

)∼

is an isomorphism. Thus we have

∐
j∈J

Spec
((

k[[x, y]]
/(

f
e j

j

))⊗k[[T ]] k((T ))

)
= X ×Y Spec

(
k((T ))

)
' ∐

i∈I
Zi ×Y Spec

(
k((T ))

) = ∐
i∈I

Spec
(
ÔZi ,zi ,0 ⊗k[[T ]] k((T ))

)

where both sides are decompositions into connected components 2, therefore the index sets are
in bijective correspondence, which we may just identify them. Now we have the isomorphisms

ÔZi ,zi ,0 ⊗k[[T ]] k((T )) '
(
k[[x, y]]

/(
f ei

i

))⊗k[[T ]] k((T )) ‡

for all i ∈ I . It remains to extend these isomorphisms to k[[T ]].

We want to show that the homomorphism

k[[x, y]]
/(∏

i∈I f ei
i

) = ÔX ,x0 ÔZi ,zi ,0

factors through the surjection

k[[x, y]]
/(∏

i∈I f ei
i

)
k[[x, y]]

/(
f ei

i

)
.

It is equivalent to show that the dashed arrow in the diagram vanishes:

0 ker (p) k[[x, y]]
/(∏

i∈I f ei
i

)
k[[x, y]]

/(
f ei

i

)
0

ÔZi ,zi ,0

ÔZi ,zi ,0 ⊗k[[T ]] k((T )).

vanishing

p

2For the right side, by the condition that each (Zi )red is a smooth curve over k.
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This is clear, because of the isomorphism (‡), the homomorphism from ker(p) to ÔZi ,zi ,0⊗k[[T ]]k((T ))

vanishes, and by the flatness of ÔZi ,zi ,0 over k[[T ]], the bottom homomorphism is an inclusion.
Thus we obtain a homomorphism

h : k[[x, y]]
/(

f ei
i

) −→ ÔZi ,zi ,0 .

Since k[[T ]] is regular of dimension 1, k[[x, y]]
/(

f ei
i

)
is a Cohen-Macaulay k[[T ]]-module, hence

k[[x, y]]
/(

f ei
i

)
is flat over k[[T ]] 3, in particular, it is a free k[[T ]]-algebra. And we know that h⊗k((T ))

is an isomorphism, so h is injective. From the condition that each

ψi : Zi X

is a closed immersion, and the diagram

k[[x, y]]
/(∏

i∈I f ei
i

)
k[[x, y]]

/(
f ei

i

)

ÔZi ,zi ,0

it is clear that h is also surjective, therefore it is an isomorphism.

The last assertion is straightforward, since each ψ′
i is finite flat, and for each supersingular point

y0 of Y , there is only one point zi ,0 lying over it.

Theorem 6.1.2. Let k be a perfect field of characteristic p, and P be a representable moduli problem
over M1,1 ⊗k which is finite étale, such that all the supersingular points of M(P ) are k-rational.
Denote Y for either of the four modular curves Y (pn), Y1(pn), Y bal

1 (pn) or Y0(pn). Then for any
n Ê 1, the morphism

M(P )×M1,1⊗k Y

M(P )

π

satisfies the crossings conditions (a), (b) and (c).

Proof: The conditions (a) and (b) are contained in the Regularity Theorem 3.2.1. For the condition
(c), we already proved that the complete local ring of M(P )×M1,1⊗k Y at a supersingular point x0

(lying over a supersingular point y0 ∈ M(P )) has the form

k[[x, y]]
/
a,

where a⊂ k[[x, y]] is a proper ideal. Fix a formal parameter T of M(P ) at y0, i.e., we have

ÔM(P ),y0 ' k[[T ]].

Then k[[x, y]]
/
a becomes a finite k[[T ]]-algebra which is noetherian and regular of dimension 1.

Such a 1-dimensional noetherian regular local ring must have the form 4

k[[x, y]]
/

( f )

for some f contained in the maximal ideal m of k[[x, y]] but not in m2. This shows the condition
(c).

3cf. Altman-Kleiman [2] V. Proposition 3.5.
4cf. Liu [28] Chapter 4, Corollary 2.15.
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6.2 Further discussion on pn-isogenies

Recall that if E/S is an ordinary elliptic curve over a Fp -scheme, then the relative Verschiebung
VE/S is étale. The standard factorization of [pn] is

E E (pn ) E .
F n

E/S V n
E/S

The cyclic group scheme ker(V n
E/S ) is finite étale on S, which is étale-locally isomorphic to the con-

stant group scheme Z/pnZ. Under the Cartier pairing 5, the cyclic group scheme ker(F n
E/S ) is the

Cartier dual of ker(V n
E/S ), hence it is étale-locally isomorphic to µpn .

Lemma 6.2.1. Let f : G → H be a morphism of finite locally free commutative group schemes over
an arbitrary scheme S. Suppose that H is étale over S, then there exists a finite étale locally free
S-subgroup scheme H ′ ⊂ H, such that f factors through the inclusion

G H

H ′

f

f ′

where f ′ is fppf surjective.

Proof: First of all, we make two claims:

(1) The condition “ f is fppf surjective” is open and closed on S.

(2) The condition “ f = 0” is open and closed on S.

Let H ,G be the OS -algebras corresponding to H ,G . For the claim (1), we reduce to the case that
S is noetherian. Now the condition is obviously open, which is given by the vanishing locus of the
cokernel of the morphism:

H G coker ( f ∗) 0.
f ∗

For the closedness, we further reduce to the case that S is the spectrum of a complete noetherian
local ring. In this case, we have the connected-étale exact sequence:

0 G0 G Gét 0,

where G0 is connected and Gét is étale. Since H is étale, the morphism f kills the connected
component G0, thus f is factorized as

f : Gét −→ H .

Since then Gét and H are both étale-locally constant, the claim (1) follows from the same assertion
for abstract abelian groups.

For the claim (2), the closedness is obvious, which is the zero set of all the entries of the matrix of
the morphism f ∗. For the openness, as in claim (1), we reduce to the case that S is the spectrum of

5cf. Definition 8.5.1.
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a complete noetherian local ring, and the rest follows from the same assertion for abstract abelian
groups.

Back to the lemma. The question is local, we may assume that H is constant. Moreover, we reduce
to the case that S is noetherian and connected. Choose a geometric point Spec (k̄) → S, and we
consider the constant subgroup H ′ ⊂ H such that H ′(k̄) = im( f (k̄)). Then the composition

G H H/H ′

is 0 at the chosen geometric point. By the claim (2), the above morphism is identically zero on S,
which shows that f is factorized as

G H ′ H .
f ′

And by the claim (1), f ′ is fppf surjective.

Proposition 6.2.2. Let E/S be an ordinary elliptic curve over a Fp -scheme S, and G ⊂ E be a finite
locally free S-subgroup scheme of rank pn . Then there exists a unique pair (a,b) of non-negative
integers, with a +b = n, such that

(1) G ∩ker(F n
E/S ) = ker(F a

E/S );

(2) G mod ker(F a
E/S ) is a finite étale cyclic group scheme of order pb .

Proof: By previous lemma, the morphism F n
E/S

∣∣
G

0 ker (F n
E/S ) E [pn] ker (V n

E/S ) 0

0 ker (F n
E/S

∣∣
G ) G

F n
E/S

∣∣
G

maps G onto a finite étale S-subgroup scheme H ′ of ker(V n
E/S ). Since the étale S-group scheme

ker(V n
E/S ) is étale-locally isomorphic to the constant group scheme Z/pnZ, hence H ′ is also étale-

locally isomorphic to Z/pbZ for some integer b Ê 0, which is nothing but

H ′ = ker
(
V b

E (pn−b )/S

)
.

In particular, the kernel of F n
E/S

∣∣
G is a finite locally free S-subgroup scheme of ker(F n

E/S ). And étale-
locally, ker(F n

E/S ) is isomorphic to the group scheme µpn , hence H ′ is also étale-locally isomorphic
to µpa for some integer a Ê 0, i.e.,

H ′ = G ∩ker (F n
E/S ) = ker (F a

E/S ).

By counting the ranks, we have a +b = n.

Theorem 6.2.3. Let φ : E → E ′ be a pn-isogeny of ordinary elliptic curves over a Fp -scheme S. Then
there exists a unique pair (a,b) of non-negative integers, such that we have the factorization of φ:

E E (pa ) E ′(pb ) E ′,
F a

E/S ε
∼

V b
E ′/S

where the middle morphism ε is an isomorphism.
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Proof: Let G = ker(φ). By Proposition 6.2.2, there exists a unique pair (a,b) of non-negative inte-
gers, such that G contains ker(F a

E/S ) as a subgroup scheme and the quotient is a twisted Z/pbZ.
The pn-isogeny φ firstly is factorized as

E E (pa ) E ′,
F a

E/S ψ

where the kernel of the pb-isogeny ψ is a twisted Z/pbZ. By Cartier duality, the kernel of the dual
isogeny ψt is a twisted µpb , applying Proposition 6.2.2 to ker(ψt ), we know that

ker (ψt ) = ker (F b
E ′/S ).

In particular, the pb-isogenies ψ and V b
E ′/S are differed by an isomorphism.

Definition 6.2.4. A pn-isogeny φ : E → E ′ of elliptic curves over a Fp -scheme S is called a (a,b)-
isogeny, if we have the following factorization

E E (pa ) E ′(pb ) E ′.
F a

E/S ε
∼

V b
E ′/S

Let X /S be any S-scheme, define Infd (∆X /S ) to be the d-th infinitesimal neighborhood of the
diagonal, which is the closed subscheme of X ×S X defined by the ideal sheaf I d

∆X /S
, where I∆X /S

is the ideal sheaf of the diagonal ∆X /S .

Theorem 6.2.5. Let k be a perfect field of characteristic p, and φ : E → E ′ be a (a,b)-isogeny of
elliptic curves over a k-scheme S. Let P be a representable moduli stack over M1,1 ⊗ k, which is
finite étale, and represented by the k-scheme M(P ). And let α be a level P structure on E/S, denote

αa = α(pa ) ∈ P (σa )(E (pa )/S
)
.

There exists a unique level P (σa−b ) level structure β on E ′/S, such that

β(pb ) = (ε−1)∗(αa).

Let x ∈ M(P )(S) and y ∈ M
(
P (σa−b )

)
(S) be the points that correspond to the isomorphism classes of

(E/S,α) and (E ′/S,β) respectively. We denote by Fk : M
(
P (σi )

)→ M
(
P (σi+1)

)
the Frobenius related

to k. Then:

(1) F a
k (x) = F b

k (y);

(2) Suppose a,b > 0. If
(
F a−1

k (x),F b−1
k (y)

)
lies in Infp−1(∆X /S ), then the (a,b)-isogeny φ is cyclic;

(3) Suppose a,b > 0. If E/S is ordinary, then
(
F a−1

k (x),F b−1
k (y)

)
lies in Infp−1(∆X /S ) if and only if

the (a,b)-isogeny φ is cyclic;

(4) Suppose a,b > 0. If E/S is ordinary, and j (E)( j (E)−1728) is invertible on S, then the (a,b)-
isogeny φ is cyclic if and only if (

j (E)pa−1 − j (E ′)pb−1
)p−1

= 0.

85



MASTER THESIS, YULIANG HUANG

Proof: (1) The point F a
k (x) represents the isomorphism class of (E (pa ),αa), and the point F b

k (y)

represents the isomorphism class of (E ′(pb ),β(pb )), they are isomorphic by ε, hence F a
k (x) = F b

k (y).

(2) We reduce to the universal case, i.e., the base scheme S is the pull-back of Infp−1(∆) along
(F a−1

k ,F b−1
k ):

S Infp−1(∆)

M(P )×k M
(
P (σa−b )

)
M

(
P (σa−1)

)×k M
(
P (σa−1)

)
,

finite flat

(F a−1
k

,F b−1
k

)

which is certainly finite flat over Infp−1(∆), hence finite flat over M
(
P (σa−1)

)
. Thus the ordinary

locus Sord of S is open dense. By Lemma 4.2.2, the cyclicity is a closed condition, therefore (2)
follows from (3).

(3) By Corollary 5.1.6, the elliptic curve E ′/S is also ordinary. By Proposition 4.3.5, it is equivalent
to show that the composable isogenies

E E (pa ) E ′(pb ) E ′F a
E/S ε

∼
V b

E ′/S

are cyclic in standard order. We further factorize it as the composition of FE/S ’s, ε and VE ′/S ’s, by
Theorem 4.3.11, it suffices to show the case for a = b = 1. Hence now what we need to prove is
that, the (1,1)-isogeny φ is cyclic if and only if the point (x, y) lies in the (p − 1)-th infinitesimal
neighborhood Infp−1

(
∆M(P )

)
of the diagonal.

Since we have Fk (x) = Fk (y) from (1), the point (x, y) certainly lies in Infp
(
∆M(P )

)
. We reduce to

the universal case, i.e., we assume that the base scheme S is Infp
(
∆M(P )

)
itself. The assertion is

equivalent to say that the closed subscheme Infp−1
(
∆M(P )

)
is exactly the locus of cyclicity ofφ. We

know that the cyclicity is a closed condition on the base, hence the assertion amounts to verify an
equality of two closed schemes of Infp

(
∆M(P )

)
, which by the standard reduction (cf. [37]), we can

further reduce to the case that the base scheme S is the spectrum of an artinian local k-algebra R
with maximal ideal mR and an algebraically closed residue field κ.

Over the residue field κ, we have an isomorphism ε⊗κ between the two ordinary elliptic curves
E (p) ⊗κ and E ′(p) ⊗κ. This implies

E ⊗κ ' E ′⊗κ,

since the isomorphism ε⊗κ induces an isomorphism between E [p](κ) and E ′[p](κ), which equal
to ker(VE⊗κ/κ)(κ) and ker(VE ′⊗κ/κ)(κ) respectively. By the uniqueness of β, the level structures α
and β must be compatible over κ under the isomorphism between E ⊗κ and E ′⊗κ. Thus x = y
over κ, we denote it by (E0/κ,α0).

We fix an isomorphism of p-divisible groups over κ:

E0[p∞] ' µp∞ ×Qp /Zp .

Then there exist the Serre-Tate parameters (cf. 8.7)

q, q ′ ∈ 1+mR ⊂ R×
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of E/R and E ′/R respectively, i.e., we have isomorphisms of p-divisible groups over R:

E [p∞] ' T [p∞]⊗Z[q,q−1] R

E ′[p∞] ' T [p∞]⊗Z[q ′,q ′−1] R.

The condition Fk (x) = Fk (y) is saying q p = q ′p , and what we need to prove is that (q ′−q)p−1 = 0 if
and only if the (1,1)-isogeny φ is cyclic.

Let B be any R-algebra, such that Spec (B) is connected. Using the explicit expression of elements
in T [p∞] (cf. 8.7), the relative Frobenius on E [p∞](B) is given by

FE/R (B) : E [p∞](B) −→ E (p)[p∞](B)

(X , a/pn) 7−→ (X p , a/pn),

and the relative Verschiebung is given by

VE ′/R (B) : E ′(p)[p∞](B) −→ E ′[p∞](B)

(X , a/pn) 7−→ (X , pa/pn).

Now let B = R[Z ]/(Z p −q ′), it is a faithfully flat extension of R. The point P = (Z ,1/p) satisfies that
FE/S (P ) = (q ′,1/p) generates ker(VE ′/R ) over B . By the Standard Order Criterion 4.3.9, the isogeny
φ is cyclic if and only if pP = p(Z ,1/p) = (q ′/q,0) generates ker(FE/R ) over B , i.e., q ′/q generates
ker(FE/S ) 'µp . The latter condition is saying that q ′/q is a primitive p-th root of unity, i.e.,

Φp (q ′/q) = (q ′/q)p −1

q ′/q −1
= (q ′/q −1)p−1 = 0,

which is just (q ′−q)p−1 = 0.

(4) Similarly, we can reduce to the case a = b = 1. In the case that j (E)( j (E)−1728) is invertible on
S, the following morphisms

M(P ) M1,1 ⊗k

Spec (k[ j ])

j
j

are all étale (cf. Katz-Mazur [24] Corollary 8.4.5). Passing to the case that S = Spec (R), where
R is an artinian local k-algebra with algebraically closed residue field. Then by (3), φ is cyclic if
and only if (x, y) lies in Infp−1

(
∆M(P )

)
, which is also equivalent to that the point

(
j (x), j (y)

)
lies in

Infp−1
(
∆k[ j ]

)
. The latter condition is exactly given by ( j (E)− j (E ′))p−1 = 0.

Let E/S be an elliptic curve over a Fp -scheme S.

Definition 6.2.6. A finite locally free S-subgroup scheme G ⊂ E of rank pn is called a (a,b)-subgroup
scheme, where a,b are non-negative integers with a +b = n, if ker(F a

E/S ) ⊂ G, and in the following
factorization

E E (pa ) E ′ = E/G
F a

E/S ψ

we have ker(ψt ) ' ker(F b
E ′/S ). A (a,b)-subgroup scheme G is called (a,b)-cyclic, if either ab = 0, or it

satisfies the following condition:
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The two elliptic curves E (pa−1) and E ′(pb−1) are infinitesimally near each other to order
p −1, that is to say, there is a closed subscheme S′ of S, which is defined by a nilpotent

ideal sheaf I with I p−1 = 0, such that E (pa−1) and E ′(pb−1) are isomorphic over S′, and

it induces the isomorphism between E (pa ) and E ′(pb ) in the factorization.

In particular, a pn-isogeny whose kernel is a (a,b)-subgroup scheme (resp. (a,b)-cyclic subgroup
scheme) is called a (a,b)-isogeny (resp. (a,b)-cyclic isogeny).

Remark: By Theorem 6.2.5, a (a,b)-subgroup scheme G being (a,b)-cyclic implies that the corre-
sponding (a,b)-isogeny is cyclic. If E/S is ordinary, then the converse is also true. But in general
they are not necessarily equivalent. 6

6.3 Reduction mod p of Y0(pn)

Let k be a perfect field of characteristic p, and E/S be an elliptic curve over a k-scheme S. Consider
the moduli problem Y0(a,b) over M1,1 ⊗k with a,b Ê 0, which is defined by

Y0(a,b)(E/S) = {
(a,b)-subgroup schemes G in E/S

}
.

There is a natural morphism from Y0(a,b) to Isog(pn) 7, which is given by forgetting (a,b).

Let P be a representable moduli stack over M1,1 ⊗k, which is finite étale. It is obvious that we
have the isomorphism

M(P )×M1,1⊗k Y0(a,b) ' (F a
k ×F b

k )−1
(
∆M(P (σa ))

)
,

where F a
k ×F b

k is the morphism

M(P )×k M
(
P (σa−b )

)
M

(
P (σa )

)×k M
(
P (σa )

)
.

F a
k
×F b

k

Similarly, we define a moduli problem Y
cyc

0 (a,b) over M1,1 ⊗k as

Y
cyc

0 (a,b)(E/S) =
{

(a,b)-cyclic subgroup
schemes G in E/S

}
.

By Theorem 6.2.5, we have an isomorphism

M(P )×M1,1 Y
cyc

0 (a,b) ' (
F a−1

k ×F b−1
k

)−1
(
Infp−1

(
∆

M(P (σa−1))

))
.

The morphism given by forgetting (a,b)

M(P )×M1,1 Y
cyc

0 (a,b) −→ M(P )×M1,1 Y0(pn)

is a closed immersion. Over any perfect k-algebra B , the morphism

M(P )×M1,1 Y
cyc

0 (a,b) −→ M(P )

is bijective on B-valued points.

6See the remark in the end of the next section.
7cf. Section 4.2.
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Theorem 6.3.1. Hypotheses and notations as above. The finite flat M(P )-scheme

M(P )×M1,1⊗k Y0(pn)

is the disjoint union of the n +1 M(P )-schemes

M(P )×M1,1⊗k Y
cyc

0 (a,b)

for a +b = n, with crossings at supersingular points. The complete local ring of each supersingular
point of M(P )×M1,1⊗k Y0(pn) is isomorphic to

k[[x, y]]

/(
x − y pn )(

xpn − y
)( ∏

a,b>0,a+b=n

(
xpa−1 − y pb−1)p−1

)
,

and in this complete local ring, each M(P )×M1,1⊗k Y
cyc

0 (a,b) is defined by the single equation{ (
xpa−1 − y pb−1)p−1 if a,b > 0

xpa = y pb
if (a,b) = (n,0) or (0,n).

Proof: By Theorem 6.1.2, the crossings conditions (a), (b) and (c) are satisfied. And by our previous
discussion, the conditions (d)-(g) also hold. Therefore the first assertion follows from the Cross-
ings Theorem 6.1.1. The last assertion follows from Theorem 6.2.5.

Remark: A cyclic pn-isogeny which is also a (a,b)-isogeny does not imply that it is (a,b)-cyclic, in
other words, the commutative diagram

Y
cyc

0 (a,b) Y0(a,b)

Y0(pn) Isog(pn)

is not cartesian. In fact the diagram is not cartesian near the supersingular point, i.e., we may
check it on the complete local rings at supersingular points. Consider the simplest case a = b = 1.
Pick any auxiliary representable moduli stack P which is finite étale over M1,1 ⊗k. The complete
local ring of M(P )×M1,1⊗k Y

cyc
0 (1,1) is isomorphic to

k[[x, y]]
/

(x − y)p−1,

and the complete local ring of the fiber product of M(P )×M1,1⊗k Y0(1,1) and M(P )×M1,1⊗k Y0(pn)
over M(P )×M1,1⊗k Isog(pn) is isomorphic to

k[[x, y]]
/(

xp − y p ,
(
x − y p2)(

xp2 − y
)
(x − y)p−1

)
,

which is obviously not isomorphic to k[[x, y]]
/

(x − y)p−1.

6.4 Reduction mod p of Y1(pn)

Proposition 6.4.1. Let φ : E → E ′ be a (a,b)-cyclic isogeny of elliptic curves over a Fp -scheme S.
Then the corresponding factorization

E E (pa ) E ′(pb ) E ′F a
E/S ∼ V b

E ′/S

is cyclic in standard order, with respect to the divisor pa of pn .
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Proof: Pick an auxiliary representable moduli stack P which is finite étale over M1,1 ⊗ Fp , e.g.,
P =Y (`)⊗Fp for some prime ` 6= p. Then we may reduce to the universal case, i.e., let

S = M(P )×M1,1⊗Fp Y
cyc

0 (a,b),

which is finite flat over M(P ). We need to compare the group scheme ker(F a
E/S ) with the standard

cyclic subgroup scheme of ker(φ) of order pa , which is a closed condition on the base. Over the
ordinary locus M(P )ord, which is open dense in M(P ), the relative Verschiebung V b

E ′/S is étale,
hence by Proposition 4.3.5, the factorization is cyclic in standard order. Thus ker(F a

E/S ) is equal to

the standard cyclic subgroup scheme of ker(φ) of order pa over M(P )ord, which implies the equal-
ity over M(P ).

