$\begin{array}{c} {\rm Lundi\ 12\ octobre\ 2009} \\ {\rm Groupes\ I} \end{array}$

Exercice 1 Soit G un groupe. Montrez les propriétés suivantes :

- (1) L'application d'inversion $g \mapsto g^{-1}$ est un morphisme si et seulement si G est abélien.
- (2) L'application d'élévation au carré $g\mapsto g^2$ est un morphisme si et seulement si G est abélien.
- (3) Si pour tout $g \in G$ on a $g^2 = e$ (on dit alors que G est d'exposant 2), alors G est abélien. La réciproque est-elle vraie ?

Exercice 2 On rappelle qu'un groupe est dit *monogène* s'il peut être engendré par un seul élément.

- (1) Donnez un exemple de groupe monogène.
- (2) Montrez que le groupe $G = \mathbb{Z} \times \mathbb{Z}$ n'est pas monogène.
- (3) Calculez le sous-groupe de \mathbb{Z} engendré par deux entiers relatifs m, n donnés.
- (4) Montrez que l'ordre de k dans $\mathbb{Z}/n\mathbb{Z}$ est $n/\operatorname{pgcd}(k,n)$.

Exercice 3 Soit $n \ge 1$ un entier. On note $\varphi(n)$ le nombre d'entiers $1 \le k \le n$ premiers avec n. La fonction $\varphi : \mathbb{N}^* \to \mathbb{N}$ est appelée fonction indicatrice d'Euler.

- (1) Pour tout nombre premier p et tout entier $r \geq 1$, calculez $\varphi(p^r)$.
- (2) Énoncez le théorème des restes chinois. Déduisez-en que si m et n sont des entiers premiers entre eux, on a $\varphi(mn) = \varphi(m)\varphi(n)$. Déduisez-en une formule pour $\varphi(n)$ en général.
- (3) Montrer que pour tout entier relatif non nul $a \in \mathbb{Z}$, premier avec n, on a $a^{\varphi(n)} \equiv 1$ (n).
- (4) Soit p un nombre premier et $a \in \mathbb{Z}$. Montrer qu'on a $a^p \equiv a(p)$.

Exercice 4 Montrez que le groupe des bijections S_X d'un ensemble X possédant au moins 3 éléments n'est pas abélien.