Consider the moduli problem Y
cyc

1 (a,b), with a +b = n and a,b Ê 0, which is defined by

Y
cyc

1 (a,b)(E/S) =


all the points P of exact order pn ,
which generates a (a,b)-cyclic
subgroup scheme of E/S

 .

These moduli problems are “components” of the reduction mod p of Y1(pn).

Let k be a perfect field of characteristic p, and we pick an auxiliary representable moduli stack P

which is finite étale over M1,1 ⊗k. We will see that the fiber product M(P )×M1,1⊗k Y
cyc

1 (a,b) is
represented by a finite flat M(P )-scheme. Let us divide it into three cases:

Case (a,b) = (n,0):

It is represented by the finite flat M(P )-scheme
(
ker

(
F n

E(P )/M(P )

))×
, where E(P ) is the

universal elliptic curve over M(P ). It is exactly the ϕ(pn)-th infinitesimal neighbor-
hood of the zero section, i.e.,(

ker
(
F n

E(P )/M(P )

))× = M(P )⊗k

(
k[X ]

/(
Xϕ(pn ))).

Case (a,b) = (0,n):

It is represented by the finite flat M(P )-scheme

M
(
P (σ−n ))×M1,1⊗k Ig(pn) ' M(P )×M1,1⊗k ExIg(pn ,n).

Case a,b Ê 1:

Let E be the universal elliptic curve over the moduli scheme

M(P )×M1,1⊗k Y
cyc

0 (a,b),

and G be the universal (a,b)-cyclic subgroup scheme of E. Then the fiber product
M(P )×M1,1⊗k Y

cyc
1 (a,b) is represented by G×, which is finite flat over M(P )×M1,1⊗k

Y
cyc

0 (a,b). Since M(P )×M1,1⊗k Y
cyc

0 (a,b) is finite flat over M(P ), hence G× is finite
flat over M(P ).
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Theorem 6.4.2. Hypotheses and notations as above. The finite flat M(P )-scheme

M(P )×M1,1⊗k Y1(pn)

is the disjoint union of the n +1 M(P )-schemes

M(P )×M1,1⊗k Y
cyc

1 (a,b)

for a +b = n, with crossings at supersingular points.

Proof: The crossings conditions (a), (b), (c) follows from Theorem 6.1.2, and the conditions (e), (f)
and (g) are straightforward.

To show the condition (d), we analyze each case.

Case (a,b) = (n,0):

In this case, M(P )×M1,1⊗k Y
cyc

1 (n,0) is represented by the M(P )-scheme

M(P )⊗k

(
k[X ]

/(
Xϕ(pn ))),

whose associated reduced scheme is just M(P ) itself, hence a smooth curve.

Case (a,b) = (0,n):

In this case, M(P )×M1,1⊗k Y
cyc

1 (0,n) is represented by

M(P )×M1,1⊗k ExIg(pn ,n).

We know that the exotic Igusa moduli stack ExIg(pn ,n) is isomorphic to Ig(pn), hence
by Theorem 5.2.2, it is regular of dimension 1. This implies that ExIg(pn ,n) is smooth,
since our ground field k is perfect. Therefore M(P )×M1,1⊗k ExIg(pn ,n) is reduced,
and it is a smooth curve.

Case a,b Ê 1:

In this case, M(P )×M1,1⊗k Y
cyc

1 (a,b) is represented by G×, the scheme of generators
of the universal (a,b)-cyclic subgroup scheme of the universal elliptic curve E over
M(P )×M1,1⊗k Y

cyc
0 (a,b). Let E′ be the universal quotient of E by G. Observe that we

have the following morphisms

G×
(
ker

(
V b

E′/(...)

))×
M(P )×M1,1⊗k Y

cyc
0 (a,b),

F a
E/(...)

deg= pa deg=ϕ(pb )

where F a
E/(...) is purely inseparable. Since

(
ker

(
V b

E′/(...)

))×
is nothing but

Ig(pb)×M1,1⊗k,E
(
M(P )×M1,1⊗k Y

cyc
0 (a,b)

)
,

and that the associated reduce scheme of M(P )×M1,1⊗k Y
cyc

0 (a,b) is a smooth curve,

hence the associated reduced scheme of
(
ker

(
V b

E′/(...)

))×
is a smooth curve.

Therefore, applying the Crossings Theorem 6.1.1, we obtain the result.
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6.5 Reduction mod p of Y can(pn)

Let k be a field of characteristic p, and E/S an elliptic curve over a k-scheme S. Recall that given
a Drinfeld pn-basis (P,Q) of E/S, by Theorem 3.3.5, the determinant epn (P,Q) is a primitive pn-th
root of unity.

We define a moduli substack Y can(N ) of Y (N ), who classifies all triples (E/S,P,Q), where (P,Q) is
a Drinfeld N -basis of E/S such that the determinant eN (P,Q) = ζN . Now let N be a prime power
pn . If the base scheme S of an object (E/S,P,Q) of Y can(pn) is naturally defined over a field k of
characteristic p, then necessarily epn (P,Q) = 1.

Let k be a field of characteristic p. In fact, the moduli stack Y can(pn)⊗k is the associated reduced
stack of Y (pn)⊗k. Let S be a reduced k-scheme, and given a morphism S →Y (pn)⊗k, which is
also an object (E/S,P,Q) of Y (pn)⊗k, then it factors through the closed immersion

Y can(pn)⊗k Y (pn)⊗k

S
(E/S,P,Q)

simply because S is reduced, and we always have epn (P,Q) = 1. It remains to see that Y can(pn)⊗k
is reduced. This will be clear after we analyze the reduction mod p of the moduli stack Y can(pn).

Consider an ordinary elliptic curve E/S over a connected Fp -scheme S, and let

φ : (Z/pnZ)2 −→ E [pn]

be a Γ(pn)-structure on E/S. It induces the diagram

0 ker (Λ) (Z/pnZ)2 coker (Λ) 0

0 ker (F n
E/S ) E [pn] ker (V n

E/S ) 0

φ
∣∣
ker(Λ) φ

Λ
φ

∣∣
coker(Λ)o

F n
E/S

where Λ= F n
E/S ◦φ, and it is clear that both ker(Λ) and coker(Λ) are cyclic groups of order Z/pnZ.

Since in this case ker(V n
E/S ) is étale, by Proposition 2.4.1, the left and right sides vertical morphisms

are generators, and φ
∣∣
coker(Λ) is an isomorphism of S-group schemes.

Lemma 6.5.1. Hypotheses and notations as above. The Γ(pn)-structure on E/S has determinant 1
if and only if φ

∣∣
ker(Λ) = 0.

Proof: Choose a basis (kΛ,`Λ) of (Z/pnZ)2, such that kΛ is aZ/pnZ-basis of ker(Λ), and `Λ projects
to a Z/pnZ-basis of coker(Λ). We know that Λ(`Λ) defines an isomorphism

Λ(`Λ) : Z/pnZ= coker(Λ) ker (V n
E/S ),∼

since ker(V n
E/S ) is étale. The dual isomorphism is given by

ker (F n
E/S ) −→ µpn

ζ 7−→ epn
(
ζ,φ(`Λ)

)
.
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Hence φ
∣∣
ker(Λ) = 0 if and only if epn

(
φ(kΛ),φ(`Λ)

)= 1, which is equivalent to det(φ) = 1.

Once we choose a basis of coker(Λ), Λ defines an element in

Homsurj((Z/pnZ)2, Z/pnZ
)
,

i.e., all the surjective homomorphisms from (Z/pnZ)2 to Z/pnZ. Moreover, the class [Λ] of Λ in

(Z/pnZ)×
∖
Homsurj((Z/pnZ)2, Z/pnZ

)
is independent of the choice of a basis for coker(Λ), where (Z/pnZ)× acts as the central subgroup
of scalars of GL(2,Z/pnZ).

Let Y [Λ](pn) be the moduli stack who classifies all the pairs (E/S,`Λ), where `Λ is a basis for
coker(Λ). We have seen that `Λ determines a Drinfeld pn-basis (0,φ(`Λ)) on E/S, hence in other
point of view, the moduli stack Y [Λ](pn) also classifies all the pairs (E/S,φ), whereφ is a (Z/pnZ)2-
structure on E/S such that φ

∣∣
ker(∆) = 0.

Lemma 6.5.2. We have an isomorphism of moduli stacks

Y [Λ](pn) −→ ExIg(pn ,n)

(E/S,`Λ) 7−→ (E/S,φ(`Λ)).

Proof: It is straightforward.

Theorem 6.5.3. Let k be a perfect field of characteristic p, and P a representable moduli stack over
M1,1 ⊗k which is finite étale. Then the finite flat M(P )-scheme

M(P )×M1,1⊗k Y can(pn)

is the disjoint union of the following M(P )-schemes:

M(P )×M1,1⊗k Y [Λ](pn)

for [Λ] ∈ (Z/pnZ)×
∖
Homsurj((Z/pnZ)2, Z/pnZ

)
, with crossings at supersingular points.

Proof: The proof is straightforward, with help from Theorem 6.1.2.

Remark: In particular, each component of M(P )×M1,1⊗k Y can(pn)

M(P )×M1,1⊗k Y [Λ](pn) ' M(P )×M1,1⊗k ExIg(pn ,n)

is a reduced smooth curve, hence M(P ) ×M1,1⊗k Y can(pn) is itself reduced. This ensures that
Y can(pn)⊗k is the associated reduced stack of Y (pn)⊗k.

Next let us compute the complete local ring of Y can(pn) at supersingular points.

We choose a set of representatives of (Z/pnZ)×
∖
Homsurj((Z/pnZ)2, Z/pnZ

)
:{

(1, −a) a ∈Z/pnZ

(−pb, 1) b ∈Z/pn−1Z.
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Let y0 = (E0/k,α) be a supersingular point on M(P ), and x0 the unique supersingular point on
M(P )×M1,1⊗k Y can(pn) that lies over y0. The complete local ring of M(P ) at y0 is isomorphic to
k[[T ]], let E0/k[[T ]] be the universal formal deformation 8 of E0/k. We choose a formal parameter
X of Ê0, then the complete local ring of M(P )×M1,1⊗k Y can(pn) at x0 has the form (cf. Theorem
6.1.2)

k[[x, y]]
/

( f ),

where x = X (P ) and y = X (Q) are coordinates of the universal Drinfeld pn-basis (P,Q) with deter-
minant 1 on E0/k[[T ]].

The Drinfeld pn-basis (P,Q) on E0/k[[T ]] must satisfy the condition φ
∣∣
ker(Λ) = 0, where φ is the

corresponding (Z/pnZ)2-structure on E0/k[[T ]], or equivalently:{
P = aQ if Λ∼ (1, −a)
pbP =Q if Λ∼ (−pb, 1).

In terms of the coordinates x, y of P,Q in formal group, let ã, b̃ be representatives of a,b in Zp ,
then the conditions are read as {

x = [
ã
]
(y) if Λ∼ (1, −a)

y = [
pb̃

]
(x) if Λ∼ (−pb, 1).

Theorem 6.5.4. Hypotheses and notations as above. Let y0 be a k-rational supersingular point on
M(P ), and x0 the unique k-rational supersingular point on M(P )×M1,1⊗k Y can(pn) that lies over
y0. Then the complete local ring of M(P )×M1,1⊗k Y can(pn) at x0 is isomorphic to

k[[x, y]]

/( ∏
a∈Z/pnZ

(
x − [

ã
]
(y)

) ∏
b∈Z/pn−1Z

(
y − [

pb̃
]
(x)

))
,

and in this complete local ring, each M(P )×M1,1⊗k Y [Λ](pn) is defined by the single equation{
x − [

ã
]
(y) = 0 if Λ∼ (1, −a)

y − [
pb̃

]
(x) = 0 if Λ∼ (−pb, 1).

Proof: We already know that the complete local ring of M(P )×M1,1⊗k Y can(pn) at x0 has the form

k[[x, y]]
/

( f ).

As we discussed above, each M(P )×M1,1⊗k Y [Λ](pn) in this complete local ring is defined by the
single equation {

x − [
ã
]
(y) = 0 if Λ∼ (1, −a)

y − [
pb̃

]
(x) = 0 if Λ∼ (−pb, 1)

hence their complete local rings are{
k[[x, y]]

/(
f , x − [

ã
]
(y)

)
if Λ∼ (1, −a)

k[[x, y]]
/(

f , y − [
pb̃

]
(x)

)
if Λ∼ (−pb, 1)

But as the complete local ring of a smooth curve, we have the isomorphisms{
k[[x, y]]

/(
f , x − [

ã
]
(y)

) ' k[[y]]
k[[x, y]]

/(
f , y − [

pb̃
]
(x)

) ' k[[x]]

8To artinian local k-algebras with residue field k.
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therefore f ∈ (
x−[

ã
]
(y)

)
(resp. f ∈ (

y−[
pb̃

]
(x)

)
), i.e., the complete local ring of each M(P )×M1,1⊗k

Y [Λ](pn) at the supersingular point is isomorphic to{
k[[x, y]]

/(
x − [

ã
]
(y)

)
if Λ∼ (1, −a)

k[[x, y]]
/(

y − [
pb̃

]
(x)

)
if Λ∼ (−pb, 1).

By the Crossings Theorem 6.1.1, the complete local ring of M(P )×M1,1⊗k Y can(pn) at x0 is

k[[x, y]]

/( ∏
a∈Z/pnZ

(
x − [

ã
]
(y)

) ∏
b∈Z/pn−1Z

(
y − [

pb̃
]
(x)

))
.

6.6 Reduction mod p of Y bal,can
1 (pn)

Similar as the situation of the modular curve Y (N ), for the case of Y bal
1 (N ), we define the moduli

substack Y bal,can
1 (N ), who classifies all the dual pairs of cyclic N -isogenies

E E ′ E
φ φt

with specified generators P,Q of ker(φ) and ker(φt ) respectively, such that < P,Q >φ= ζN .

Let N be a prime power pn . When the elliptic curve is defined over a field of characteristic p, then
the condition becomes < P,Q >φ= 1.

Theorem 6.6.1. Let

E E ′
φ

φt

be a dual pair of cyclic pn-isogenies of ordinary elliptic curves over a connected Fp -scheme S, with
specified generators P,Q of ker(φ) and ker(φt ) respectively, such that < P,Q >φ= 1. Then

(1) There exists a pair (a,b) of non-negative integers with a +b = n, such that φ is (a,b)-cyclic
and φt is (b, a)-cyclic;

(2) pbP = 0, and (0,P ) is a Drinfeld pb-basis for E/S. The point P generates a Z/pbZ in E, we

denote the quotient by E∗. Then E ' E (pb )
∗ ;

(3) paQ = 0, and (0,Q) is a Drinfeld pa-basis for E ′/S. The point P generates a Z/paZ in E ′, we

denote the quotient by E∗∗. Then E ′ ' E (pa )
∗∗ ;

(4) The standard factorization of φ with respect to the divisor pa of pn , is

E (pb )
∗ E (pn )

∗ E (pa )
∗ ;

F a

V a

V b

F b
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(5) We have a unique isomorphism E∗ ' E∗∗, such that the diagram

E∗ ' E∗∗

E (pb )
∗ E E ′ E (pa )

∗∗

E∗ ' E∗∗

F a
E∗∗/SV b

E∗/S

∼

φ

φt

∼

V a
E∗∗/SF b

E∗/S

commutes.

(6) The point P ∈ E (pb )
∗ (S) is an Igusa level pb structure on E∗/S, and the point Q ∈ E (pa )

∗ (S) is an
Igusa level pa structure on E∗/S;

(7) If a Ê b, then there exists a unique unit u ∈ (Z/pbZ)× such that

V a−b
E∗/S (Q) = u ·P in E (pb )

∗ .

If a < b, then there exists a unique unit u ∈ (Z/paZ)× such that

Q = u ·V a−b
E∗/S (P ) in E (pa )

∗ .

Proof: (1) This is by Theorem 6.2.3.

(2) Applying the Standard Order Criterion to the standard factorizations of the pn-isogeniesφ and
φt :

E E (pa ) ' E ′(pb ) E ′,
F a

E/S

V a
E/S

V b
E ′/S

F b
E ′/S

we know that pbP generates ker(F a
E/S ), and F b

E ′/S (Q) generates ker(V a
E ′/S ). Moreover, we have (cf.

Lemma 8.5.3)

< pbP, F b
E ′/S (Q) >F a

E/S
= (< P, F b

E ′/S (Q) >F a
E/S

)pb = (< P, Q >φ
)pb = 1.

Since ker(V a
E ′/S ) is étale, the generator F b

E ′/S (Q) defines an isomorphism

F b
E ′/S (Q) : Z/paZ −→ ker(V a

E ′/S ),

which induces the dual isomorphism

ker (F a
E/S ) −→ µpa

ζ 7−→ < ζ, F b
E ′/S (Q) >F a

E/S
.

Hence < pbP, F b
E ′/S (Q) >F a

E/S
= 1 implies that pbP = 0. Now the point P defines a homomorphism

P : Z/pbZ −→ E ,

we need to show that it is a closed immersion of S-group schemes, i.e., the point P has exact order
pb in the naïve sense. By the Backing-Up Theorem 4.3.8, we know that F a

E/S (P ) generates the fi-

nite étale group scheme ker(V b
E ′/S ) of rank pb , hence F a

E/S (P ) has exact order pb in the naïve sense,
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which implies that P also has exact order pb in the naïve sense. This proves the closed immersion
of Z/pbZ into E/S defined by P .

Next we show that (0,P ) is a Drinfeld pb-basis of E/S. The closed immersion

P : Z/pbZ −→ E [pb]

provides a splitting of the exact sequence

0 ker (F b
E/S ) E [pb] ker (V b

E/S ) 0

Z/pbZ

F b
E/S

P ∼

this is because the kernel of F b
E/S ◦ P (which is étale) intersects with ker(F b

E/S ) only at the zero

section, so F b
E/S ◦P defines an isomorphism between Z/pbZ and ker(V b

E/S ). Thus we have

E [pb] ' ker (F b
E/S )⊕Z/pbZ,

and now it is clear that (0,P ) is a Drinfeld pb-basis of E/S, since 0 generates ker(F b
E/S ).

Let E∗ be the quotient of E by the cyclic subgroup Z/pbZ generated by P . The splitting tells us
that we have a (non-standard) factorization of [pb]:

E E∗ E ,
F b

E/S

hence it is obvious that E ' E (pb )
∗ .

(3) This is the dual version of (2).

(4) It is obvious.

(5) Let us denote ψ for the isomorphism between E (pa ) and E ′(pb ) composed with V b
E ′/S , i.e., we

have the standard factorization of φ

E E (pa ) E ′.
F a

E/S

φ

ψ

Since P is a generator of ker(φ), and it induces F a
E/S (P ) as a generator of ker(ψ), hence we have the

commutative diagram

0 Z/paZ Z/pnZ Z/pbZ 0

0 ker (F a
E/S ) ker (φ) ker (ψ) 0

0 P F a
E/S (P )o

F a
E/S

where the vertical morphisms are all generators, and the right side one is an isomorphism. From
the diagram, we obtain a splitting

ker (φ) ' ker (F a
E/S )⊕Z/pbZ,
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which induces a (non-standard) factorization of φ:

E ' E (pb )
∗ E∗ E (pa )

∗ .
V b

E∗/S F a
E∗/S

Thus we have E ′ ' E (pa )
∗ . On the other hand, in (3) we have proved that E ′ ' E (pa )

∗∗ , therefore

E (pa )
∗ ' E (pa )

∗∗ .

The kernel ker(V a
E∗∗/S ) is exactly the Z/paZ inside E ′ ' E (pa )

∗∗ which is generated by Q. If we can
prove that Q lies in ker(V a

E∗/S ), then by the fact that Q has exact order pa , we obtain the required
isomorphism by taking the quotients:

E∗ ' E (pa )
∗

/
(cyc. subgp generated by Q) −→ E (pa )

∗∗
/

(cyc. subgp generated by Q) ' E∗∗.

Thus our goal is to prove V a
E∗/S (Q) = 0.

By passing to some fppf base change, we extend the Γbal
1 (pn)-structure (P,Q) to a Γ(pn)-structure

(P,Q̃), i.e., (P,Q̃) is a Drinfeld pn-basis of E/S, and φ(Q̃) =Q. By Theorem 6.5.4, we know that the
condition for (P,Q̃) is {

Q̃ = sP s ∈Z/pnZ

P = ptQ̃ t ∈Z/pn−1Z

In the first case, we have Q =φ(Q̃) =φ(sP ) = 0, which trivially implies V a
E∗/S (Q) = 0. In the second

case, after multiplying a unit in Z/pnZ, we may assume that

P = pγQ̃

for some γ Ê 1. Since (pγQ̃,Q̃) is a Drinfeld pn-basis, hence so is (0,Q̃), and Q̃ has exact order
pn in the naïve sense (because E/S is ordinary). Therefore P = pγQ̃ has exact order pn−γ in the
naïve sense. But we already proved that P has exact order pb in the naïve sense, so γ= a. Use the
non-standard factorization of φ:

E ' E (pb )
∗ E∗ E (pa )

∗ ' E ′,
V b

E∗/S F a
E∗/S

we have

V a
E∗/S (Q) = V a

E∗/S

(
φ(Q̃)

)
= V a

E∗/S ◦F a
E∗/S ◦V b

E∗/S (Q̃)

= V b
E∗/S (paQ̃)

= V b
E∗/S (P ) = 0.

(6) It is obvious, by construction.

(7) Both sides of points are generators of the finite étale group scheme ker
(
V min(a,b)

E∗/S

)
, hence they

are differed by a unique unit in Z/pmin(a,b)Z.
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Theorem 6.6.2. Let E/S be an elliptic curve over a Fp -scheme, and (a,b) a pair of non-negative

integers such that a+b = n Ê 1. We fix a unit u in Z/pmin(a,b)Z. Let P ∈ E (pb )(S) and Q ∈ E (pa )(S) be
generators of ker(V b

E/S ) and ker(V a
E/S ) respectively, such that{

V a−b
E/S (Q) = u ·P if a Ê b

Q = u ·V b−a
E/S (P ) if a < b.

Then

(1)
(
E (pb )/S,P,Q

)
is a Γbal

1 (pn)-structure for the dual pairs of isogenies

E (pb ) E (pn ) E (pa )
F a

V a

V b

F b

with determinant 1.

(2) Let k be a perfect field of characteristic p, and P a representable moduli stack over M1,1 ⊗k
which is finit étale. The construction defines a closed immersion

i u
(a,b) : M(P )×M1,1⊗k Ig

(
pmax(a,b)

)
M

(
P (σb )

)×M1,1⊗k Y bal,can
1 (pn).

Proof: (1) Firstly, since P generates the kernel of the isogeny

V b
E/S : E (pb ) −→ E ,

the point F a
E/S (P ) = P (pa ) must generate the kernel of

V b
E (pa )/S

: E (pn ) −→ E (pa ).

Apply the Backing-Up Theorem 4.3.8 to the standard factorization:

E (pb ) E (pn ) E (pa ),F a V b

we know that P generates the kernel of the isogeny φ=V b ◦F a . Similarly, Q generates ker(φt ). So(
E (pb )/S,P,Q

)
is indeed a Γbal

1 (pn)-structure of E/S. It remains to show that it has determinant 1.

Without loss of generality, we may assume u = 1. By passing to some fppf base change, we assume
that there exists R ∈ E (pn )(S) such that{

V a(R) = P if a É b
V b(R) =Q if a > b

then automatically we have both V b(R) =Q and V a(R) = P . Furthermore (also by some fppf base

change) we assume that there exists R ′ ∈ E (pb )(S) such that F a(R ′) = R. Observe that

pnR ′ = pb ·V a ◦F a(R ′) = pbP = F b ◦V b(P ) = 0,

then use Corollary 8.5.5, we have

< P, Q >φ = <V a(R), V b(R) >V b◦F a = <V a(R), V b ◦F a(R ′) >V b◦F a = epn (V a(R), R ′)
= epn (R, F a(R ′)) = epn (R, R) = 1.
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(2) By (1) and Theorem 6.6.1, the morphism

i u
(a,b) : M(P )×M1,1⊗k Ig(pmax(a,b)) M

(
P (σb )

)×M1,1⊗k Y bal,can
1 (pn).

is well-defined. For example if a Ê b, given an object (E/S,α,Q) of M(P )×M1,1⊗k Ig(pa), where
α ∈P (E/S) is a level P structure, it is mapped to(

E (pb )/S,α(pb ),u−1 ·V a−b(Q),Q
) ∈ M

(
P (σb ))×M1,1⊗k Y bal,can

1 (pn).

Since i u
(a,b) is a M(P )-morphism, both source and target are finite M(P )-schemes, hence it is

proper. The injectivity of i u
(a,b) is clear, by passing to the exotic Igusa moduli stack: (again, suppose

a Ê b)

M(P )×M1,1⊗k Ig(pa) M
(
P (σb )

)×M1,1⊗k Y bal,can
1 (pn)

M
(
P (σb )

)×M1,1⊗k ExIg(pa ,b),

o

where the image of (E/S,α,Q) in M
(
P (σb )

)×M1,1⊗k ExIg(pa ,b) is just

(
E (pb )/S,α(pb ),u−1 ·V a−b(Q),Q

)
.

Theorem 6.6.3. Let k be a perfect field of characteristic p, and P a representable moduli stack over
M1,1 ⊗k which is finite étale. Then the M(P )-scheme

M(P )×M1,1⊗k Y bal,can
1 (pn)

is the disjoint union of the following M(P )-schemes:

M
(
P (σ−b )

)×M1,1⊗k Ig(pmax(a,b))

M(P )

pb

for each pair (a,b) of non-negative integers with a +b = n, and each unit u ∈ (Z/pmin(a,b)Z)×, with
crossings at suppersingular points.

Proof: It is straightforward.

Remark: As we have seen, the moduli stack Y bal,can
1 (pn)⊗ k is the associated reduced stack of

Y bal
1 (pn)⊗k, since each of its components is a reduced smooth curve.

6.7 Summary

In this section, we summarize the basic results of reduction mod p of four basic modular curves
that we proved in previous sections. They all have the feature of “crossings at supersingular points”,
which we introduced in the first section of this chapter.

Let us fix a perfect field k of characteristic p, and an auxiliary representable moduli stack P over
M1,1 ⊗k, which is required to be finite étale over M1,1 ⊗k.
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Y0(pn)

• Components: The components of M(P )×M1,1⊗k Y0(pn) are

M(P )×M1,1⊗k Y
cyc

0 (a,b),

which are indexed by the pair (a,b) of non-negative integers with a+b = n. Hence there are
totally n +1 components.

• Underlying reduced curve of each component: The (n,0) component is reduced, which is
isomorphic to M(P ) itself. The (0,n) component is also reduced, which is isomorphic to
M(P )(σ−n ). In other cases, if a Ê b, the underlying reduced curve is isomorphic to M(P ); if

a < b, the underlying reduced curve is isomorphic to M(P )(σa−b ).

• Degree over M(P ): The (a,b) component has rank pb over M(P ).

Y1(pn)

• Components: The components of M(P )×M1,1⊗k Y1(pn) are

M(P )×M1,1⊗k Y
cyc

1 (a,b),

which are indexed by the pair (a,b) of non-negative integers with a+b = n. There are totally
n +1 components.

• Underlying reduced curve of each component: The (n,0) component is

M(P )⊗k

(
k[X ]

/(
Xϕ(pn ))),

its underlying reduced curve is M(P ). The (0,n) component is

M(P )×M1,1⊗k ExIg(pn ,n),

which is already reduced. In other cases, the (a,b) component is not reduced, whose under-
lying reduced curve is

M(P )×M1,1⊗k ExIg(pb ,b).

• Degree over M(P ): The (n,0) component has rankϕ(pn) over M(P ). The (0,n) component
has rank pn ·ϕ(pn) over M(P ). In other cases, the (a,b) component has rank ϕ(pn)ϕ(pb)
over M(P ).

Y can(pn)

• Components: The components of M(P )×M1,1⊗k Y can(pn) are

M(P )×M1,1⊗k Y [Λ](pn),

which are indexed by elements in (Z/pnZ)×
∖
Homsurj((Z/pnZ)2, Z/pnZ

)
. There are totally

ϕ(pn) components.
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• Underlying reduced curve of each component: Each component is isomorphic to

M(P )×M1,1⊗k ExIg(pn ,n),

which is already reduced.

• Degree over M(P ): The degree of each component over M(P ) is equal to the rank of the
exotic Igusa moduli stack ExIg(pn ,n), which is pn ·ϕ(pn).

Y bal,can
1 (pn)

• Components: The components of M(P )×M1,1⊗k Y bal,can
1 (pn) are

M
(
P (σ−b ))×M1,1⊗k Ig

(
pmax(a,b)),

which are indexed by the pair (a,b) of non-negative integers with a +b = n, together with a
unit u ∈ (

Z/pmin(a,b)Z
)×. The number of components is

pb n
2 c + pb n−1

2 c + 2.

• Underlying reduced curve of each component: The (a,b) component is isomorphic to

M(P )×M1,1⊗k ExIg
(
pmax(a,b),b

)
,

which is already reduced.

• Degree over M(P ): The degree of the (a,b)-component over M(P ) is equal to the rank of
the exotic Igusa moduli stack ExIg

(
pmax(a,b),b

)
, which is pb ·ϕ(

pmax(a,b)
)
.
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7
Appendix I: Review of relative Cartier divisors

For our very purpose, we shall only discuss effective divisors.

7.1 Effective Cartier divisors

Let S be a scheme, and X be a S-scheme.

Definition 7.1.1. An effective Cartier divisor in X /S is a closed subscheme D ⊂ X , which is flat over
S, and whose ideal sheaf I (D) is an invertible sheaf of OX -modules.

We have another interpretation of effective Cartier divisors. We know that the effective Cartier
divisor D on X /S is the zero locus of some section of OX (D) = I −1(D). Explicitly, consider the
tautological exact sequence of D

0 −→I (D) =OX (−D) −→OX −→ i∗OD −→ 0,

where i : D ,→ X is the closed immersion, tensoring OX (D) to get

0 −→OX −→OX (D) −→ i∗OD ⊗OX
OX (D) −→ 0,

the image of the constant global section “1” in OX (D) is what we expected, i.e., D is the zero locus
of “1”. We claim that D is determined by the pair (O(D),“1”).

Suppose given a pair (L ,`), where L is an invertible sheaf of OX -modules, and ` ∈ H 0(X ,L ) is a
global section, such that in the following exact sequence

0 OX L L /OX 0×`

L /OX is flat over S. Then the zero locus V (`) is an effective Cartier divisor, and there is a unique
isomorphism

(L , `) ' (I −1(V (`)), “1”).
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Using such interpretation, the addition of twoeffective Cartier divisors can be defined as tensor
product, i.e., given effective Cartier divisors (L ,`) and (L ′,`′),

(L , `) + (L ′, `′) = (L ⊗OX
L ′, `⊗`′).

Locally speaking, the defining equation of D +D ′ is given by product of defining equations of D
and D ′. If moreover we also consider non-effective Cartier divisors, then all relative Cartier divi-
sors in X /S form an abelian group (the Picard group) under above addition, and (OX ,1) is the zero
element.

Now suppose D,D ′ are effective Cartier divisors in X /S, we say that D ′ É D if D ′ ⊂ D . Equivalently,
this means:

(i) I (D) ⊂I (D ′), or

(ii) There exists an effective Cartier divisor D ′′ in X /S such that D ′+D ′′ = D .

If D = (L ,`) and D ′ = (L ′,`′), then explicitly

D ′′ =
(
L ⊗OX

(L ′)−1,
`

`′
)
.

7.2 Base changes and pull-backs

Let T be a S-scheme, and XT = X ×S T . Then DT = D ×S T is an effective Cartier divisor in XT /T .
Indeed, DT is a closed subscheme of XT , and the flatness is preserved by base change. And if
D = (L ,`), then DT = (LT ,`T ).

Let Y be another S-scheme, and suppose we have a flat S-morphism

Y X

S

f

then the closed subscheme f ∗(D) of Y

f ∗(D) Y

D X

i ′

f

i

is an effective Cartier divisor in Y /S. Indeed, f ∗(D) is flat over D , and since D is flat over S, f ∗(D)
is also flat over S. By flatness, the functor f ∗ on the category of quasi-coherent sheaves on X is
exact, applying f ∗ to the tautological exact sequence

0 −→I (D) −→OX −→ i∗OD −→ 0,

we have

0 −→ f ∗I (D) −→OY −→ i ′∗O f ∗(D) −→ 0,

104



MASTER THESIS, YULIANG HUANG

insert it into the following diagram

0 f ∗I (D) OY i ′∗O f ∗(D) 0

0 I ( f ∗(D)) OY i ′∗O f ∗(D) 0

id id

the first column is an isomorphism according to 5-lemma, therefore I ( f ∗(D)) = f ∗I (D) is an
invertible sheaf.

7.3 A criterion for effective Cartier divisors

Proposition 7.3.1. Suppose the base scheme S is locally noetherian, and X is flat of finite type.
Then a closed subscheme D ⊂ X which is flat over S is an effective Cartier divisor, if and only if any
geometric fiber Dk (k = k̄) is an effective Cartier divisor in Xk /k.

Proof: The “only if” part: It is a consequence of our previous discussion on base change.

The “if” part: Firstly we need to verify the flatness of the ideal sheaf I (D) over X . Applying the
fiber-wise criterion of flatness (cf. Altman-Kleiman [2] Proposition 3.4), one then only has to check
the flatness over any fiber (not necessarily geometric). Although we only know the flatness over
geometric fibers by condition, we will see how it can pass to arbitrary fibers.

Since flatness is local condition, it suffice to see the local picture. Let us say, R is a noetherian
local ring with maximal ideal m, A is a flat local R-algebra (of finite type), and M is a finite A-
module. Let R ′ → R be a flat extension of local rings, such that the residue field of R ′ is k̄. Denote
M ′ = M ⊗R R ′ and A′ = A ⊗R R ′. Then M ′⊗R ′ k̄ is a flat (A′⊗R ′ k̄)-module by condition, which im-
plies that M ′ is a flat A′-module according to the fiber-wise criterion of flatness. Since A′ → A is
also a flat extension of local rings, which is automatically faithfully flat, this implies M is flat over A.

Once we know that I (D) is flat over X , it is then locally free, in particular, with constant rank.
While its geometric fiber has rank 1, I (D) indeed is an invertible sheaf, which shows that D is an
effective Cartier divisor.

7.4 Effective Cartier divisors in curves

Now we turn to study effective Cartier divisors in curves. Recall that a smooth curve C over S is a
smooth morphism

C

S

of relative dimension 1, which is also separated and finitely presented.

Lemma 7.4.1. Let D be a closed subscheme of C which is finite flat and finitely presented over S.
Then D is an effective Cartier divisor in C /S, which is proper over S. Conversely, any proper effective
Cartier divisor in C /S has this form.
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Proof: Since everything is of finite presentation here, it suffices to treat the case when S = Spec (R)
is a noetherian affine scheme (cf. EGA IV3, Proposition 8.9.1 et Corollaire 11.2.6.1), and further-
more by Proposition 7.3.1, reduces to the case R = k (where k = k̄). But then D is obviously an
effective Cartier divisor in Ck /k which is proper, since it is finite over k.

Conversely, we need to show that any proper effective Cartier divisor D in C /S is finite and finitely
presented over S (flatness is already in definition). Since D is locally defined by one equation on
X , it is finitely presented over S. To show D is finite over S, it suffices to show that D is quasi-finite
because we already know it is proper. Hence similarly, we are able to reduce to the case where S is
a geometric point Spec (k) (k = k̄), where the quasi-finiteness of D is obvious.

Definition 7.4.2. Suppose D ⊂C is a proper effective Cartier divisor in C /S. Define its degree to be
the rank of D over S.

Notice that any section s ∈ C (S) defines a proper effective Cartier divisor [s] in C /S of degree 1, it
turns out that the converse is also true, i.e., any proper effective Cartier divisor of degree 1 in C /S
comes from a section.

Lemma 7.4.3. Let C /S be a smooth curve, and D is an effective Cartier divisor of degree n which is
proper over S. Then fppf-locally, there exists a section s ∈C (S), such that [s] É D.

Proof: Consider the cartesian diagrams

DD D

CD C

D S

iD i

such a base change is fppf, since D is flat and finitely presented over S. The identity morphism of
D induces a section s ∈CD (D):

D

DD D

CD C

D S

idD

t

s

idD

iD i

Since D is proper over S, it is in particular separated. And notice that t is nothing but the relative
diagonal morphism ∆ of D/S, which is a closed immersion. This shows that t is a D-morphism,
i.e., it is a section in DD (D). The composition s = iD ◦ t shows that the section s lies in the effec-
tive Cartier divisor D . Such a section indeed defines an effective Cartier divisor [s] in CD , with the
property [s] É DD , which is exactly what we need.
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Lemma 7.4.4. Let C /S be a smooth curve. Any section s ∈ C (S) defines an effective Cartier divisor
[s] in C /S which is proper over S and of degree 1. Conversely, any proper effective Cartier divisor D
of degree 1 comes from a unique section.

Proof: The first assertion is straightforward. For the last assertion, by Lemma 7.4.3, fppf-locally
on S, the degree 1 proper effective Cartier divisor D is given by a section, which shows that the
structural morphism D → S is fppf-locally an isomorphism, hence an isomorphism.

Lemma 7.4.5. Let D1,D2 be effective Cartier divisors in C /S, then

deg(D1 +D2) = deg(D1)+deg(D2).

Proof: Suppose D1 = (L1,`1),D2 = (L2,`2). Consider the following commutative diagram

0 0 0

0 OX OX 0 0

0 L2 L1 ⊗L2 L1 ⊗L2/L2 0

0 L2/OX (L1 ⊗L2)/OX (L1 ⊗L2)/L2 0

0 0 0

×1

×`2 ×`1 ⊗`2

id

all the columns as well as top two rows are trivially exact, according to the nine lemma, the bottom
row is also exact. Equivalently, we have

0 L2|D2 (L1 ⊗L2)|D1+D2 (L1|D1 )⊗OD1
(L2|D1 ) 0,

notice that L2|D1 is an invertible sheaf on D1, hence of rank 1. Thus locally speaking

deg(D1 +D2) = H 0(L1 ⊗L2|D1+D2 )

= H 0(L2|D2 )+H 0(L1|D1 ⊗L2|D1 )

= deg(D2)+deg(D1).

Lemma 7.4.6. Let C be a smooth curve over S, and D a proper effective Cartier divisor in C /S.
Suppose T is a S-scheme, then DT is a proper effective Cartier divisor in CT /T , and

deg(DT ) = deg(D).

Lemma 7.4.7. Let f : C ′ → C be a finite flat S-morphism between curves C /S,C ′/S, and D is a
proper effective Cartier divisor in C /S. Then f ∗(D) is a proper effective Cartier divisor in C ′/S, and

deg( f ∗(D)) = deg( f ) ·deg(D).
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The following lemma is crucial for proving relative representability results.

Lemma 7.4.8. Let C /S be a smooth curve, and D,D ′ are effective Cartier divisors in C /S, and D ′
is proper over S. Then there is a unique closed subscheme Z ⊂ S which is universal for the relation
D ′ É D, i.e., for any base change T → S, D ′

T É DT if and only if T → S factors through Z . Moreover, Z
is locally defined by d ′ = deg(D ′) equations on S, and its formation commutes with any base change.

Proof: We may assume S = Spec (R) is affine, since our question is local. Suppose D = (L ,`)
and D ′ = (L ′,`′). Notice that the relation D ′ É D holds if and only if `|D ′ = 0 in H 0(D ′,L |D ′ ).
Since L |D ′ is an invertible sheaf, hence locally free, without lose of generality we may assume
H 0(D ′,L |D ′ ) is a free R-module. The rank of H 0(D ′,L |D ′ ) is d ′, choose a R-basis {e1, ...,ed ′ } of
H 0(D ′,L |D ′ ), and express `|D ′ as

`|D ′ =
d ′∑

i=1
fi ·ei , fi ∈ R

Then the condition `|D ′ = 0 is equivalent to d ′ equations { fi = 0}d ′
i=1, this defines a closed sub-

scheme Z ⊂ S. By the construction, it is obviously that Z satisfies the universal property.

And for any base change T → S, ZT is locally defined by equations {( fi )T = 0}d ′
i=1, which is also

equivalent to `T |D ′
T
= 0, i.e., the relation D ′

T É DT . Therefore the formation of Z commutes with
any base change.

Corollary 7.4.9. Let C /S be a smooth curve which has the structure of S-group scheme, D is a proper
effective Cartier divisor in C /S. Then there is a unique closed subscheme Z ⊂ S which is universal for
the relation that D is a S-subgroup scheme. Moreover, Z is locally defined by 1+deg(D)+ (deg(D))2

equations, and its formation commutes with any base change.

Proof: Let 0, inv,m be the unit element, the inverse morphism and the multiplication morphism
of C /S respectively. In order to be a S-subgroup scheme, the effective Cartier divisor D should
satisfy following three conditions:

(i) [0] É D , where [0] is the effective Cartier divisor given by the unit section 0;

(ii) inv∗(D) = D ;

(iii) Denote W = D ×S D , and let P1,P2 ∈ DW (W ) be the universal pair of points of D , i.e., they
are given by

W W

DW W DW W

D S D S

idW

P1

pr1

idW

P2

pr2

in which we have the following diagram

DW CW DW

W

P1 P2
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Now the third condition is
[m(P1,P2)] É DW .

The meanings of those three conditions are clear.

Condition (i) possesses one equation over S, because deg([0]) = 1. Condition (ii) is equivalent to

inv∗(D) É D,

since both sides have the same rank, this gives deg(D) equations over S. Condition (iii) possess-
es one equation over W , but since W is finite flat over S with rank (deg(D))2, therefore it gives
(deg(D))2 equations over S. The closed subscheme Z locally defined by these equations obviously
satisfies the universal property, and its formation commutes with any base change.
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8
Appendix II: Review of elliptic curves

The purpose of this appendix is to set up the foundations for elliptic curve over a base scheme,
rather than a field. We mainly follow Katz-Mazur [24] and Deligne [25].

8.1 General formulation

Definition 8.1.1. An elliptic curve E over a base scheme S is a proper smooth curve

E

S

f0

with a “zero” section 0, such that any geometric fiber of f has genus 1.

Smoothness of relative dimension 1 implies that Ω1
E/S is locally free of rank 1. It is not so obvious

that E itself is a S-group scheme, although the existence of group structure on each geometric
fiber is classic. But we can still use a similar approach to equip E with a group structure, i.e., by
relating to the Jacobian.

Theorem 8.1.2 (Abel). Let E/S be an elliptic curve. Then there exists a unique commutative group-
scheme structure, such that for any S-scheme T and any sections P,Q,R ∈ E(T ), we have

P + Q = R

if and only if there is an invertible sheaf L0 on T and an isomorphism

OET (P )⊗OET (Q)⊗OET (−0) ' OET (R)⊗ f ∗
T L0.

Proof: Recall the definition of relative Picard functor of E/S:

PicE/S (T ) := Pic(ET )/Pic(T )
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where the functor Pic is the absolute Picard functor, and the right side means precisely the set of
isomorphism classes of invertible sheaves L on ET modulo the equivalence relation

L ∼ L ⊗ f ∗
T (L0).

Moreover, there are Picard functors with fixed degree (the connected components of PicE/S ), in
particular, its neutral component (or the Jacobian) Pic(0)

E/S . In order to prove the theorem, it suffices
to show that the morphism (between functors)

E/S −→ Pic(0)
E/S

which is defined by sending any S-valued point P ∈ E(S) to the invertible sheaf OE (P )⊗OE (−0), is
an isomorphism.

We claim that the problem is Zariski-local on S. This is a descent property (for affine Zariski cov-
erings) for Pic(0)

E/S , which is obvious if we know the representability of Pic(0)
E/S . However, an elliptic

curve E → S is always Zariski-locally projective 1, the representability of Jacobian Pic(0)
E/S indeed

holds 2.

Since S is finitely presented, we may reduce to the case that S is noetherian. Let L be an invertible
sheaf on E which is fiber-wise of degree 0, and let L̃ = L ⊗OE (0). By the Semicontinuity Theo-
rem 3, the sheaf f∗L̃ is locally free over S, of rank 1. Zariski-locally on S, we choose an OS -basis
` of the invertible sheaf L̃ . Then (L̃ ,`) defines an effective Cartier divisor in E/S. Indeed, by the
fiber-wise criterion for effective Cartier divisors, one only needs to ensure that (L̃ ,`) defines an
effective Cartier divisor on any geometric fiber of E/S, which is clear. Therefore it defines an ef-
fective Cartier divisor of degree 1 in E/S, which must come from a section in E(S), i.e., this defines
an inverse map

Pic(0)
E/S (S) −→ E(S)

L 7−→ P = (L ⊗O(0),`)

Moreover, the two morphisms we have defined

E/S � Pic(0)
E/S

apparently are mutually inverse, this proves the theorem.

Definition 8.1.3. The sheaf ωE/S = f∗Ω1
E/S on S is called the sheaf of invariant differentials.

The function h0(s,Ω1
Es

) is constant on S, with value 1, since each geometric fiber of E/S is of genus
1. By Semicontinuity Theorem, the sheaf of invariant differentials ωE/S is an invertible sheaf on
S. Hence Zariski-locally on S, it is possible to choose an OS -basis ω of ωE/S . As the name of
ωE/S implies, the basis ω turns out to be a differential on E which is invariant under translations.
Indeed, the action of translations on ω defines a morphism of S-group schemes

E −→ Gm ,

1See the next section for the construction of generalized Weierstrass equations.
2cf. Kleiman [7] Theorem 9.4.8 and Theorem 9.5.20
3cf. Hartshorne [29] Theorem 12.8 and Corollary 12.9
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which has to be constant, since E is proper over S. On the other hand, the pull-back invertible
sheaf 0∗Ω1

E/S stands for those differentials on E which are given by translations of some fixed
differential on the zero section 0 : S → E . So consequently, ωE/S and 0∗Ω1

E/S must be isomorphic.
We now give another proof.

Lemma 8.1.4. There is an isomorphism

ωE/S 0∗Ω1
E/S .

Proof: Starting with the tautological exact sequence for the zero section

0 OE (−0) OE 0∗OS 0,

tensoring ΩE/S

0 Ω1
E/S (−0) Ω1

E/S 0∗OS ⊗OE
Ω1

E/S = 0∗0∗Ω1
E/S 0.

Applying the left exact functor f∗, one obtains the long exact sequence

0 f∗Ω1
E/S (−0) ωE/S f∗0∗0∗Ω1

E/S = 0∗Ω1
E/S

R1 f∗Ω1
E/S (−0) R1 f∗Ω1

E/S R1 f∗(Ω1
E/S |S ) ...

where R1 f∗(Ω1
E/S |S ) = 0 for dimensional reason, and f∗Ω1

E/S (−0) = 0 by Riemann-Roch, hence the
exact sequence becomes

0 ωE/S 0∗Ω1
E/S R1 f∗Ω1

E/S (−0) R1 f∗Ω1
E/S 0.

By the Semicontinuity Theorem and Riemann-Roch, the last two sheaves are both invertible, so
the surjective morphism between them must be an isomorphism. Now it follows that the mor-
phism in above exact sequence

ωE/S 0∗Ω1
E/S

∼

is an isomorphism.

8.2 Generalized Weierstrass equations

Proposition 8.2.1. Let E/S be an elliptic curve, with zero section 0 : S → E. Then f∗OE (n · 0) is
locally free of rank n for any n Ê 1.

Proof: Since by Riemann-Roch,

h0(Es ,OEs (n ·0s )) = h1(Es ,OEs (n ·0s ))+deg(n ·0s ) = h0(Es ,OEs (KEs −n ·0s ))+n = n

is constant on S, by Semicontinuity Theorem, the push-forward sheaf f∗OE (n ·0) is locally free of
rank n.
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Lemma 8.2.2. There is an isomorphism

ωE/S 0∗I (0).

Proof: By the Second Exact Sequence of sheaves of differentials 4, we have a short exact sequence

0∗I (0) 0∗Ω1
E/S Ω1

S/S = 0 0,

it shows that there is a surjective morphism

0∗I (0) 0∗Ω1
E/S ,

which must be an isomorphism, since both sheaves are invertible.

Proposition 8.2.3. Let E/S be an elliptic curve over S. Suppose thatωE/S is free over S, then f∗OE (n ·
0) is free for any n Ê 1.

Proof: Tensoring OE ((n +1)0) with the tautological exact sequence for the zero section,

0 OE (n ·0) OE ((n +1)0) 0∗0∗OE ((n +1)0) 0,

and applying f∗, we obtain

0 f∗OE (n ·0) f∗OE ((n +1)0) 0∗OE ((n +1)0) 0,

because R1 f∗OE (n ·0) = 0 for any n Ê 1. Using induction, suppose one knows that f∗OE (n ·0) is
free. The condition ωE/S being free implies that 0∗OE (−0) is free, by Lemma 8.2.2, hence so as
0∗OE ((n +1)0). Thus above short exact sequence apparently splits, which shows that the middle
one f∗OE ((n +1)0) is also free.

Like in the theory of elliptic curves over fields, it is still possible to find Weierstrass equation for
elliptic curves over a general base scheme, but only Zariski-locally on S. Assume ωE/S is free on S,
by Proposition 8.2.3, f∗OE (n ·0) is free for any n Ê 1.

Since E is smooth of relative dimension 1 over S, over an affine open subset Spec (R), its formal
group Ê is isomorphic to the formal spectrum of the formal power series in one variable:

Ê ' Spf (R[[T ]]).

The choice of the formal parameter T is however not unique. We fix a formal parameter T , then
there exists a unique invariant differential ω with the form

ω = (
1+ higher terms

) ·dT,

for such invariant differential, we call that ω is adapted to the formal parameter T . Conversely, if
instead we fix an OS -basisω ofωE/S , then there exists a formal parameter T which is unique up to
some analytical isomorphism

T 7−→ T + higher terms.

4cf. Hartshorne [29] Proposition 8.12
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By assumption, f∗OE (2 ·0) is free of rank 2, let {1, x} be its basis. With respect to the formal param-
eter T , we can normalize x so that it has the formal expansion

x = 1

T 2

(
1 + higher terms

)
,

then x is unique up to x 7→ x +c for some constant c. Similarly, let {1, x, y} be a basis of f∗OE (3 ·0),
and normalize y so that it has the formal expansion

y = 1

T 3

(
1 + higher terms

)
,

and y is unique up to y 7→ y +ax +b for some constants a,b. We say those x, y are adapted to the
formal parameter T , or to the invariant differential ω.

For n = 4,5, we find basis for f∗OE (n ·0):

n = 4 : {1, x, y, x2},
n = 5 : {1, x, y, x2, x y},

they are indeed linearly independent, since they have different orders at the zero section. As for
f∗OE (6 ·0), it has rank 6, so the following 7 elements of it must be linearly dependent:

1, x, y, x2, x y, y2, x3

such relation is exactly the generalized Weierstrass equation:

y2 + a1x y + a3 y = x3 + a2x2 + a4x + a6,

where a1, ..., a6 ∈ H 0(S,OS ). The affine coordinate ring of E\{0} over Spec(R) is

H 0(E\{0},OE\{0}) = lim→ H 0(E ,OE (n ·0)) = R[x, y]
/(

y2 +a1x y +a3 y − (x3 +a2x2 +a4x +a6)
)
.

If furthermore we assume OE (0) is free over E , then so as the ideal sheaf I (0) = OE (−0). So we
can choose a global function z which vanishes at the zero section with order 1, moreover, we can
choose z so that the image of z in the formal completion along the zero section is nothing but the
chosen formal parameter T . This allows us to homogenize the generalized Weierstrass equation
as

y2z + a1x y z + a3 y z2 = x3 + a2x2z + a4xz2 + a6z3,

i.e., E can be embedded into the projective plane P2
R with above homogeneous generalized Weier-

strass equation as the defining equation. In particular, we have proved:

Proposition 8.2.4. Any elliptic curve E/S is projective.

Remark: The projectivity is particularly important, e.g., it ensures the representability of the rel-
ative Picard functor PicE/S of E/S, and it also guarantees that the moduli space of elliptic curves
M1,1 is a stack (cf. Appendix III 9).
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8.3 Some universal elliptic curves

In this section, we study some universal elliptic curves, which serve as some elementary moduli
problem.

Recall that for any elliptic curve E/S, Zariski-locally we can always find a generalized Weierstrass
equation

y2 + a1x y + a3 y = x3 + a2x2 + a4x + a6,

which is unique adapted to a given invariant differential ω, up to{
x 7→ x + c
y 7→ y +ax +b

In the following discussions, we always assume the base scheme is affine S = Spec (R), andωE/S is
trivial over S.

Case I. 6 is invertible

When 6 is invertible in R, choose a basis ω of ωE/S , and do some appropriate change of x, y , we
obtain the generalized Weierstrass equation of the form

(2y)2 = 4x3 − g2x − g3,

and ω=−d x
2y , where x, y are adapted to ω. The smoothness of E over R implies the discriminant

∆ = g 3
2 −27g 2

3

is an invertible element in R.

Consider the universal Weierstrass family E( 1
6 ) defined over the ring R0 =Z[ 1

6 , g2, g3][ 1
∆ ]:

E( 1
6 ) = Proj R0[x, y, z]

/(
(2y)2z − (4x3 − g2xz2 − g3z3)

)
,

with the chosen invariant differential Ω=−d x
2y .

Proposition 8.3.1. The pair (E( 1
6 ),Ω) is universal in the sense that given any pair (E/S,ω), where S

is a Z[ 1
6 ]-scheme, there exists a unique cartesian diagram

E E( 1
6 )

S Spec (R0)

such that the pull-back of Ω is ω.

Proof: Given such a pair (E/S,ω), the existence ofω already indicates thatωE/S is free over S, hence
by Proposition 8.2.3, f∗OE (n ·0) is free for any n Ê 1. So we can find the generalized Weierstrass
equation of the form

(2y)2 = 4x3 − g2x − g3,
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with ω = −d x
2y under these coordinates. The specification of g2, g3 defines the morphism of base

schemes
S −→ Spec (R0),

it remains to check that the pull-back of the universal Weierstrass family E( 1
6 ) is isomorphic to E ,

which suffices to check Zariski-locally on S. The isomorphism follows from our discussion of con-
struction of generalized Weierstrass equation. Thus we have a cartesian diagram as required. The
uniqueness also follows, from that once we fix the generalized Weierstrass equation and an invari-
ant differential, then the coordinates x, y are unique.

If we require furthermore that the discriminant ∆ = 1, then we obtain the normalized universal
Weierstrass family E1

( 1
6 )

defined over the ring R1 =Z[ 1
6 , g2, g3]

/
(∆−1):

E1
( 1

6 )
= Proj R1[x, y, z]

/(
(2y)2z − (4x3 − g2xz2 − g3z3)

)
,

with the chosen invariant differential Ω1 =−d x
2y . Similarly, the pair (E1

( 1
6 )

,Ω1) also satisfies the uni-

versal property.

Proposition 8.3.2. The pair (E1
( 1

6 )
,Ω1) is universal in the sense that given any pair (E/S,ω) with

∆E = 1, where S is a Z[ 1
6 ]-scheme, there exists a unique cartesian diagram

E E1
( 1

6 )

S Spec (R1)

such that the pull-back of Ω1 is ω.

Case II. 2 is invertible

When 2 is invertible in R, the generalized Weierstrass equation of E/R can be made into the form

y2 = x3 + a2x2 + a4x + a6,

with the chosen ω=−d x
2y , where y is uniquely adapted to ω, but x is up to x 7→ x +c. In such form,

the automorphism of E
P 7−→ −P

is precisely given by (x, y) 7→ (x,−y). So the finite étale covering of R defined by

x3 + a2x2 + a4x + a6 = 0

together with the zero section, gives the 2-torsion R-subgroup scheme E [2]/S. This group scheme
is étale over R (cf. Proposition 2.2.5), there are exactly 4 R-valued 2-torsion points. Suppose these
2-torsion points (other than the zero section) are P2,Q2 and P2 +Q2.

There is a unique choice of x, such that x(P2) = 0, i.e., the constant term in the generalized Weier-
strass equation is killed

y2 = x3 + a2x2 + a4x.
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Furthermore, we normalize ω, in the way that after we make the following change{
x 7→ c1 · x
y 7→ c2 · y

for some scalars c1,c2 ∈ R×, so that x(Q2) = 1, i.e.,

ω 7−→ c1

c2
ω.

So now the generalized Weierstrass equation of E/R has the form

y2 = x(x −1)(x −λ),

with ω=−d x
2y , where λ= x(P2 +Q2). Such equation defines a smooth curve if and only if λ 6= 0,1.

There is the universal Legendre family E( 1
2 ) over the ring R2 =Z[ 1

2 ,λ][ 1
λ(λ−1) ]

E( 1
2 ) = Proj R2[x, y, z]

/(
y2z −x(x − z)(x −λz)

)
,

with the chosen Ω2 =−d x
2y , and two specified 2-torsion points P univ

2 ,Quniv
2 such that

x(P univ
2 ) = 0, x(Quniv

2 ) = 1.

The quadruple (E( 1
2 ),Ω2,P univ

2 ,Quniv
2 ) is universal.

Proposition 8.3.3. The quadruple (E( 1
2 ),Ω2,P univ

2 ,Quniv
2 ) is universal in the sense that given any

quadruple (E/S,ω,P2,Q2), where S is a Z[ 1
2 ]-scheme, there exists a unique cartesian diagram

E E( 1
2 )

S Spec (R2)

such that the pull-back of Ω is ω, and the pull-backs of the effective Cartier divisors P univ
2 ,Quniv

2 are
P2,Q2 respectively.

Case III. 3 is invertible

When 3 is invertible in R, after the change of x:

x 7−→ x − a2

3
,

the generalized Weierstrass equation of E/S can be made into the form

y2 + a1x y + a3 y = x3 + a4x + a6,

with the chosen ω = −d x
2y . In this case, x is specified, while y is up to y 7→ y + ax + b. The 3-

torsion R-subgroup scheme E [3]/R is finite étale over R, of rank 9, which can be calculated from
the geometric fibers. Let P3,Q3 be two 3-torsion R-valued points of E(R), such that Q3 6= ±P3.
Since 3-torsion points are inflection points, there exists a unique function which has a triple zero
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at P3 and a triple pole at the zero section 0. By changing y , we can suppose y is such function,
then the left side of the generalized Weierstrass equation

y2 + a1x y + a3 y

should be a perfect cube, more precisely,

y2 + a1x y + a3 y = (x −x(P3))3.

Hence after changing x 7→ x −x(P3), the equation becomes

y2 + a1x y + a3 y = x3,

in this case P3 = (0,0). Similarly, there exists a unique function with a triple zero at Q3 and a triple
pole at the zero section 0, which has the form y −ax −b. We claim that a ∈ R is a unit. Otherwise
there exists some geometric fiber of E/R such that a vanishes. Substitute y = b into the generalized
Weierstrass equation, one has

x3 − a1bx − (a3b +b2) = (x −x(Q3))3.

By comparing coefficients of x2, since the characteristic of the base field is not 3, it forces that
x(Q3) = 0, which means Q3 = ±P3, a contradiction. So after (unique) normalization of ω, we can
make a = 1. Put y = x +b into the generalized Weierstrass equation, and let x(Q3) = c

x3 − (a1 +1)x2 − (2b +a1b +a3)x − (b2 +a3b) = (x − c)3,

from this we can express a1, a3 in terms of b,c:{
a1 = 3c −1
a3 =−3c2 −3bc −b

and together with the relation of b,c:

c3 +3bc2 +3b2c = 0.

The discriminant of E/R can also be interpreted in terms of b,c, and the smoothness of E/R is
equivalent to that ∆(b,c) ∈ R×.

There is the universal family E( 1
3 ) of naïve level 3

E( 1
3 ) = Proj R3[x, y, z]

/(
y2z + (3c −1)x y z − (3c2 +3bc +b)y z2 −x3),

defined over the ring R3 = Z[ 1
3 ,b,c][ 1

∆(b,c) ]
/

(c3 +3bc2 +3b2c), with the chosen Ω3 = −d x
2y and the

specifies 3-torsion points
P univ

3 = (0,0), Quniv
3 = (c,b + c).

The quadruple (E( 1
3 ),Ω3,P univ

3 ,Quniv
3 ) is universal.

Proposition 8.3.4. The quadruple (E( 1
3 ),Ω3,P univ

3 ,Quniv
3 ) is universal in the sense that given any

quadruple (E/S,ω,P3,Q3), where S is a Z[ 1
3 ]-scheme, there exists a unique cartesian diagram

E E( 1
3 )

S Spec (R3)

such that the pull-back ofΩ3 isω, and the pull-backs of the effective Cartier divisors P univ
3 ,Quniv

3 are
P3,Q3 respectively.
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8.4 Isogenies

Theorem 8.4.1. Let E/S be an elliptic curve over an arbitrary scheme S. Then the S-morphism of
multiplication by N

[N ] : E −→ E

is finite and locally free of rank N 2 over S. Moreover, if S is a Z[ 1
N ]-scheme, then the N -torsion

S-subgroup scheme E [N ] is étale over S, and étale-locally it is isomorphic to the constant S-group
scheme Z/NZ×Z/NZ .

Proof: We have already proved the case where N is invertible on S. 5 And the rank = N 2 can be
calculated on any geometric fiber, the result is classic.

In general case, Zariski-locally we can always find generalized Weierstrass equation for E , observe
that it suffices to prove the theorem for the universal family E

E = Proj R[x, y, z]
/(

y2 +a1x y +a3 y − (x3 +a2x2 +a4x +a6)
)

over the ring R =Z[a1, a2, a3, a4, a5, a6][ 1
∆ ], and then the result follows from base change

E E

E E

[N ] [N ]

since both finiteness and local freeness are preserved under base change.

The morphism [N ] is automatically proper, in order to prove the theorem, it suffices to prove that
it is quasi-finite. Then being proper and quasi-finite implies that it is finite. And since E is smooth
over a regular scheme Spec (R), it is also regular. Finally, use the fact that any finite morphis-
m between two regular schemes of the same dimension is automatically flat, and that under the
noetherian condition, being finite flat implies being finite locally free, the theorem follows.

Thus it remains to prove the quasi-finiteness of [N ], or equivalently, over any geometric point,

[N ]k : Ek −→ Ek

is always non-zero, so that its kernel has to be finite. Let M be an integer which is coprime to
char(k) and N . Then Ek [M ](k) consists of M 2 distinct points, and [N ] induces a bijection between
these points since M , N are coprime. This already shows that [N ] cannot be 0 morphism.

Since any finite étale group scheme is étale-locally constant, by looking at the geometric fibers, it
is indeed étale-locally isomorphic to the constant group scheme Z/NZ×Z/NZ.

Corollary 8.4.2. Let E/S be an elliptic curve over an arbitrary scheme S, and N Ê 1 is an integer.
Then E [N ] is finite étale over S if and only if N is invertible on S.

Proof: The “if” part is in Theorem 8.4.1. For the “only if” part, suppose E [N ] is finite étale over S,
as in the proof of Proposition 2.2.5, the morphism [N ] is finite étale. Hence it induces an isomor-
phism on Lie algebras

Lie([N ]) : Lie(E/S) Lie(E/S),∼

5cf. Proposition 2.2.5 and Lemma 2.3.2.
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which is just multiplication by the integer N . This shows that N must be invertible on S, otherwise
we could find a geometric point such that Lie([N ]) = 0.

Definition 8.4.3. An isogenyφ : E1 → E2 of elliptic curves over an arbitrary scheme S is a S-morphism
which is fppf-locally surjective and locally free of finite rank, such that φ◦01 = 02, where 01,02 are
zero sections of E1,E2 respectively.

Obviously, the morphism [N ] of multiplication by N is an isogeny for any N Ê 1.

Lemma 8.4.4 (Drinfeld’s Strictness Lemma). Let φ : E1 → E2 be a S-homomorphism of elliptic
curves over a ring R, and I ⊂ R is an ideal, p is a prime number. Suppose the ideal (I , p) is nilpotent,
and f ≡ 0 mod I , then f = 0.

Proof: Let

I (0) = I , I (1) = (pI , I 2), ..., I (n+1) = (
pI (n), (I n)2), ...

The descending sequence of ideals

I (0) ⊃ I (1) ⊃ ... ⊃ I (n) ⊃ ...

is certainly stable, i.e., I (n) = 0 for any sufficiently large n. If we can prove the lemma for any pair(
R

/
I (n+1), I (n)

/
I (n+1)

)
(n Ê−1), where we let I (−1) = R, thenφ= 0 in R

/
I = R

/
I (0) implies thatφ= 0

in R
/

I = R
/

I (1), and eventually φ= 0 in R
/

I (n) = R for sufficiently large n. Therefore it suffices to
prove the lemma with assumptions that I 2 = pI = 0 in R.

The morphism [p] : E1 → E1 is fppf-locally surjective, it suffices to prove that pφ= 0 if φ≡ 0 mod
I . Let A be any R-algebra. Given any A-valued point P ∈ E1(A), its image φ(P ) lies in the kernel

ker
{
E2(A) → E2(A/I A)

}
,

in particular, it lies in the formal group Ê2(A). Choose a formal parameter X of Ê2, i.e., fix an
isomorphism

Ê2 ' Spf (R[[X ]]).

Then X ( f (P )) belongs to I A. Recall that [p](X ) has the form 6

[p](X ) = pF (X )+G(X p ),

with F (X ),G(X ) ∈ R[[X ]] and F (0) =G(0) = 0. Hence X (pφ(P )) ∈ (pI · A, I 2 · A) = 0, i.e., pφ= 0.

Theorem 8.4.5 (Rigidity). Let E1,E2 be elliptic curves over an arbitrary scheme S with zero sections
01,02, and φ : E1 → E2 is a S-homomorphism. Then Zariski-locally on S, either φ = 0 or φ is an
isogeny.

Proof: As indicated in the theorem, the question is Zariski-local, we assume S = Spec (R) is affine,
such that E1,E2 are projective over R, in other words, there are generalized Weierstrass equations
for E1,E2 with coefficients in R. Moreover, because E1,E2 are both finitely presented over R, we
can assume R is of finite type over Z.

6cf. Silverman [10] Corollary 4.4
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To prove the theorem, we intend to show that the locus S0 of f = 0 is both open and closed in S.
Compare the two S-morphisms φ and 0:

E1
0

//
φ //

f1 ��

E2

f2��
S

the equalizer of φ and 0 is a closed subscheme of E1:

E1 ×(φ,0),∆E2
E2 E1

E2 E2 ×S E2

(φ,0)

∆E2

hence S0 = f1(E1 ×(φ,0),∆E2
E2) is closed in S, since f1 is proper.

To show that S0 is open in S, we adopt the assumption S = Spec (R). We have to show that if
x ∈ S0 is a closed point, then any of its generization y also lies in S0. Let Ix be the maximal ideal
corresponding to x, and

Ôx = lim←− R
/

I n
x

is the complete local ring of S along x. Because x ∈ S0, we know that f ≡ 0 mod Îx , what we need
to prove is that f = 0 in Ôx . Observe that by passage to the inverse limit, we only need to treat the
case that f ≡ 0 mod Ix

/
I n

x and to prove f = 0 in R
/

I n
x .

Recall our assumption that R is of finite type overZ, we claim that the artinian ring R
/

I n
x has posi-

tive characteristic. Indeed, if the restriction of Ix onZ is the zero ideal, then the field R
/

Ix contains
Z as a subring, hence has characteristic 0. ButQ is obviously not of finite type over Z, which leads
to a contradiction. So Z∩ Ix is a maximal ideal of Z, which shows that Z∩ Ix = (`) for some prime
`. Hence R

/
I n

x is a finiteZ/`Z-algebra, its characteristic is a power of `, i.e., ` is nilpotent in R
/

I n
x .

Now applying Drinfeld’s Strictness Lemma 8.4.4, since the ideal (Ix
/

I n
x ,`) is nilpotent in R

/
I n

x .
Therefore S0 ⊂ S is both open and closed, hence a union of connected components of S. On other
components, f is fiber-wise flat, hence flat by the fiber-wise criterion of flatness. Plus that f is
finite (quasi-finite and proper), over a noetherian base scheme S, f then is finite locally free, it is
certainly an isogeny.

Definition 8.4.6. Let φ : E1 → E2 be an isogeny of elliptic curves over S. The dual isogeny φt of φ is
defined as the composition

E2 Pic(0)
E2/S Pic(0)

E1/S E1.∼

φt

φ∗ ∼

Remark: The dual isogeny φt of an isogeny φ is indeed a S-homomorphism, by Theorem 8.4.5, it
is Zariski-locally 0 or an isogeny. The fact that φ is an isogeny implies that locally it has positive
constant rank, and after checking φt on any geometric fiber, it also has positive rank. Therefore
φt is indeed an isogeny.
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Proposition 8.4.7. Let E/S be an elliptic curve over an arbitrary scheme S. The S-group scheme
structure on E/S is unique, with the zero section 0 as the unit.

Proof: Suppose we have a structure of S-group scheme (E/S,m, i ,e) on E , where m is the compo-
sition morphism, and i is the inverse morphism. We denote the structure of S-group scheme from
Abel’s Theorem 8.1.2 by (E/S,+,−,e), and call it the “canonical” group structure. We have to show
that the morphism φP defined by

φP (S) : E(S) −→ E(S)

Q 7−→ m(P,Q)−P

is identity for any point P ∈ E(S). Observe that φP is an isomorphism of the S-scheme E , since we
have the inverse

φ−1
P (S) : E(S) −→ E(S)

Q 7−→ m
(
P +Q, i (P )

)
Because φP fixes the zero section, the diagram

E(S) E(S)

Pic(0)
E/S (S) Pic(0)

E/S (S)

φP (S)

o o
(φ−1

P )∗(S)

commutes, which shows that φP is an isomorphism with respect to the “canonical” group struc-
ture. Consider the morphism

Φ(S) : EE (S) −→ EE (S)

(P, Q) 7−→ (P, φP (Q))

which is an E-isomorphism of the elliptic curve EE . The morphismΦ−id is an E-homomorphism,
hence by Theorem 8.4.5, it is locally either 0 or an isogeny. It is indeed 0 on the zero section of EE ,
so Φ− id is 0 in a Zariski open neighborhood of the zero section. But since the intersection of this
neighborhood with each E (view as fibers of EE over E) is a Zariski open neighborhood of 0 in E ,
which implies that Φ− id is 0 on each fiber E of EE , i.e., φP = id for each P ∈ E(S).

Lemma 8.4.8. Let φ : E1 → E2 be an isogeny of elliptic curves over an arbitrary scheme S, and φt is
its dual isogeny. Then

φt ◦φ = [deg(φ)], (φt )t = φ,

and φt is the unique isogeny with these properties. In particular, deg(φt ) = deg(φ).

Proof: Denote deg(φ) = N . Let P be any S-valued point in E1(S). Then

φt (φ(P )) = φ∗(
OE2 (φ(P ))⊗OE2 (−02)

)
= φ∗(

OE2 (φ(P ))
)⊗φ∗(

OE2 (−02)
)

= OE1 (P +φ∗(02))⊗OE1 (−φ∗(02)).

By Lemma 7.4.3, fppf-locally on S, we can write the pull-back effective Cartier divisor φ∗(02) as

φ∗(02) = [Q1]+ ...+ [QN ],

123



MASTER THESIS, YULIANG HUANG

then 7

OE1 (P +φ∗(02)) = OE1 ([P +Q1]+ ...+ [P +QN ])

= OE1 ([P +Q1])⊗ ...⊗OE1 ([P +QN ])

and hence

φt (φ(P )) =
N∏

i=1
OE1 (P +Qi )⊗OE1 (−Qi ).

Notice that
OE1 (P +Qi )⊗OE1 (−Qi ) ' OE1 (P )⊗OE1 (−01)

for any 1 É i É N , so they are equal in Pic(0)
E1/S , which shows

φt (φ(P )) = (
OE1 (P )⊗OE1 (−01)

)⊗N = [N ](P ),

i.e., φt ◦φ= [N ]. If there is another isogeny φ′ such that φ′ ◦φ= [N ], it is clear that

(φt −φ′)◦φ = [0].

By counting ranks, the rank of φt −φ′ must be 0 everywhere, hence it is itself 0, i.e., φ′ =φt .

From the uniqueness, we can deduce some facts. According to Theorem 8.4.1, the degree of [N ] is
N 2, and since

[N ]◦ [N ] = [N 2],

[N ] is self-dual, i.e., [N ]t = [N ]. Also, the dual isogeny of a composition is

(φ◦ψ)t = ψt ◦φt .

Now it is immediate to show the second property:

φt ◦φ = [N ] = [N ]t = (φt ◦φ)t = φt ◦ (φt )t ,

which implies deg
(
φ− (φt )t

)= 0, i.e., (φt )t =φ.

Proposition 8.4.9. Any S-morphism φ : E1 → E2 of elliptic curves E1/S,E2/S with φ(01) = 02 is a
S-homomorphism.

Proof: It amounts to prove that for any S-scheme T , and any T -valued points P,Q ∈ E(T ),

φ(P +Q) = φ(P )+φ(Q),

i.e., to show that

Ψ : E(T )×E(T ) −→ E ′(T )

(P,Q) 7−→ φ(P +Q)−φ(P )−φ(Q)

is zero morphism. The question is local on S, as usual, we assume S = Spec (R) with R of finite
type over Z. Through the faithfully flat morphism∐

x ∈ Specm (R)
Spec (Ôx ) −→ Spec (R),

7The notation here is a little bit awkward. The “+” in P +Qi is the addition of the group structure of E1, while another
“+” in [P +Q1]+ ...+ [P +QN ] means the addition of Cartier divisors.
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where Ôx is the complete local ring of S long the closed point x, the question is then reduced to the
case where S is the spectrum of a complete local ring with finite residue field. We can furthermore
reduce the question to the case of artinian local ring with finite residue field, by passage to the
limit. So now we assume that R is an artinian local ring with finite residue field k of characteristic
p > 0.

If φk : Ek → E ′
k is zero morphism, then for any R-algebra A and any A-valued point P A ∈ E(A), the

image φ(P A) must lie in the kernel

ker
{
E ′(A) −→ E ′(A

/
mA)

}
,

where m is the maximal ideal of R. Applying the same argument we used in Lemma 8.4.4 and
Theorem 8.4.5, there exists pn for some integer n Ê 1 which is independent of A, such that pn

kills the kernel, i.e., pnφ(P A) = 0. This means that the image of φ lies in the pn-torsion subgroup
scheme E ′[pn]. Since E ′[pn] is finite over the affine base Spec (R), it is affine. While E is connected
and proper (or even projective) over Spec (R), the morphism

φ : E −→ E ′[pn]

has to be constant, therefore φ= 0. In this case, φ is trivially a S-homomorphism.

If φk 6= 0, as φk is a morphism between smooth curves over a field k, it is finite flat. It is immediate
that φ is also flat, by the fiber-wise criterion of flatness. And φ is also finite, since it is quasi-finite
and proper. So φ is an isogeny. Applying the dual isogeny φt to Ψ:

φt ◦Ψ(P,Q) = φt (φ(P +Q)−φ(P )−φ(Q)) = [N ](P +Q)− [N ](P )− [N ](Q) = 0,

i.e., Ψ takes values in E ′[deg(φt )], which is an affine scheme. Hence as we argued before, Ψ must
be constant, which can only be Ψ= 0.

Lemma 8.4.10. Let φ,φ′ : E1 → E2 be S-homomorphisms of elliptic curves over S. Then

(φ+φ′)t = φt +φ′t .

Proof: Applying the base change E1 → S to E2, the two S-morphisms φ,φ′ induce two E1-valued
points φ̄, φ̄′ of (E2)E1 :

E1

E2 ×S E1 E2

E1 S

φ,φ′

φ̄, φ̄′

id

pr1

pr2

The lemma amounts to show that for any point Q ∈ E2(S),

(φ+φ′)t (Q) = (φt +φ′t )(Q),

i.e.,
φ∗(L )⊗φ′∗(L ) = (φ+φ′)∗(L )⊗0∗(L )

in Pic(0)
E1/S (S), for any invertible sheaf L ∈Pic(0)

E2/S (S) of fiber-wise degree 0. Thus lemma is reduced
to the following question:
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Let π : E → S be an elliptic curve over S, and P,Q ∈ E(S) are two points. Then for
any invertible sheaf L on E which has fiber-wise degree 0, we have the isomorphism
P∗(L )⊗Q∗(L ) ' (P +Q)∗(L )⊗0∗(L ).

Clearly, the statement only depends on the equivalent class of L , hence we may assume L =
I −1(R)⊗I (0) for some point R ∈ E(S). Let rP be the transformation on L by P , then we have
P = rP ◦0, and the isomorphism which we are trying to prove becomes

OS ' 0∗
(
r∗

P (L )⊗ r∗
Q (L )⊗ r∗

P+Q (L −1)⊗L −1),

substitute L =I −1(R)⊗I (0) into it:

r∗
P (L )⊗ r∗

Q (L )⊗ r∗
P+Q (L −1)⊗L −1

= (
I −1(R −P )⊗I −1(R −Q)⊗I (R −P −Q)⊗I (R)

)
⊗(

I (−P )⊗I (−Q)⊗I −1(−P −Q)⊗I −1(0)
)

= π∗(L0)⊗ r∗
R (π∗(L0))−1 = OE ,

where L0 is some invertible sheaf on S.

Consider a S-endomorphismφ : E → E of an elliptic curve over a connected scheme S. By previous
lemma,

[deg(1+φ)] = (1+φ)t ◦ (1+φ) = (1+φt )◦ (1+φ) = [1+deg(φ)]+ (φ+φt ),

hence φ+φt = [deg(1+φ)−deg(φ)−1] =: [m]. We define this integer tr(φ) := m to be the trace of
the isogeny φ.

Theorem 8.4.11. Let φ be an S-endomorphism of an elliptic curve E/S over a connected scheme S.
Then

(1) The isogeny φ is a root of
X 2 − tr(φ)X +deg(φ) = 0

in the endomorphism ring of E/S.

(2)
(
tr(φ)

)2 É 4deg(φ).

Proof: (1) It is immediate to check that

φ2 − (φ+φt )◦φ+φt ◦φ = 0.

(2) Consider the S-endomorphism [n]− [m]◦φ, its degree is non-negative, hence

[deg([n]− [m]◦φ)] = ([n]−φt ◦ [m])◦ ([n]− [m]◦φ) = [n2 − tr(φ) ·nm +deg(φ) ·m2],

which indicates that
n2 − tr(φ) ·nm +deg(φ) ·m2 Ê 0

for any integers n,m. This is equivalent to the inequality
(
tr(φ)

)2 É 4deg(φ).

Using Theorem 8.4.11, we can prove some rigidity results of various level structures on an elliptic
curve, which will be applied to prove the representability (i.e., the existence of fine moduli spaces)
of various moduli stacks of elliptic curves.
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Corollary 8.4.12 (Rigidity of Γ(N )-structures). Let φ be an S-automorphism of an elliptic curve
E/S over a connected scheme S, and N Ê 2 is an integer. If φ induces the identity on the N -torsion
S-subgroup scheme E [N ], then:

(1) If N Ê 3, then φ= id;

(2) If N = 2, then φ=±id.

Proof: The N -torsion S-subgroup scheme E [N ] is contained in the kernel of the S-homomorphism
φ−1, hence there exists a S-endomorphism ψ such that φ−1 =ψ ·N . Then we have{

tr(φ) = 2+N · tr(ψ)
deg(φ) = 1+N · tr(ψ)+N 2 ·deg(ψ)

Using the inequality from Theorem 8.4.11, and that deg(φ) = 1, the second equality gives

N 2 · (deg(ψ))2 É 4deg(ψ),

hence if N Ê 3, then deg(ψ) = 0, i.e., φ= 1+ψ ·N = id.

If N = 2, then deg(ψ) É 1, i.e., deg(ψ) = 0 or 1. If deg(ψ) = 1, substitute this into the first equality,
we have tr(ψ) =−2. Thus

deg(φ+1) = 1+ tr(φ)+deg(φ) = 0,

i.e., φ=−id.

Corollary 8.4.13 (Rigidity of Γ1(N )-structures). Let φ be an S-automorphism of an elliptic curve
E/S over a connected scheme S, N Ê 4 is an integer, and G ⊂ E is a closed S-subgroup scheme which
is finite locally free over S of rank N . If φ induces the identity on G, then:

(1) If N Ê 5, then φ= id;

(2) If N = 4, then φ=±id. Moreover, if φ=−id, then G = E [2].

In particular, if G is a cyclic S-subgroup scheme, then φ= id for any N Ê 4.

Proof: The S-subgroup scheme G is contained in the kernel of the S-homomorphism φ−1, hence

deg (φ−1) ≡ 0 (mod N )

and tr(φ) ≡ 0 mod N .

If N Ê 5, it forces tr(φ) = 2, so deg(φ−1) = 2− tr(φ) = 0, i.e., φ= id.

If N = 4, and tr(φ) =−2, we have deg(φ+1) = 2+ tr(φ) = 0, hence φ=−id. And since 1−φ= 2 kills
G , which implies G ⊂ E [2], but they have the same rank, so G = E [2].

If G is cyclic, then the situation G = E [2] cannot happen, so it can only be φ= id for any N Ê 4.
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8.5 The Weil pairing

Let E/S be an elliptic curve over an arbitrary scheme S, name its structural morphism and the zero
section as

E

S

f0

We now introduce the normalized cocycles in order to describe the relative Picard group PicE/S ,
following Katz [23].

We claim that the relative Picard group PicE/S (S) can be viewed as a subgroup of the (absolute)
Picard group Pic(E), as the kernel:

ker
{
0∗ : Pic(E) −→Pic(S)

}
.

Explicitly, we can define a map

ker
{
0∗ : Pic(E) −→Pic(S)

} −→ PicE/S (S)

L 7−→ [L ]

and it is straightforward to see that it has the inverse

PicE/S (S) −→ ker
{
0∗ : Pic(E) −→Pic(S)

}
[L ] 7−→ L ⊗ f ∗(0∗L ).

Let O×
E be the sheaf of invertible functions. Define the subsheaf K ×

E ⊂O×
E , consisting of functions

which take the value 1 along the zero section 0. It fits into the short exact sequence:

0 K ×
E O×

E 0∗O×
E 0,

and induces the long exact sequence of cohomology:

... H 1(E ,K ×
E ) Pic(X ) Pic(S) ...0 0∗

which indicates that
PicE/S (S) ' H 1(E ,K ×

E ).

Let E/S,E ′/S be elliptic curves over an arbitrary scheme S, and φ : E → E ′ is an isogeny of rank N .
Then we have the dual isogeny

(E ,0) (E ′,0′)
φ

φt

Then there exists a bilinear pairing:

ker(φ)×ker(φt ) −→ µN ⊂ Gm

(P, P ′) 7−→ < P, P ′ >φ
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which takes values in the group scheme of N -th roots of unity.

A S-valued point P ′ ∈ ker(φt )(S) is given by an invertible sheaf L ∈ Pic(0)
E ′/S (S) such that φ∗L = 0

in Pic(0)
E/S (S). Choose an open covering {Ui } of E ′, then L is represented by a normalized cocycle

in H 1(E ′,K ×
E ′ )

fi j ∈ K ×
E ′ (Ui ∩U j ),

and φ∗L = 0 means that the normalized cocycle

fi j ◦φ ∈ K ×
E

(
φ−1(Ui )∩φ−1(U j )

)
is a coboundary, i.e., there are hi ∈ K ×

E (φ−1(Ui )) such that fi j ◦φ= hi
h j

.

For a S-valued point P ∈ ker(φ)(S), we view it as a morphism P : S → E . Over each open subset
(φ◦P )−1(Ui ) of S, we have a function hi ◦P . Since φ(P ) = e ′, we have

hi ◦P

h j ◦P
= fi j ◦φ◦P = 1,

and hence all hi ◦P can be glued to a global function h(P ) on S, which lies in O×
S (S) =Gm(S). This

gives the pairing:

ker(φ)×ker(φt ) −→ Gm

(P, P ′) 7−→ < P, P ′ >φ:= h(P )

moreover, the image must lie in µN because N kills ker(φ).

Definition 8.5.1. The pairing < ·, · >φ is called the Cartier pairing of the isogeny φ.

Lemma 8.5.2. The Cartier pairing is bilinear, alternating and non-degenerate.

Proof: See Oda [32].

Lemma 8.5.3. Let φ,φ′ be isgenies of elliptic curves over S:

E E ′ E ′′
φ

φt

φ′

φ′t

Then for any points P ∈ ker(φ)(S), P ′′ ∈ ker(φt ◦φ′t )(S), we have

< P, P ′′ >φt ◦φ′t = < P, φ′t (P ′′) >φ .

Proof: Suppose the point P ′′ is represented by the normalized cocycle { fi j } in H 1(E ′′,K ×
E ′′ ) with

respect to some covering of E ′′, such that the cocycle { fi j ◦ (φ′ ◦φ)} is a coboundary in H 1(E ,K ×
E ),

i.e., there are hi such that fi j ◦ (φ′ ◦φ) = hi
h j

. It is straightforward that the point φ′t (P ′′) is given by

the pull-back cocyle { fi j ◦φ′}, and {( fi j ◦φ′)◦φ} is also the coboundary of {hi }, i.e., the gluing global
function h is identified, therefore the two Cartier pairings give the same result h(P ).
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Definition 8.5.4. The Cartier pairing eN :=< ·, · >[N ] for the isogeny [N ] : E → E is called the
Weil pairing, which is an alternating and non-degenerate bilinear form on the N -torsion subgroup
scheme E [N ].

Corollary 8.5.5. Let φ : E → E ′ be an isogeny of elliptic curves over S, which has rank N . Let P ∈
ker(φ)(S) and Q ∈ E [N ](S) be S-valued points, then

eN (P, Q) = < P, φ(Q) >φ .

8.6 The Serre-Tate theorem

In this section, we present Drinfeld’s short proof of Serre-Tate theorem. The proof is originated
from Drinfeld’s paper [34], and also exposed in Katz’s article [23].

Through out this section, we fix a ring R, an integer N Ê 1 who kills R, and a nilpotent ideal I ⊂ R,
i.e., I k+1 = 0 for some integer k Ê 0. And we denote R0 = R

/
I .

For any functor G defined on the category of R-algebras R-Alg, we define a subfunctor G I as

G I (B) := ker
{
G(B) −→G(B

/
I B)

}
for any R-algebra B , and we define its formal completion:

Ĝ(B) := ker
{
G(B) −→G(Bred)

}
where Bred is the reduced R-algebra associated to B , i.e., Bred = B

/
nilrad(B).

Lemma 8.6.1. Let G be a fppf abelian sheaf over S = Spec (R), such that its formal completion Ĝ is
locally represented by a commutative formal Lie group over R, then N k kills G I .

Proof: Fix (locally) a set of parameters of Ĝ , i.e., fix a local isomorphism

Ĝ ' Spf
(
R[[X1, ..., Xm]]

)
,

then the morphism of multiplication by N has the form:(
[N ](X )

)
i = N ·Xi +higher terms.

Suppose B is a R-algebra. Any point in Ĝ I (B) has coordinates in I B , and since N kills R, we have
[N ](Ĝ I ) ⊂ Ĝ I 2 , therefore

[N k ](Ĝ I ) ⊂ Ĝ I k+1 = 0.

Finally, since G I lies in the formal completion Ĝ , we have G I = Ĝ I , hence N k kills G I .

Lemma 8.6.2. Let G , H be fppf abelian sheaves over Spec (R), such that G is N -divisible, H is for-
mally smooth, and Ĥ is locally represented by a commutative formal Lie group. Denote G0 =G⊗R R0

and H0 = H ⊗R R0. Then:
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(1) The homomorphism groups HomR (G , H),HomR0 (G0, H0) have no N -torsions;

(2) The homomorphism by mod I

HomR (G , H) −→ HomR0 (G0, H0)

is injective;

(3) For any R0-homomorphism φ0 ∈ HomR0 (G0, H0), there exists a unique lifting of N k ·φ0 in
HomR (G , H);

(4) A R0-homomorphism φ0 ∈ HomR0 (G0, H0) has a lifting in HomR (G , H) if and only if the (u-
nique) lifting of N k ·φ0 kills G[N k ].

Proof: (1) Since G (resp. G0) is N -divisible, any N -torsion in HomR (G , H) (resp. HomR0 (G0, H0))is
identically zero.

(2) The kernel of the mod I map is HomR (G , HI ). By Lemma 8.6.1, HI is killed by N k . Since G is
N -divisible, the kernel must be zero.

(3) We construct a lifting of N k ·φ0 explicitly. Observe that there is a well-defined R-homomorphism

H(B/I B) H(B)N k

for any R-algebra B , which is defined as following: Given an element h0 ∈ H(B/I B), pick any lifting
h ∈ H(B) of h0 (this is possible by the formal smoothness condition), then the image of h0 in H(B)
is N k ·h. This is indeed well-defined, since N k kills HI . Now we can construct a lifting φN k of
N k ·φ0, as the composition

G(B/I B) H(B/I B)

G(B) H(B)

φ0

N k

φ
N k

mod I

The uniqueness of the lifting is ensured by (2).

(4) The “only if” part: If φ0 admits a lifting φ ∈ HomR (G , H), by uniqueness, φN k (the lifting of
N k ·φ0) must be coincide with N k ·φ, which certainly kills G[N k ].

The “if” part: Since φN k kills G[N k ], through the short exact sequence

0 G[N k ] G G 0

H

N k

φNk

φ

we can construct a morphism φ : G → H to make above diagram commutative, which is given by
the quotient of φNk

G ' G
/

G[N k ] −→ H .

Such a morphism φ is indeed a lifting of φ0, since we know that

N k · (φ⊗R0) = N k ·φ0,
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and there are no torsions in HomR0 (G0, H0) by (1), it must be φ⊗R0 =φ0.

Remark: Notice that in the proof of (3), we did not use the condition that G is N -divisible. So
practically it works not only for p-divisible groups, but also for any abelian schemes.

From now on, we suppose N = pn . Let A (R) be the category of abelian schemes over R. We define
a category Def(R,R0), whose objects are triples (A0,G ,ε), where A0 is an abelian scheme over R0,
G is a p-divisible group over R, and ε is an isomorphism

ε : G0 A0[p∞]∼

of p-divisible groups over R. A morphism in Def(R,R0)

(A0,G ,ε) (A′
0,G ′,ε′)

(φ0 ,ψ)

is given by a morphism φ0 : A0 → A′
0 of abelian schemes and a morphism ψ : G →G ′ of p-divisible

groups, such that the diagram

G0 A0[p∞]

G ′
0 A′

0[p∞]

ε

ψ0 φ0[p∞]

ε′

commutes.

Now we are ready to prove the Serre-Tate Theorem:

Theorem 8.6.3 (Serre-Tate). The functor

A (R) −→ Def(R,R0)

A 7−→ (A0, A[p∞], idA0[p∞])

defines an equivalence of categories.

Proof: “Full faithfulness”: Suppose we are given abelian schemes A,B over R, and a morphism of
triples

(φ0,φ[p∞]) : (A0, A[p∞], idA0[p∞]) −→ (B0,B [p∞], idB0[p∞]),

we need to check that φ0 and φ[p∞] are both induced by a unique R-morphism φ : A → B . By
Lemma 8.6.2 (3), there is a unique lifting φpnk of pnk ·φ0. We must have

φpnk [p∞] = pnk · (φ[p∞]),

since they are both liftings of pnk ·φ0[p∞]. Thus φpnk kills A[pnk ], so by Lemma 8.6.2 (4), there

exists a morphism φ : A → B such that φpnk = pnk ·φ. The morphism φ is indeed a lifting of φ0,

and φ
∣∣

A[p∞] =φ[p∞]. The uniqueness is ensured by Lemma 8.6.2 (2).

“Essential surjectivity”: It remains to prove that, given any triple (A0,G ,ε), there exists an abelian
scheme A such that A⊗R0 ' A0 and

(A0,G ,ε) ' (A0, A[p∞], idA0[p∞]).
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By Grothendieck’s result (cf. Illusie [7] Theorem 8.5.23), there exists a lifting B of A0 in A (R), with
an isomorphism

α0 : B0 A0.∼

The isomorphism α0 induces an isomorphism of p-divisible groups

α0[p∞] : B0[p∞] A0[p∞].∼

Consider the liftings for pnk ·α0[p∞] and pnk ·α−1
0 [p∞]:

B [p∞] G B [p∞],F F t

where F0 = ε−1 ◦ pnk ·α0[p∞], and F t
0 = ε−1 ◦ pnk ·α−1

0 [p∞]. Observe that, we can use the same
argument in the proof of Proposition 8.4.9, to show that F (resp. F t ) is an isogeny of p-divisible
groups. As F ◦F t = [p2nk ], F t is indeed the dual isogeny of F . Let K be the kernel of F :

0 K B [p∞] G 0,F

i.e., the finite locally free closed subgroup scheme K is killed by F . Let A = B/K , we claim that A is
the required lifting of A0. Indeed, K is a lifting of B0[pnk ]:

0 K0 B0[p∞] A0[p∞] 0

B0[p∞]

pnk ·α0[p∞]

[pnk ]
α0[p∞]

hence A lifts B0/K0 ' B0 ' A0, and A0[p∞] 'G0, as required.

Now we consider the 1-dimensional case, i.e., elliptic curves over R. The category of elliptic curves
over R is denoted by Ell(R), and we keep the same notation for the category Def(R,R0) for the case
of elliptic curves. Furthermore, we define another category DefW (R,R0), which is the category
of “deformations with respect to the Weil pairings”. The objects of DefW (R,R0) are quadruples
(E0/R0,G ,β,ε), where E0 is an elliptic curve over R0, G is a p-divisible group over R, β= {βpn } is a
family of alternating bilinear pairings on G , with βpn defined on each G[pn]:

βpn : G[pn]×G[pn] −→ µpn ⊂Gm ,

such that
βpn−1

(
[p](P ), [p](Q)

) = (
βpn (P, Q)

)p

for any P,Q ∈G[pn](R). And ε is an isomorphism of p-divisible groups over R

ε : G0 E0[p∞]∼

which is compatible with the pairings β and the Weil pairings epn , i.e.,

epn (ε(P ), ε(Q)) = βpn (P, Q)

for any P,Q ∈G[pn](R). Morphisms in DefW (R,R0) are the same as in Def(R,R0).
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Theorem 8.6.4 (Serre-Tate). The functors

Ell(R) −→ DefW (R,R0) −→ Def(R,R0)
E 7−→ (E0,E [p∞], id)

(E0/R0,G ,β,ε) 7−→ (E0/R0,G ,ε)

define equivalences of categories Ell(R), DefW (R,R0) and Def(R,R0).

Proof: The second functor is obviously fully faithful. By Serre-Tate Theorem 8.6.3, the composi-
tion is an equivalence of categories, which implies the second functor is also essentially surjective.
Therefore the second functor is also an equivalence of categories, which implies immediately that
so as the first functor.

8.7 Tate curves

The Tate curve Tate(q) is a particular curve defined over the ring of formal power series Z[[q]],
whose generic fiber is an elliptic curve over Z((q)).

The motivation of the Tate curve is originated from analytic theory of elliptic curves over C. We
know that any elliptic curve E/C is isomorphic to C/Λ for some rank 2 lattice Λ. This character-
ization is very useful, because the group structure is pretty obvious, i.e., it is inherited from the
additive structure of C. In particular, the lattice Λ is isomorphic to Z⊕Zτ for some Λτ := τ ∈ H

in the upper-half plane. Observe that the map exp(2πi−) defines an isomorphism of Riemann
surfaces:

exp(2πi−) : C/Λτ C∗/qZ,∼

where q = e2πiτ, and qZ is the free multiplicative subgroup in C∗ generated by q . The complex
number q satisfies |q | < 1.

Over the ring Z((q)) of Laurent series, we have similar construction, due to J. Tate.

The group schemes T [N ] and T

Let Z[q, q−1] be the ring of Laurent polynomials, and N Ê 1 an integer. Over Z[q, q−1], we define a
finite flat group scheme T [N ], which has rank N 2, and is killed by N . It is the disjoint union of the
N schemes Ti [N ] for 0 É i É N −1, which is the affine scheme:

Ti [N ] := Spec
(
Z[q, q−1][X ]

/
(X N −q i )

)
.

Hence the group scheme T [N ] is
∐N−1

i=0 Ti [N ], as a Z[q, q−1]-scheme.

Let R be any Z[q, q−1]-algebra such that Spec (R) is connected, then the set of R-valued points
T [N ](R) is characterized by

T [N ](R) = {
(X , i /N )

∣∣ 0 É i É N −1, X ∈ R, X N = q i },

and the group structure on it is

(X , i /N ) · (Y , j /N ) =
{

(X Y , i + j /N ) if i + j É N −1
(X Y /q, i + j −N /N ) if i + j Ê N
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We have the natural inclusion of group schemes:

aN : µN (R) ,→ T [N ](R)

ξ 7−→ (ξ,0),

which fits into the short exact sequence

0 µN T [N ] Z/NZ 0
aN bN

where the morphism bN is given by

bN (X , i /N ) = i mod N .

We call this exact sequence the canonical extension structure on T [N ]. Moreover, if theZ[q, q−1]-

algebra R contains q
1
N , then the sequence splits, and we have the explicit isomorphism T [N ](R) '

µN (R)×Z/NZ given by

(X , i /N ) = (X q− i
N ,0)× (q

i
N , i /N ) 7−→ (X q− i

N , i mod N ).

Hence over the ring Z[q, q−1][q
1
N ], we have the isomorphism of Z[q, q−1][q

1
N ]-group schemes

T [N ] ' µN ×Z/NZ.

There is a unique alternating pairing, which we also call it the Weil pairing:

eN : T [N ]×T [N ] −→ µN(
(X , i /N ), (Y , j /N )

) 7−→ X j /Y i .

It is compatible with the canonical extension structure on T [N ], i.e.,

eN
(
aN (ξ), P

) = ξbN (P ).

Next, we define aZ[q, q−1]-group scheme T , which is smooth of relative dimension 1 overZ[q, q−1].
Still let R be a Z[q, q−1]-algebra such that Spec (R) is connected. The set of R-valued points T (R)
is characterized by

T (R) = {
(X ,α)

∣∣ X ∈ R×, α ∈Q∩ [0,1)
}
,

and the group structure is given by

(X ,α) · (Y ,β) =
{

(X Y ,α+β) if α+β< 1
(X Y /q,α+β−1) if α+βÊ 1

The group scheme T is the disjoint union of Tα =Gm :

T = ∐
α∈Q∩[0,1)

Tα,

and it has a canonical extension structure

0 Gm T Q/Z 0.
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Consider the short exact sequence

0 −→ Z −→ Gm(R)×Q −→ T (R) −→ 0
n 7−→ (qn ,n)

(X , a) 7−→ (X /q [a], {a})

where [a] and {a} are the integral and fractional parts respectively. This exact sequence provides
a convenient way to calculate the morphism by multiplying N , namely, for any element (X ,α) in
T (R), we have the formula

N · (X , a) = (X N /q [Nα], {Nα}).

Thus the group scheme T [N ] is naturally the N -torsion subgroup scheme of T .

Theorem 8.7.1. There is a faithfully flat Z[q, q−1]-algebra R, an elliptic curve E/R and an isomor-
phism of ind-R-group schemes

Ttor ⊗Z[q,q−1] R ' Etor,

such that it induces the isomorphism for any N Ê 1

T [N ]⊗Z[q,q−1] R ' E [N ]

which is compatible with their Weil pairings.

The Tate curve

Theorem 8.7.2. There exists an elliptic curve Tate(q) overZ((q)), together with a canonical invariant
1-form ωcan which is nowhere vanishing, such that

(1) The Weierstrass equation of Tate(q) is

y2 + x y = x3 + a4(q)x + a6(q),

where  a4(q) =−5
∑∞

n=1
n3qn

1−qn

a6(q) =− 1
12

∑∞
n=1

(7n5+5n3)qn

1−qn .

and the canonical 1-form ωcan = d x
2y+x . Moreover, it has the j -invariant

j
(
Tate(q)

) = 1

q
+744+196884q + ...

and the discriminant

∆
(
Tate(q),ωcan

) = q ·
∞∏

n=1
(1−qn)24.

(2) There exists a unique isomorphism of formal Lie groups

φcan : áTate(q) Ĝm = T̂ ,∼

such that

φ∗
can

(
X

d X

)
= ωcan.
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(3) There exists a canonical extension structure on Tate(q)[N ] for each N Ê 1:

0 µN Tate(q)[N ] Z/NZ 0,
aN bN

such that

• for any Z((q))-algebra R in which N is nilpotent, and any ξ ∈µN (R), we have

φcan
(
aN (ξ)

) = ξ.

• the Weil pairing is compatible with the extension structure, i.e., for any Z((q))-algebra R,
any ξ ∈µN (R) and X ∈ Tate(q)[N ](R), we have

eN
(
aN (ξ), X

) = ξbN (X ).

(4) We have a unique isomorphism of ind-Z((q))-group schemes

Ttor ⊗Z[q,q−1]Z((q)) ' Tate(q)tor,

which is compatible with their extension structures, i.e., the diagram

0 µ∞ Ttor ⊗Z((q)) Q/Z 0

0 µ∞ Tate(q)tor Q/Z 0

id o id

commutes.

Serre-Tate parameter

Let k be an algebraically closed field of characteristic p, and R a complete noetherian local W (k)-
algebra with residue field k. Consider an ordinary elliptic curve E over R, whose special fiber is
denoted by E0/k. We have an isomorphism

φ0 : µ∞×Q (E0)can,∼

which is compatible with the Weil pairings.

Let q ∈ 1+mR ⊂ R× be a unit, in which we can view R as aZ[q, q−1]-algebra. By Serre-Tate Theorem
8.6.3, the isomorphism φ0 can be lifted to an isomorphism

φ : Ttor ⊗Z[q,q−1] R Ecan,∼

which is compatible with their Weil pairings. We call such q a Serre-Tate parameter associated to
the lifting isomorphism φ.
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9
Appendix III: Algebraic stacks

In current appendix, we give an introductory exposé on algebraic stacks.

The theory of stacks was largely motivated from the attempt to deal with general moduli problems.
In a moduli problem, the fine moduli space is the best solution, which captures all the information
of the moduli functor. But indeed, such a nice thing does not always exist, e.g., the moduli spaces
of curves with fixed genus, and moduli spaces of vector bundles on an algebraic curve.

From the classical point of view, the “best” replacement of the fine moduli space could be the
coarse moduli space, whose “points” are still in bijective correspondence with the classes we are
intended to classify. However the universal family is missing in this case, which means the coarse
moduli space does not classify all families of those objects. A basic observation of the obstruction
of existence of fine moduli space is the existence of nontrivial automorphisms of objects, i.e., non-
rigidity. Briefly speaking, if we have an object X with nontrivial automorphisms, then it is often
possible to construct an isotrivial family over some base space B , i.e., a family of objects whose
fibers are all isomorphic to X , while the family is not trivial. So if the fine moduli space M existed,
the morphism determined by this family could only be the constant morphism, which maps B to
the point of M corresponding to the isomorphism class of X . But then the pull-back of the uni-
versal family is certainly trivial, which is against to our assumption.

Notice that classically our premise is to find moduli space inside the category Sch (or Sch/S ), in
order to reinterpret the moduli functor. So in order to find a possibly nicer reinterpretation of the
moduli functor, it is natural to broaden our target category. Such target category should not be too
general, for example if we seek moduli space in the dual category of Sch, then the case becomes
completely trivial. It should capture features of schemes as many as possible.

For example, the algebraic space introduced by M. Artin [20], as an intermediate generalization of
schemes (comparing to algebraic stacks), is natural and interesting. They behave like schemes, for
example, a scheme is Zariski-locally affine, while an algebraic space is étale-locally affine. We give
the precise definition:
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Definition 9.0.3. An algebraic space is an étale sheaf

F : Schop −→Set

which satisfies

(1) The diagonal morphism ∆F : F → F ×F is representable, quasi-compact and separated;

(2) There is an “atlas” of F , i.e., an étale surjective morphism U → F from a scheme U to F .

Algebraic spaces have some nicer properties than schemes, for example, algebraic spaces can be
realized as étale equivalence relations and vice versa, and they behave better than schemes under
quotients by group actions. Despite these interesting stories about algebraic spaces, we shall move
forward to the theory of algebraic stacks for our very purpose.

9.1 Theory of descent

The theory of descent subjects to study the gluing of objects or morphisms from local to global.
For a typical example, in the theory of fiber bundles over some topological space, an isomorphism
class of fiber bundles is determined by a Čech 1-cocycle, which is specified by a covering of the
base space, and some gluing maps on the intersections of the covering which satisfies the cocycle
condition. This is a particular case of effective descent, namely, a surjective family of open immer-
sions, which is a covering in the classical sense. The theory of descent is formulated essentially in
the same way. When we move the stage to more general settings, namely, Grothendieck topologies
and sites, one can talk about more general concept of “coverings”, e.g., faithfully flat, fppf, fpqc,
fpuo 1 morphisms, and their descent properties.

General framework

Let C be a category with fiber products. Assume for any S ∈ Obj(C ), one has a category CS , and
for any φ ∈ HomC (S′,S), one has the “pull-back” functor φ∗ : CS → CS′ . Moreover, they satisfy
following conditions:

(1) For any two morphisms

S′′ S′ S,
φ′ φ

one has the natural isomorphism of functors

cφ,φ′ : φ′∗ ◦φ∗ (φ◦φ′)∗;∼

(2) For any morphisms

S′′′ S′′ S′ S,
φ3 φ2 φ1

the diagram induced from (1)

φ∗
3 ◦φ∗

2 ◦φ∗
1 (φ2 ◦φ3)∗ ◦φ∗

1

φ∗
3 ◦ (φ1 ◦φ2)∗ (φ1 ◦φ2 ◦φ3)∗

∼

o o
∼

commutes;

1In French: fidèlement plat de présentation finie, fidèlement plat et quasi-compact, fidèlement plat et universellement
ouvert.
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(3)
(id)∗ = id;

(4)

(id)∗ ◦φ∗ (φ◦ id)∗ φ∗ ◦ (id)∗ (id◦φ)∗.id id

Given a morphism φ ∈HomC (S′,S), in the following Cartesian diagram

S′×S S′ S′

S′ S

pr2

pr1 φ

φ

we denote ψ=φ◦pr1 =φ◦pr2.

Now let us define a new category Cφ: its objects are pairs (ξ′,θ), where ξ′ ∈ Obj(CS′ ), and

θ : pr∗1ξ
′ pr∗2ξ

′∼

is an isomorphism. A morphism

(ξ′,θ) (η′,τ)u′

is given by u′ ∈HomCS′ (ξ
′,η′), such that the following diagram commutes

pr∗1ξ
′ pr∗2ξ

′

pr∗1η
′ pr∗2η

′

θ

pr∗1 u′ pr∗2 u′

τ

There is naturally a functor Φ defined as

Φ : CS −→ Cφ

ξ 7−→ (φ∗ξ,ψ∗idξ)

Definition 9.1.1. A morphism φ : S′ → S is called a morphism of descent, if the functor Φ is fully
faithful.

A morphism φ : S′ → S being a morphism of descent is equivalent to require the following se-
quence to be commutative:

HomCS
(ξ,ζ) →HomCS′ (φ

∗ξ,φ∗ζ) âHomCS′×S S′ (ψ
∗ξ,ψ∗ζ),

where ξ,ζ are any objects in CS , and the last double arrows are given by pull-backs pr∗1 and pr∗2 .

Let ∆ : S′ → S′×S S′ be the diagonal morphism, and pr∗i j : S′×S S′×S S′ → S′×S S′ be the projection

to the i -th and j -th factors. Suppose ξ′ ∈ Obj(CS′ ), if a morphism θ : pr∗1ξ
′ → pr∗2ξ

′ satisfies the
following conditions:

(1) θ is an isomorphism;
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(2) ∆∗ ◦θ = id;

(3) Cocycle condition: pr∗23(θ)◦pr∗12(θ) = pr∗13(θ),

then θ is called a descent datum of ξ′. We define a full subcategory Dφ of Cφ, whose objects are
pairs (ξ′,θ), where θ is a descent datum of ξ′. The category Dφ is called the category of descent
data of φ. The functor Φ obviously factors through the inclusion Dφ ,→Cφ

Φ : CS −→Dφ.

Definition 9.1.2. A morphism φ : S′ → S is called an morphism of effective descent, if the functor
Φ defines an equivalence of categories between CS and Dφ.

The full faithfulness of Φ means that we can glue morphisms (given by local data) of any two
objects in the category CS along the morphismφ, and the essential surjectivity means that we can
glue objects (with descent data) along φ.

Faithfully flat descent in affine case

The descent theory for affine schemes and affine morphisms is essentially the descent theory for
modules over a commutative ring. Let A, A′ be commutative rings, given a homomorphism f :
A → A′, and set A′′ = A′⊗A A′ with natural homomorphisms p∗

1 , p∗
2 : A′ → A′′. Our main questions

are

Q1: Given A-modules M , N , and a homomorphism of A′-modules h′ : A′⊗A M → A′⊗A N such
that h′⊗A′,p∗

1
A′′ = h′⊗A′,p∗

2
A′′, does there exist a homomorphism of A-module h : M → N

such that h′ = h ⊗ A′?

Q2: Given an A′-module M ′ with a descent datum, does there exist an A-module M such that
M ′ ' A′⊗A M?

In the viewpoint of general framework, the category C is the opposite category of commutative
rings CRingop, and for any A ∈ Obj(CRingop), the category CA is A-Modop. A homomorphism
fulfilling Q1 is exactly a morphism of descent, and if it also fulfills Q2, then it is a morphism of
effective descent. The situation is equivalent to the case of affine schemes, the questions are to
ask whether we can glue quasi-coherent sheaves and their morphisms with given local data on an
affine scheme.

Lemma 9.1.3. Let δ0 : A → A′ be a homomorphism of unital commutative rings, and define the
Amitsur complex (T •,δ•) as following:

• T 0 = A, T n = A′⊗n for n Ê 1;

• δ0 is as given, δn =∑n
i=0(−1)i εi for n Ê 1, where

εi : T n −→ T n+1

x1 ⊗ ...⊗xn 7−→ x1 ⊗ ...⊗xi ⊗1⊗xi+1 ⊗ ...⊗xn .

For any A-module M, if δ0 is faithfully flat, then the complex T •⊗A M of A-modules is exact.

Proof: By faithful flatness of δ0, it suffices to prove the exactness of the complex

A′⊗A T •⊗A M .
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In order to show it, we construct a chain homotopy as following

hn : A′⊗A T n ⊗A M −→ A′⊗A T n−1 ⊗A M

x ⊗x1 ⊗ ...⊗xn ⊗m 7−→ x · x1 ⊗ ...⊗xn ⊗m.

Then it remains to verify the following identity

hn+1 ◦δn +δn−1 ◦hn = idA′⊗A T n⊗A M .

Combine 2

hn+1 ◦δn(x ⊗x1 ⊗ ...⊗xn ⊗m)

= hn+1
( n∑

i=0
(−1)i x ⊗x1 ⊗ ...⊗xi ⊗1⊗xi+1 ⊗ ...⊗xn ⊗m

)
= x ⊗x1 ⊗ ...⊗xn ⊗m +

n∑
i=1

(−1)i x · x1 ⊗ ...⊗xi ⊗1⊗xi+1 ⊗ ...⊗xn ⊗m

and

δn−1 ◦hn(x ⊗x1 ⊗ ...⊗xn ⊗m)

= δn−1(x · x1 ⊗ ...⊗xn ⊗m)

=
n−1∑
i=0

(−1)i x · x1 ⊗ ...⊗xi+1 ⊗1⊗xi+2 ⊗ ...⊗xn ⊗m

=
n∑

i=1
(−1)i+1 x · x1 ⊗ ...⊗xi ⊗1⊗xi+1 ⊗ ...⊗xn ⊗m

we obtain the result.

Corollary 9.1.4. Let M be an A-module, and A → A′ is faithfully flat. Then the sequence 3

M → A′⊗A M â A′⊗A A′⊗A M

is exact.

Corollary 9.1.5. Let M , N be A-modules, and A → A′ is faithfully flat. Then the sequence

HomA(M , N ) →HomA′ (A′⊗A M , A′⊗A N ) âHomA′⊗A A′ (A′⊗A A′⊗A M , A′⊗A A′⊗A N )

is exact.

Proof: According to Corollary 9.1.4, we have the exact sequence

N → A′⊗A N â A′⊗A A′⊗A N ,

applying the functor HomA(−, M), it remains exact

HomA(M , N ) →HomA(M , A′⊗A N ) âHomA(M , A′⊗A A′⊗A N ).

This is already what we want, since

HomA(M , A′⊗A N ) =HomA′ (A′⊗A M , A′⊗A N ),

2Precisely here δn should be written as A′⊗δn ⊗M , but we did’t bother to do so.
3The first map is by taking m to 1⊗m, and the second two maps are by taking a′ ⊗m to 1⊗ a′ ⊗m and a′ ⊗ 1⊗m

respectively.
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HomA(M , A′⊗A A′⊗A N ) =HomA′⊗A A′ (A′⊗A A′⊗A M , A′⊗A A′⊗A N ).

Let us fix some notations: let A′′′ = A′⊗A A′⊗A A′, and

pi : Spec (A′′) −→ Spec (A′) pi j : Spec (A′′′) −→ Spec (A′′)

are projections to respective factors. Let qi = p1 ◦pi j = p2 ◦pki . Observe that given an A′-module
M ′, we have the following isomorphisms of A′′-modules:

p∗
1 M ′ = A′′⊗p∗

1 ,A′ M ′ −→ M ′⊗A A′

(a′
1 ⊗a′

2)⊗m′ 7−→ a′
1m′⊗a′

2

p∗
2 M ′ = A′′⊗p∗

2 ,A′ M ′ −→ A′⊗A M ′

(a′
1 ⊗a′

2)⊗m′ 7−→ a′
1 ⊗a′

2m′

similarly one can identify q∗
1 M ′, q∗

2 M ′ and q∗
3 M ′ with M ′ ⊗A A′ ⊗A A′, A′ ⊗A M ′ ⊗A A′ and A′ ⊗A

A′⊗A M ′ respectively. Hence, an isomorphism of A′′-modules

θ : M ′⊗A A′ A′⊗A M ′∼

satisfying the cocycle condition, i.e., p∗
23(θ)◦p∗

12(θ) = p∗
13(θ), is exactly a descent datum of the A′-

module M ′.

The following proposition gives affirmative answers to the questions Q1,Q2 for faithfully flat mor-
phisms:

Proposition 9.1.6. Any faithfully flat morphism φ : Spec (A′) → Spec (A) is an effective descent
morphism for quasi-coherent sheaves.

Proof: We need to show that the functorΦ from the category of quasi-coherent sheaves on Spec (A)
to the category of descent data Dφ is an equivalence of categories.

“Full faithfulness”: We need to show that for any A-modules M , N , the map

HomA(M , N ) −→HomDφ

(
(A′⊗A M ,ψ∗idM ), (A′⊗A N ,ψ∗idN )

)
is bijective. Recall that a morphism u′ in the category Dφ between (A′⊗A M ,ψ∗idM ) and (A′⊗A

N ,ψ∗idN ) is given by
u′ : φ∗M −→φ∗N ,

such that the following diagram commutes:

p∗
1 (φ∗M) p∗

2 (φ∗M)

p∗
1 (φ∗N ) p∗

2 (φ∗N )

ψ∗idM

p∗
1 u′ p∗

2 u′

ψ∗idN

which is equivalently

A′⊗A M ⊗A A′ A′⊗A A′⊗A M

A′⊗A N ⊗A A′ A′⊗A A′⊗A N

ψ∗idM

u′⊗ A′ A′⊗u′

ψ∗idN
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i.e., u′ lies in the equalizer of

HomA′ (A′⊗A M , A′⊗A N ) âHomA′⊗A A′ (A′⊗A A′⊗A M , A′⊗A A′⊗A N ).

Therefore the assertion follows from Corollary 9.1.5.

“Essential surjectivity”: We claim that given a descent datum (M ′,θ), the A-module

M := {
m′ ∈ M ′ | θ(m′⊗1) = 1⊗m′}

satisfies A′⊗A M ' M ′, i.e., (φ∗M ,ψ∗idM ) ' (M ′,θ). Define

τ : M ′ −→ A′⊗A M ′

m′ 7−→ 1⊗m′−θ(m′⊗1)

we have the short exact sequence of A-modules

0 M M ′ A′⊗A M ′,i τ

it remains exact after tensoring A′

0 M ⊗A A′ M ′⊗A A′ A′⊗A M ′⊗A A′,i τ

fit it into the diagram

0 M ⊗A A′ M ′⊗A A′ A′⊗A M ′⊗A A′

0 M ′ A′⊗A M ′ A′⊗A A′⊗A M ′

i

λ

τ

θ A′⊗θ
φ∗ p∗

1 −p∗
2

([)

where λ is defined by

λ : M ⊗A A′ −→ M ′

m ⊗a′ 7−→ a′m

we claim that the diagram ([) is commutative. The commutativity of the first square in ([) is im-
mediate to check. For the second square, let m′⊗a′ ∈ M ′⊗A A′, using cocycle condition

(A′⊗θ)◦ (τ⊗ A′)(m′⊗a′)
= (A′⊗θ)

(
1⊗m′⊗a′−θ(m′⊗1)⊗a′)

= 1⊗θ(m′⊗a′)−p∗
23(θ)◦p∗

12(θ)(m′⊗1⊗a′)
= 1⊗θ(m′⊗a′)−p∗

13(θ)(m′⊗1⊗a′)
= (p∗

1 −p∗
2 )◦θ(m′⊗a′)

we conclude the commutativity of ([). Now since θ and A′⊗θ are both isomorphisms, hence so as
λ. Finally we need to check that λ indeed gives an isomorphism in the category Dφ, i.e., one needs
to verify one more commutative diagram

A′⊗A M ⊗A A′ A′⊗A A′⊗A M

M ′⊗A A′ A′⊗A M ′,

p∗
1 λ p∗

2 λ

θ
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where the map in the first row is given by a′
1 ⊗m ⊗a′

2 7→ a′
1 ⊗a′

2 ⊗m. This is straightforward:

θ ◦p∗
1λ(a′

1 ⊗m ⊗a′
2) = θ(a′

1m ⊗a′
2) = a′

1 ⊗a′
2m = p∗

2λ(a′
1 ⊗a′

2 ⊗m).

Descent of quasi-coherent sheaves

Move the stage to general schemes, i.e., in this case our category C is the category of schemes
Sch, and for any S ∈ Obj(Sch), the category CS is the category of quasi-coherent sheaves QCoh/S
on S, with the usual pull-back functors. Suppose f : S′ → S is a morphism of schemes, and set
S′′ = S′×S S′ with natural projections p1, p2 : S′′ → S′. We consider the questions:

Q3: Given quasi-coherent sheaves F ,G on S, and a morphism of OS′-modules

h′ : f ∗F → f ∗G

such that p∗
1 h′ = p∗

2 h′, does there exist a morphism of OS -modules h : F → G such that
h′ = f ∗h?

Q4: Given a quasi-coherent F ′ on S′ with a descent datum, does there exist a quasi-coherent
sheaf F on S such that F ′ ' f ∗F ?

We have affirmative answers of Q3,Q4 for fpqc and fpuo 4 morphisms. The case of descent the-
ory for quasi-coherent sheaves is essentially the same as the affine case, i.e., descent theory for
modules, because of the quasi-coherence.

Lemma 9.1.7. Let g : R → S and f : S → T be morphisms of schemes. Suppose g is a morphism of
descent for quasi-coherent sheaves, and so as any base change of g . Then f is a morphism of descent
if and only if f ◦ g is a morphism of descent.

Proof: Consider the following commutative diagram:

R ×S R R

R ×T R R

S ×T S S

R R S T

r2

r1

`
id

q2

q1

k g

p2

p1 f

id g f

(\)

which contains three cartesian diagrams:

S ×T S S R ×T R R R ×S R R

S T R T R S

p2

p1 ψ f

q2

q1 ψ′ f ◦ g

r2

r1 ψ′′ g

f f ◦ g g

4In particular, any fppf morphism is fpuo.
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where we denoteψ= f ◦pi ,ψ′ = f ◦g ◦qi andψ′′ = g ◦ri . Let F ,G be any quasi-coherent sheaves
on T .

The “only if” part: Assume f is a morphism of descent. Suppose given a morphism of OR -modules

h′′ : ( f ◦ g )∗F −→ ( f ◦ g )∗G

satisfying

ψ′∗idF ◦q∗
1 h′′ = q∗

2 h′′ ◦ψ′∗idG .

Then immediately h′′ also satisfies

ψ′′∗id f ∗F ◦ r∗
1 h′′ = `∗(ψ′∗idF ◦q∗

1 h′′) = `∗(q∗
2 h′′ ◦ψ′∗idG ) = r∗

2 h′′ ◦ψ′′∗id f ∗G ,

since g is a morphism of descent, there exists a unique morphism of OS -modules

h′ : f ∗F −→ f ∗G

such that h′′ = g∗h′. By the assumption that f is a morphism of descent, and that

k∗(ψ∗idF ◦p∗
1 h′) =ψ′∗idF ◦q∗

1 h′′ = q∗
2 h′′ ◦ψ′∗idG = k∗(p∗

2 h′ ◦ψ∗idG ),

which implies ψ∗idF ◦p∗
1 h′ = p∗

2 h′ ◦ψ∗idG , since k is given by a base change of g . Thus there is a
unique morphism of OT -modules

h : F −→G

such that h′ = f ∗h, and therefore h′′ = ( f ◦ g )∗h, i.e., f ◦ g is a morphism of descent for quasi-
coherent sheaves.

The “if” part: Assume f ◦ g is a morphism of descent. Suppose given a morphism of OS -modules

h′ : f ∗F −→ f ∗G ,

satisfying

ψ∗idF ◦p∗
1 h′ = p∗

2 h′ ◦ψ∗idG .

Consider the morphism g∗h′, it satisfies

ψ′∗idF ◦q∗
1 (g∗h′) = k∗(ψ∗idF ◦p∗

1 h′) = k∗(p∗
2 h′ ◦ idG ) = q∗

2 (g∗h′)◦ψ′∗idG .

By the assumption that f ◦ g is a morphism of descent, there exists a unique morphism of OT -
modules

h : F −→G

such that g∗h′ = ( f ◦ g )∗h, which implies h′ = f ∗h since g is a morphism of descent. Therefore f
is a morphism of descent for quasi-coherent sheaves.

Lemma 9.1.8. Let g : R → S and f : S → T be morphisms of schemes. Suppose g is a morphism of
effective descent for quasi-coherent sheaves, and so as any base change of g . Then f is a morphism
of effective descent if and only if f ◦ g is a morphism of effective descent.
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Proof: We keep the notations from the previous lemma. Moreover, let ri j , qi j , pi j be the obvious
projections from R ×S R ×S R,R ×T R ×T R,S ×T S ×T S to respective factors.

The “only if” part: Suppose (F ′′,θ′) is a descent datum for f ◦g . We want to find a quasi-coherent
sheaf F on T which ought to be unique, such that there is a unique isomorphism of descent data
( f ◦ g )∗F 'F ′′. Applying `∗ to θ′, we obtain an isomorphism

θ′′ = `∗θ′ : r∗
1 F ′′ −→ r∗

2 F ′′,

and moreover, let `′ be the morphism given by the base change of ` as below

R ×S R ×S R R ×T R ×T R

R ×S R R ×T R

`′

ri j qi j

`

then the cocycle condition for θ′′ follows

r∗
23(θ′′)◦ r∗

12(θ′′) = `′∗(
q∗

23(θ′)◦q∗
12(θ′)

)= (q13 ◦`′)∗(θ′) = r∗
13(θ′′),

that is to say, (F ′′,θ′′) is a descent datum for g . Since g is a morphism of effective descent, there
exists a unique quasi-coherent sheaf F ′ on S, with an isomorphism of descent data

φ′ : F ′′ −→ g∗F ′.

Let θ̄′ be the following composition

k∗p∗
1 F ′ = q∗

1 g∗F ′ q∗
1 F ′′ q∗

2 F ′′ q∗
2 g∗F ′ = k∗p∗

2 F ′,
q∗

1 (φ′)−1
θ′ q∗

2 φ
′

after checking that the pull-backs of θ̄′ to (R ×T R)×S×T S (R ×T R) along two projections coincide
(we omit the verification), the isomorphism θ̄′ is descent to an isomorphism

θ : p∗
1 F ′ −→ p∗

2 F ′

with θ̄′ = k∗θ. Then (F ′,θ) is a descent datum for f , and the cocycle condition follows from

k ′∗(
p∗

23(θ)◦p∗
12(θ)

)= q∗
23(θ̄′)◦q∗

12(θ̄′) = q∗
13(θ̄′) = k ′∗(

p∗
13(θ)

)
,

where k ′ is given by base change of k:

R ×T R ×T R S ×T S ×T S

R ×T R S ×T S

k′

qi j pi j

k

and that k ′ is a morphism of effective descent by condition. Thus there exists a unique quasi-
coherent sheaf F on T , such that F ′ ' f ∗F as descent data, which implies F ′′ ' ( f ◦ g )∗F as
descent data, i.e., f ◦ g is also a morphism of effective descent.
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The “if” part: Suppose we have a descent datum (F ′,θ) for f . Denote F ′′ = g∗F ′, then (F ′′,k∗θ)
is a descent datum for f ◦ g . By effective descent of f ◦ g , there is a unique quasi-coherent sheaf
F on T , with an isomorphism of descent data

φ′ : g∗F ′ =F ′′ ( f ◦ g )∗F = g∗( f ∗F ),∼

i.e., we have the commutative diagram

q∗
1 F ′′ q∗

1 ( f ◦ g )∗F

q∗
2 F ′′ q∗

2 ( f ◦ g )∗F

q∗
1 φ

′

k∗θ ψ′∗idF

q∗
2 φ

′
(])

We need to check that φ′ can be descent to an isomorphism of descent data φ : F ′ → f ∗F . To
show the existence, essentially we only need to verify the diagram 5

r∗
1 F ′′ r∗

1 ( f ◦ g )∗F

r∗
2 F ′′ r∗

2 ( f ◦ g )∗F

r∗1 φ
′

(k ◦`)∗θ ψ′′∗id f ∗F

r∗2 φ
′

is commutative, but this is straightforward by applying `∗ to the diagram (]). Hence φ′ is descent
to φ. Finally we need to verify that φ is indeed an isomorphism of descent data, i.e., the following
diagram commutes:

p∗
1 F ′ p∗

1 f ∗F

p∗
2 F ′ p∗

2 f ∗F

p∗
1φ

θ ψ∗idF

p∗
2φ

Indeed, we have

k∗(ψ∗idF ◦p∗
1φ) =ψ′∗idF ◦q∗

1φ
′ = q∗

2φ
′ ◦k∗θ = k∗(p∗

2φ◦θ),

since k is of effective descent, one obtains ψ∗idF ◦p∗
1φ= p∗

2φ◦θ.

Theorem 9.1.9. Any fpqc or fpuo morphism f : S′ → S is a morphism of effective descent for quasi-
coherent sheaves.

Proof: Let {Si }i be an affine covering of S, and {S′
i j } j be an open affine covering of f −1(Si ).

Firstly we reduce the fpuo case to the fpqc case. Let {Wi } be any open affine covering of S′, the
openness of f implies that { f (Wi )} is an open covering of S. From the commutative diagram

∐
i Wi

∐
i f (Wi )

S′ S

∐
i f |Wi

f

5Here we use the condition that g is a morphism of descent.
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it reduces 6 the question to each f |Wi , since the effective descent holds for any surjective family of
open immersions. Now each f |Wi is quasi-compact, hence we may assume the fpuo morphism f
is also quasi-compact, i.e., fpqc.

Because f is quasi-compact, {S′
i j } j can be chosen to be finite. Let fi be the restriction of f on

f −1(Si ). From the commutative diagram

∐
i , j S′

i j

∐
i Si

S′ S

∐
i fi

π′ π

f

it reduces the question to each fi . Since each fi is a faithfully flat morphism between affine
schemes, by Proposition 9.1.6, it is a morphism of effective descent.

Remark: The finiteness conditions (i.e. quasi-compact or finitely presented) are crucial, there are
examples of faithfully flat morphism which is not of effective descent. See e.g. [18] Appendix A
and [30] 6.7.

Descent of schemes

When one comes to the case of gluing schemes rather than quasi-coherent sheaves, things are a
bit different. This is simply because a morphism of schemes T → S is not locally (quasi-)coherent,
i.e., over an affine open subscheme Spec (A) of S, the scheme T does not always come from an
A-algebra. So in general, one cannot reduce the question to commutative algebra.

Let f : S′ → S be a morphism of schemes, and S′′ as usual, with projections p1, p2. Here we formu-
late our questions:

Q5: Given S-schemes X ,Y , and a morphism of S′-schemes

h′ : X ′ = X ×S S′ → Y ′ = Y ×S S′

such that p∗
1 h′ = p∗

2 h′, does there exist a morphism of S-schemes h : X → Y such that h′ =
f ∗h?

Q6: Given a S′-scheme X ′ on S′ with a descent datum, does there exist a S-scheme X such that
X ′ ' X ×S S′?

Despite general cases, the case of affine morphisms is rather similar to the descent theory of mod-
ules.

Lemma 9.1.10. Let f : X → Y be a fpqc morphism of schemes. Then a subset of Y is open (resp.
closed) if and only if its preimage is open (resp. closed) in X , i.e., Y is a topological quotient of X by
f .

Proof: See EGA IV2 [3] Corollaire 2.3.12.

6Notice that here we use Lemma 9.1.8 to reduce the case.
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Lemma 9.1.11. Let f : S′ → S be a fpqc or fpuo morphism, and g : S′ → X is a morphism satisfying
p∗

1 g = p∗
2 g . Then there exists a unique morphism h : S → X such that h ◦ f = g .

Proof: To construct the morphism h, one needs to construct the map of underlying topological
spaces, and the morphism of structure sheaves.

S′ S g∗OS′ h∗OS

X OX

f

g
h

g∗ f #

g #

h#

Observe that for any points x, y in S′ satisfying f (x) = f (y), there must exist a point z ∈ S′′ with
p1(z) = x and p2(z) = y , since we have the universal property of fiber products:

Spec (k)

S′′ S′

S′ S

x

y

p2

p1 f

f

this means that we can construct h in a set-theoretic sense, as following: Let s ∈ S be any point,
and s′ ∈ S′ is any preimage of s, define h(s) := g (s′). By previous observation, the definition of h
is independent of choice of s′, as g satisfies p∗

1 g = p∗
2 g . Moreover, since the topology of S is the

quotient topology by f , the map h is continuous.

To construct h#, we firstly consider the exact sequence

OS f∗OS′ ψ∗OS′′
f #

where ψ = f ◦pi . This is indeed exact, by Theorem 9.1.9. Applying the left exact functors h∗ and
Hom(OX ,−), one obtains

Hom(OX , h∗OS ) Hom(OX , g∗OS′ ) Hom
(
OX , (h ◦ψ)∗OS′′

)
the condition p∗

1 g = p∗
2 g indicates that g # lies in the equalizer, hence it is induced by a morphism

h] ∈Hom(OX ,h∗OS ), which is exactly what we need to construct.

Theorem 9.1.12. Any fpqc or fpuo morphism f : S′ → S is a morphism of effective descent for affine
morphisms.

Proof: Given an S′-scheme X ′ which is affine over S′, it is equivalent to a quasi-coherent sheaf of
OS′-algebras. Use the descent result for quasi-coherent sheaves, one can descend X ′ (as a sheaf)
to a quasi-coherent sheaf of OS -module, and equip with a multiplication morphism by descend-
ing the multiplication morphism of the sheaf of OS′-algebras, which is then corresponding to a
S-scheme which is affine over S.
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Let X ,Y be any S-schemes. It remains to show the exactness of the sequence

HomS (X , Y ) HomS′ (X ′, Y ′) HomS′′ (X ′′, Y ′′)

or equivalently,

HomS (X , Y ) HomS (X ′, Y ) HomS (X ′′, Y ).

This is straightforwardly implied by Lemma 9.1.11.

Observe that the affine condition is irrelevant in proving that one can glue morphisms of S-schemes
along a fpqc or fpuo morphism f : S′ → S. Hence as a byproduct, we proved the following fact:

Corollary 9.1.13. Any fpqc or fpuo morphism f : S′ → S is a morphism of descent for any mor-
phisms.

Finally, we state the descent results for quasi-affine and quasi-projective morphism. For detailed
proofs, one can find in [18].

Recall that a morphism f : S′ → S is called quasi-affine if the preimage of any affine subscheme of
S is quasi-affine.

Theorem 9.1.14. Any fpqc or fpuo morphism f : S′ → S is a morphism of effective descent for quasi-
affine morphisms.

To state the result for quasi-projective morphisms, we need to do one more thing, namely, to spec-
ify the relatively ample sheaf. Let f : S′ → S be a fpqc or fpuo morphism, and S′′,S′′′ as usual. Let
X ′ → S′ be a quasi-projective S′-scheme, with a relatively ample sheaf L ′. And we denote

p̃1 : X ′×S S′ −→ X ′, p̃2 : X ′×S S′ ' S′×S X ′ −→ X ′

be projections.

Theorem 9.1.15. Let f : S′ → S be a fpqc or fpuo morphism. Suppose X ′ is a quasi-projective S′-
scheme, with a relatively ample sheaf L ′. If we have a descent datum for X ′ (i.e., an isomorphism
φ : X ′ ×S S′ ' S′ ×S X ′ satisfying the cocycle condition) and a descent datum for L ′ (i.e., an iso-
morphism ω : p̃∗

1 L ′ ' p̃∗
2 L ′ satisfying the cocycle condition), then there exists a unique quasi-

projective S-scheme X with a relatively ample sheaf L , such that ( f ∗X , f ∗L ) is isomorphic to
(X ′,L ′) as descent data.

9.2 Categories fibered in groupoids

Although there is a more general theory on fibered categories (cf. Vistoli’s lecture note in [7]), here
we only consider the fibered categories whose fibers are groupoids, and always assume the base
category is Sch/S for some base scheme S.
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Definition 9.2.1. A category fibered in groupoids (CFG) is a functor of categories pX : X →Sch/S ,
such that for any arrow f : T ′ → T in Sch/S , there is a “pull-back” functor f ∗ : X (T ) →X (T ′), and
for any composable arrows:

T ′′ T ′ T,
g f

there is a canonical isomorphism of functors c f ,g : g∗◦ f ∗ ' ( f ◦g )∗, such that the following diagram
commutes:

h∗g∗ f ∗ (g h)∗ f ∗

h∗( f g )∗ ( f g h)∗

Here X (T ) is the category whose objects are objects of X which are mapped to T by p, and whose
arrows are arrows in X which are mapped to the identity morphism idT in Sch/S .

To specify the base category, we often call X a CFG over S. And we often call p as the structure
morphism of the CFG X .

From any functor F : Sch
op
/S →Set, we can construct a CFG F associated to F . The objects of F

are pairs (T,ξ), where T is a S-scheme, and ξ ∈ F (T ). The projection p is by forgetting the element
ξ in the pair. The pull-back functors are just given by F itself, i.e., for any arrow f : T ′ → T , the pull-
back functor is f ∗ = F ( f ). The conditions for pull-back functors are naturally satisfied, hence F

is indeed a CFG. The fibers of F is not only groupoids, but even sets. In fact, any category fibered
in sets (CFS) comes from a functor. Let F be a CFS, define a functor F :Sch

op
/S →Set as following:

for any S-scheme T , let F (T ) := F (T ), and for any arrow f : T ′ → T , let F ( f ) := f ∗. These two
processes are obviously mutually inverse. We shall call this kind of CFGs simply as functors.

Definition 9.2.2. A morphism φ : X → Y of CFGs over S is a functor compatible with structure
morphisms. An isomorphism of CFGs is a morphism which is an equivalence of categories.

Remark:

• We simply denote the morphisms from X to Y by HomS (X ,Y ), while it is worth to note
that this is a groupoid, rather than a set. Thus the category of CFGs forms a 2-category.

• If a morphism f : X → Y of CFGs is an equivalence of categories, one can find an inverse
functor g : Y → X which is compatible with structure morphisms, i.e., g is a morphism of
CFGs.

• A morphism between CFSs is exactly a natural transformation of their functors.

Since the category of CFGs over S form a 2-category, there are naturally two kinds of commutativ-
ity of diagrams, namely, the strict commutativity and the 2-commutativity. Conventionally, when
we simply call a diagram of morphisms of CFGs commutes, we mean that it is 2-commutative.

Definition 9.2.3. Let f : X →Z and g : Y →Z be morphisms of CFGs. The fiber product X ×Z Y

is a CFG defined as following: its objects are triples (ξ,ζ,α), where ξ ∈ Obj(X ), ζ ∈ Obj(Y ), with
pX (ξ) = pY (ζ) in Sch/S , and α : f (ξ) → g (ζ) is an arrow in Z such that pZ (α) = id. A morphism

(ξ,ζ,α) (ξ′,ζ′,β)
(φ,ψ)
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is given by a pair (φ,ψ), whereφ : ξ→ ξ′ andψ : ζ→ ζ′, with pX (φ) = pY (ψ), such that the diagram

f (ξ) g (ζ)

f (ξ′) g (ζ′)

α

f (φ) f (ψ)

β

commutes.

Notice that, the concept of CFGs already appears in the place of general framework of descent
theory. So that once we equip some Grothendieck topology on Sch/S , we can talk about descent
data, and the effectiveness of a descent datum.

Definition 9.2.4. A CFG X over S is a stack, if any arrow in the (big) étale site Sch/S,ét is a mor-
phism of effective descent for the CFG X .

A morphism X → Y between stacks over S is a morphism of CFGs, and a fiber product of stacks
is a fiber product of CFGs.

Lemma 9.2.5. If a CFG X is a functor, then it is a stack if and only if it is a sheaf in the étale topology.

Proof: It amounts to prove that it is always possible to glue morphisms and objects along coverings
in the étale site Sch/S,ét. The part for morphisms is trivial, since X is a CFS, hence only identity
morphisms are allowed. For gluing objects, that is to say, for any covering T ′ → T in Sch/S,ét, we
need to verify the following sequence

X (T ) −→X (T ′) âX (T ′×T T ′)

to be exact. This is exactly the sheaf axioms.

Let T be a S-scheme, we have a natural functor Sch/T →Sch/S , which makes Sch/T into a CFG
over S. We simply denote this CFG by T itself. In fact the CFG T is a CFS, it comes from the functor
hT = HomS (−,T ). By previous lemma, the CFG T is a stack. Thus we can embed the category of
S-schemes into the category of stacks over S. This is a more general embedding comparing to the
Yoneda embedding, since the category (Sch/S )∨ of functors forms a full subcategory consisting of
CFSs:

Sch/S (Sch/S )∨ 2-category of S-stacks.

We also have the stacky version of Yoneda Lemma:

Lemma 9.2.6 (Yoneda Lemma). Let X be a S-stack, and T is a S-scheme. The functor

u : HomS (T,X ) −→ X (T )

f 7−→ f (idT )

is an equivalence of categories.
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Proof: Define a functor

v : X (T ) −→ HomS (T,X )

ξ 7−→
{

{g : T ′ → T } 7→ g∗ξ
}

it is easy to check that v is an inverse of u.

9.3 Algebraic stacks

Definition 9.3.1. A morphism f : X → Y of S-stacks is called representable, if for any morphism
T →Y from a S-scheme T to Y , the fiber product X ×Y T is a scheme.

Let P be any property of morphisms of schemes which is stable under any base change. Given a
representable morphism f : X → Y of stacks, we say that f has property P , if for any morphism
T →Y from a S-scheme T to Y , the induced morphism X ×Y T → T of schemes has property P.

Definition 9.3.2. A S-stack X is an algebraic stack, if it satisfies:

(1) The diagonal morphism ∆X : X →X ×S X is representable, quasi-compact and separated;

(2) There is an “atlas” U of X , i.e., an étale surjective morphism U → X from a S-scheme U to
X .

Remark: An algebraic stack in above definition is often called a Deligne-Mumford stack, which is
originated from Deligne and Mumford’s paper [26] on moduli spaces of curves with fixed genus.
If instead, we replace the étale atlas by a smooth atlas, then it is called an Artin stack, which is
introduced in Artin’s paper [21].

The assumption of representable diagonal is quite reasonable, since we have the lemma:

Lemma 9.3.3. The diagonal morphism ∆X of a S-stack X is representable, if and only if any mor-
phism from a scheme to X is representable.

Proof: The “only if” part: Suppose the diagonal∆X is representable, and let f : T →X and g : R →
X be morphisms from S-schemes to X . Observe that we have the diagram

T ×X R X X

T ×S R X ×S X S

idX

∆X pX

f × g pX×S X

where the right square and the big squares are cartesian, hence so as the left square. By the repre-
sentability of ∆X , T ×X R is a scheme.

The “if” part: Suppose that any morphism from a scheme to X is representable. Let ( f , g ) : T →
X ×S X be a morphism from a S-scheme T to the stack X ×S X , which is given by morphisms
f , g : T →X . As we have seen, the diagram

T ×X T X

T ×S T X ×S X

∆X

( f , g )
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is cartesian. It fits into the diagram

X ×X×SX T T ×X T X

T T ×S T X ×S X

∆X

∆T ( f , g )

where all squares are cartesian. Notice that by assumption, T ×X T is a scheme, therefore

X ×X×SX T ' (T ×X T )×T×S T T

is a scheme.

Proposition 9.3.4. The diagonal ∆X of a Deligne-Mumford stack X is unramified.

Proof: Let U →X be an étale atlas of X , and let T →X ×S X be a morphism from a S-scheme T
to X ×S X . Consider the following diagram

(X ×X×SX T )×X U T ×X×SX (U ×S U )

U U ×S U

X X ×S X

X ×X×SX T T

∆U

∆X

where the left, right and bottom squares are cartesian, hence so is the top square. The diagonal
∆U is an immersion, hence the top arrow is also an immersion. The most left and the most right
arrows are étale, therefore the bottom arrow is unramified, i.e., the diagonal∆X is unramified.

Remark: The main difference of an algebraic stack X and a scheme is that objects of X may have
nontrivial automorphisms. This is certainly not the case for schemes, since they are CFSs, where
the only automorphism allowed is the identity. Let ξ ∈ X (T ) be an object over a S-scheme T , by
the definition of stacks, the functor

AutT (ξ) =HomX (T )(ξ,ξ) : Sch/T −→ Set

{ f : T ′ → T } 7−→ AutT ′ ( f ∗ξ)

is a sheaf (in étale topology). Moreover, by Yoneda Lemma, an object ξ ∈ X (T ) determines a
morphism of stacks

ξ : T −→X .

The functor AutT (ξ) is nothing but the fiber product:

AutT (ξ) T

X X ×S X

(ξ,ξ)

∆X
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hence it is a T -group scheme, which is separated, quasi-compact, and unramified over T . In par-
ticular, if T is quasi-compact, then AutT (ξ)(T ) has only finitely many points, that is to say, ξ has
only finitely many automorphisms. The discussion already shows that the moduli space M1 of
curves of genus 1 is not a Deligne-Mumford stack, since a smooth plane cubic over an algebraical-
ly closed field obviously has infinitely many non-trivial automorphisms.

9.4 Examples: Moduli of curves

In this last section, we discuss some examples of algebraic stacks. We principally concentrate on
moduli spaces of curves. We fix a base category Sch/S .

Example 9.4.1 (Schemes). Let T be a S-scheme. We have seen that T is a S-stack. It is obvious-
ly algebraic, since the diagonal is already a morphism of schemes, and we can choose the identity
morphism to be the étale atlas.

Example 9.4.2 (Moduli of n-pointed projective lines). Let M0,n be a functor defined as

M0,n : Schop −→ Set

S 7−→


isomorphism classes of smooth curves
over S with genus 0 geometric fibers,
and n pairwise distinct marked sections.


It defines a CFG M0,n overZ. The CFG M0,n has objects as (n+1)-tuples (C /S,σ1, ...,σn), where C /S
is a smooth curve over S with genus 0 geometric fibers, and σ1, ...,σn are sections

C

S

fσ1 , ...,σn

Morphisms are cartesian diagrams

C ′ C

S S

which is compatible with respective n sections. However, it may not be a CFS, despite we define it as
a moduli functor. The difference is that M0,n(S) is a set of n-pointed genus 0 curves, but modulo iso-
morphisms, so objects of M0,n may have non-trivial automorphisms. For example, when 0 É n É 2,
the CFG M0,n is certainly not a CFS.

To check that M0,n is a stack, we need to verify that any arrow in Schét is a morphism of effective
descent, i.e., we can glue both morphisms and objects in M0,n along the arrow. The case for mor-
phisms is automatically satisfied, according to Corollary 9.1.13.

Let φ : S′ → S be a surjective étale morphism, and (C ′/S′,σ′
1, ...,σ′

n) is a n-pointed genus 0 smooth
curve over S′, with a descent datum θ : p∗

1 C ′ → p∗
2 C ′, also together with gluing conditions for n
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sections σ′
1, ...,σ′

n . It amounts to glue the curve C ′ and n sections σ′
1, ...,σ′

n . Observe that once we
descend C ′ to a genus 0 smooth curve C over S, then gluing sections σ′

1, ...,σ′
n is just a matter of glu-

ing morphismsσ′
i : S′ →C ′, which is automatically satisfied by Corollary 9.1.13. In order to glue the

curve C ′, we consider the invertible sheaf Ω−1
C ′/S′ , it is very ample over any fiber, hence it is relatively

very ample 7. Therefore we can embed C ′ canonically into the projective bundle P( f∗Ω−1
C ′/S′ ), i.e., C ′

S′
is projective. A descent data of C ′ naturally induces a descent data of the relatively very ample sheaf
Ω−1

C ′/S′ , hence by Theorem 9.1.15, the smooth projective curve C ′/S′ descends to a curve C /S. Thus
we have proved that M0,n is a stack.

Next natural question is if M0,n is algebraic, i.e., Deligne-Mumford. By Lemma 9.3.3, the condition
that the diagonal is representable, is equivalent to the following condition: let C1,C2 ∈ M0,n(S) be
two curves over S, then the functor HomM0,n (S)(C1,C2) is representable. This is simply because we
have the cartesian diagram:

HomM0,n (S)(C1,C2) S

M0,n M0,n ×M0,n

(C1 ,C2)

∆M0,n

Since C1,C2 are projective curves, the representability of HomM0,n (S)(C1,C2) is a consequence of the
representability of Hilbert schemes 8.

It remains to show (or disprove) the existence of an étale atlas for the moduli stack M0,n . For
0 É n É 2, the stack M0,n is not Deligne-Mumford, since a projective line over an infinite field with
at most two distinct marked points obviously has infinitely many non-trivial automorphisms. In
fact, the rest of them are represented by schemes.

In the case n = 3, M0,3 is simply represented by M0,3 = Spec (Z), with the universal family

P1
Z

Spec (Z)

0,1,∞

In the case n = 4, the moduli stack M0,4 is represented by the scheme:

M0,4 =P1
Z

∖
{0,1,∞},

with the universal family

M0,4 ×P1
Z

M0,4

σuniv
1 , ...,σuniv

4

where σuniv
1 ,σuniv

2 ,σuniv
3 are constant sections 0,1,∞, and σuniv

4 is the diagonal morphism ∆M0,4 .

In the case n Ê 4, the moduli stack M0,n is represented by the scheme:

M0,n = M0,4 × ...×M0,4
∖

{ diagonals }, (n −3 factors)

7cf. EGA IV3 [4] Corollaire 9.6.4
8cf. Nitsure [7] Theorem 5.23
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and the universal family is given by

M0,n ×P1
Z

M0,n

σuniv
1 , ...,σuniv

n

where σuniv
1 ,σuniv

2 ,σuniv
3 are constant sections 0,1,∞, and σuniv

k for 4 É k É n is the diagonal mor-
phism with respect to the (k −3)-th factor.

Example 9.4.3 (Moduli of elliptic curves). Let M1,1 be a functor defined as

M1,1 : Schop −→ Set

S 7−→
{

isomorphism classes of
elliptic curves over S.

}
It defines a CFG M1,1 over Z, whose objects are elliptic curves over a base scheme, and morphisms
are cartesian diagrams compatible with the zero section. As we proved, that for any elliptic curve
f : E → S, locally we can always find its generalized Weierstrass equation, so elliptic curves are pro-
jective. The relatively very ample sheaf is OE (3e), and E/S can be canonically embedded into the
projective bundle P( f∗OE (3e)). So by almost the same argument as we showed in previous example,
the CFG M1,1 is a stack.

Recall that we defined some universal elliptic curves, namely, the universal Weierstrass families
E( 1

6 )/R0,E1
( 1

6 )
/R1, the universal Legendre family E( 1

2 )/R2 and the universal family E( 1
3 )/R3 of naïve

level 3. There are solutions for certain moduli problems. We claim that the universal Legendre
family together with the universal family of naïve level 3, provide an étale atlas for M1,1. By Yoneda
Lemma, these two families give two morphisms

Spec (R2) −→M1,1, Spec (R3) −→M1,1,

where the induced morphisms

Spec (R2) −→M1,1 ⊗Z
[1

2

]
, Spec (R3) −→M1,1 ⊗Z

[1

3

]
are surjective. Hence

Spec (R2)
∐

Spec (R3) −→M1,1

is surjective. Since both the Legendre moduli problem and the moduli problem of naïve level 3 are
étale, this is indeed an étale atlas.

Example 9.4.4 (General case of moduli of curves). Let Mg ,n be the moduli CFG of smooth curves
of genus g with n distinct marked points, and suppose g Ê 2. Let f : C → S be a smooth curve
with genus 2 geometric fibers. In this case, the invertible sheaf Ω⊗3

C /S is relatively very ample 9, hence
C /S is projective. Using the same argument, Mg ,n is a stack over Sch. In fact they are all Deligne-
Mumford, see Arbarello-Cornalba-Griffiths [9] Theorem 8.3.

9cf. Delinge-Mumford [26] Theorem 1.2.
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[19] K. ČESNAVIČIUS. A modular description of X0(n). preprint 1511.07475.

[20] M. ARTIN. Algebraic Spaces. Yale Mathematical Monographs. 3. New Haven-London: Yale
University Press. VII,39 p., 1971.

[21] M. ARTIN. Versal deformations and algebraic stacks. Invent. Math., 27:165–189, 1974.

[22] M. DEMAZURE, P. GABRIEL. Groupes algébriques. Tome I: Géométrie algébrique. Généralités.
Groupes commutatifs. Avec un appendice ’Corps de classes local’ par Michiel Hazewinkel.
Paris: Masson et Cie, Éditeur; Amsterdam: North-Holland Publishing Company. xxvi, 700 p.,
1970.

[23] N. M. KATZ. Serre-Tate local moduli. Surfaces Algebriques, Séminaire de Géométrie Al-
gébrique, Orsay 1976-78, Lect. Notes Math. 868, 138-202, 1981.

[24] N. M. KATZ, B. MAZUR. Arithmetic Moduli of Elliptic Curves. Annals of Mathematics Studies,
108. Princeton, New Jersey: Princeton University Press. XIV, 514 p., 1985.

[25] P. DELIGNE. Courbes elliptiques: formulaire d’après J. Tate. In Modular Functions of One
Variable. IV. Proceedings of the International Summer School, University of Antwerp, RUCA,
July 17 - August 3, 1972, pages 53–73. Berlin: Springer, 1975.

[26] P. DELIGNE, D. MUMFORD. The irreducibility of the space of curves of a given genus. Publ.
Math., Inst. Hautes Étud. Sci., 36:75–109, 1969.

[27] P. DELIGNE, M. RAPOPORT. Les schemas de modules de courbes elliptiques. Modular Func-
tions of one Variable II, Proc. internat. Summer School, Univ. Antwerp 1972, Lect. Notes
Math. 349, 143-316, 1973.

[28] Q. LIU. Algebraic Geometry and Arithmetic Curves. Transl. by REINIE ERNÉ. Oxford: Oxford
University Press, 2006.

[29] R. HARTSHORNE. Algebraic Geometry. Graduate Texts in Mathematics, 52. New York-
Heidelberg-Berlin: Springer-Verlag. XVI, 496 p., 1983.

[30] S. BOSCH, W. LÜTKEBOHMERT, M. RAYNAUD. Néron Models. Berlin etc.: Springer-Verlag,
1990.

[31] S. LANG. Cyclotomic fields. I and II. With an appendix by Karl Rubin: The main conjecture.
New York etc.: Springer-Verlag, combined 2nd edition, 1990.

[32] T. ODA. The first De Rham cohomology group and Dieudonne modules. Ann. Sci. Éc. Norm.
Supér. (4), 2:63–135, 1969.

[33] T. SAITO. Fermat’s Last Theorem. The Proof. Translated from the Japanese by Masato Kuwata.
Providence, RI: American Mathematical Society (AMS), 2014.

162

http://www.math.uzh.ch/index.php?pr_vo_det&key1=1287&key2=580&no_cache=1
http://arxiv.org/abs/1511.07475


MASTER THESIS, YULIANG HUANG

[34] V. G. DRINFEL’D. Coverings of p-adic symmetric regions. Funct. Anal. Appl., 10:107–115,
1976.

[35] V. G. DRINFEL’D. Elliptic modules. Math. USSR, Sb., 23:561–592, 1976.

[36] W. C. WATERHOUSE. Introduction to Affine Group Schemes. Graduate Texts in Mathematics.
66. New York, Heidelberg, Berlin: Springer-Verlag. XI, 164 p., 1979.

[37] Y.-L. HUANG. A “standard reduction” argument. link, 2016.

163

https://www.dropbox.com/s/y3t0x8yu8vswxrm/A%20%60%60standard%20reduction%27%27%20argument%20%5BY.-L.%20Huang%5D.pdf?dl=0


MASTER THESIS, YULIANG HUANG

164



Index

(a,b)-subgroup scheme, 87
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d-th infinitesimal neighborhood of the diago-

nal, 85

Abel’s Theorem, 111
algebraic space, 140
Amitsur complex, 142
Axiomatic Isomorphism Theorem, 60
Axiomatic Regularity Theorem, 49

Backing-Up Theorem, 67

Cartier pairing, 129
category fibered in groupoids, 153
category fibered in sets, 153
category of descent data, 142
Crossings Theorem, 80
cusp, 7
cyclic group scheme, 8
cyclic in standard order, 66, 69
cyclic subgroup scheme, 8

(a,b)-, 87
standard, 64

descent datum, 142
determinant, 58
Drinfeld basis, 35
Drinfeld’s Strictness Lemma, 121

effective Cartier divisor, 103
elliptic curve (over general base), 111
exact order N , 8

full set of sections, 20

generalized Weierstrass equation, 115
generator, 8

homogeneity principle, 48

Igusa moduli stack, 74
exotic, 77
ordinary, 75

isogeny, 121
(a,b)-, 85, 88
(a,b)-cyclic, 88
dual, 122

level P structure, 41
Γ(N )-, 35
Γ0(N )-, 36
Γ1(N )-, 36
Γbal

1 (N )-, 36
Igusa, 74

exotic, 77
universal, 42

modular curve, 47
Y (N ), 47
Y0(N ), 47
Y1(N ), 47
Y bal

1 (N ), 47
modular curve (over C), 7
modular group, 7
moduli problem, 41

algebraic, 42
Igusa, see Igusa moduli stack
relatively representable, 43
representable, 42
rigid, 43
simultaneous, 44

moduli space
coarse, 139
fine, 139
of n-pointed projective lines, 157
of curves of genus Ê 2, 159
of elliptic curves, 159

morphism of descent, 141
effective, 142

normalized cocycle, 128
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representable morphism of stacks, 155

scheme of generators, 59
Serre-Tate parameter, 137
Serre-Tate Theorem, 132

for elliptic curves, 134
sheaf of invariant differentials, 112
stack, 154

algebraic, 155
Artin, 155
Deligne-Mumford, 155

standard factorization, 65
Standard Order Criterion, 68
supersingular point, 79

Tate curve, 134
trace (of an isogeny), 126

universal family, 42
Legendre, 118
of naïve level 3, 119
Weierstrass, 116

normalized, 117

Weil pairing, 130, 135

Yoneda Lemma (stacky version), 154
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