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This is a translation from the German of the book Cartiertheorie kommutativer formaler
Gruppen by Thomas Zink, printed in 1984 as volume 68 of the “"Teubner-Texte zur Mathe-
matik” of Teubner Publishing Company, Leipzig.

The translation was done by Marco Garuti, Michaél Le Barbier Griinewald, Cédric Pépin,
and Matthieu Romagny.

The original numbering of chapters, sections and theorems was preserved and a little
homogenized. As a general rule, theorems, definitions, remarks (etc.) are given a number
of the form z.y and equations are given a number of the form (x.y.z), where z is the chapter
number and y is the running number inside a chapter. A small number of exceptions have
been tolerated in order to maintain the correspondence with the numbering of the original
german text. All equation numbers are displayed in brackets — a rule which in principle
has no exception, this time. Each important new term is emphasized the first time it appears
(usually, in a definition in due form). The page numbers of the original text are indicated in
the margins.



The theory of commutative formal groups plays an important role in algebraic number
theory and algebraic geometry over a field of characteristic p. The french mathematician
P. Cartier found a new approach to this theory which is simpler and more general than
others and which has interesting applications to abelian varieties.

This book is for students and mathematicians interested in algebraic geometry or num-
ber theory and familiar with commutative algebra. It gives a new presentation of the the-
ory based on concepts of deformation theory. Besides the so-called main theorems of the
theory, it contains basic facts on isogenies, deformations of p-divisible formal groups and
Dieudonné’s classification.






Preface

This book has its origin in lectures that I gave during the academic year 1979/1980 at the
Humboldt Universitat of Berlin. M. H. Reimann elaborated on these lectures and improved
a couple of proofs. I rested on his preparatory work in order to complete the manuscript.

The book assumes that the reader has a basic knowledge in Commutative Algebra, as
one can find in the books [2], [[11], [21].

The first chapter is an introduction to the theory of formal groups from an elementary
point of view. It is intended in the first place to readers that never had a contact with for-
mal groups. In the second chapter, the technical rudiments of the functorial language are
presented. The reader can skip it in a first reading, and look up the relevant definitions
when the need appears. This is especially true if he or she is familiar with the contents of
the work [20]. The core of the book is composed of Chapters III and IV, that contain all the
basic results of Cartier theory. In Chapter V it is shown that formal groups over a base ring
of characteristic p are classified up to isogeny by their V-divided Cartier module. In the last
paragraph, we compute the universal deformation of a p-divisible formal group. Finally
Chapter VI contains the classification of V-divided Cartier modules over an algebraically
closed field of characteristic p.

Berlin, March 1984 Thomas Zink
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Chapter I

Formal group laws

In the theory of formal groups, one can choose the point of view of formal power series
or the point of view of bigebras and functors. In this book, we will choose the latter. It is
closer in spirit to Grothendieck’s methods of algebraic geometry. The purpose of the present
chapter is to provide a glimpse into what is both the first and the older point of view. It is
therefore independent from the rest of the text, up to a few details.

§ 1 Definition of formal group laws

In the sequel, we denote by K a commutative ring with unit. We let K[[X7,..., X,]]|
denote the ring of power series in n indeterminates over K. We use the short notations
X =(X1,...,Xy) and K[[X]] = K[[X1,..., X,]].

1.1. Definition: A formal group law of dimension n over K is an n-tuple of power series
G=(Gy,...,Gp),G; € K[[X1,...,X,,Y1,...,Y,]] = K[[X,Y]] such that

1) Gi(X,0) = Gi(0,X) = X;,
2) Gi(G(X,Y), Z) = Gi(X,G(Y, Z)).

A formal group law is called commutative when moreover
3) Gi(X,Y) = Gi(Y, X).

We call K[[X]] the coordinate ring of G.

1.2. Examples:

1) Let G, be the one-dimensional formal group law G,(X,Y) = X+Y. We call G, simply
the additive group. More generally, one can define the n-dimensional additive group:

Ga(X,Y) = (X1 +Y11,..., X, +Y0).

2) Let Gy, be the one-dimensional formal group law
GuX,Y)=X+Y+XY=(1+X)1+Y)—1.

We call G,,, the multiplicative group.
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10 CHAPTER 1. FORMAL GROUP LAWS

3) One obtains an example of a non-commutative formal group law by considering the
formal analogue of the full linear group. Let X; j, ¢,j = 1,...,n be indeterminates. We
define a formal group law G = (G, ;) of dimension n? by means of the matrix identity

1+ (Gij) = (1 + (X)) (L + (Yig))-
In this equality, the symbol 1 stands for the unit matrix.

4) Let D be a finite-dimensional algebra over K, that may not contain a unit element. We
assume that D is free as a K-module. Let ey, ..., e, be a basis of this module. If we
add formally a unit element, in D ® ¢ K[[X, Y]] we have an equality

n n n
(1 + Z Xiei> (1 + Z Yiei> =1+ Z (Xk + Y, + Z c%XﬂG) k-
im1 i—1 k=1 ,J

Thereby appear some constants cﬁ ; € K that define the multiplicative structure of the
K-algebra D. It follows that the power series G(X,Y) = X + Y;, + Z” cﬁinYj,

k =1,...,n define a formal group law. We call this the multiplicative formal group law
GmD of D.
1.3. Conventions on power series: Leti = (i1,...,4,) € N" be a vector of natural integers

(including 0). We set ' ‘ ,
X=X X

The degree of the monomial iﬂ li| = > 4., ik Any f € K[[X]] can be written

f:ZaQXZ, CLE'GK.

ieNn
When a; =0 f01E| li| < r, we shall write f =0 mod degr. From Axiom 1) follows that
Gi(X,Y)=X;+Y; mod deg2.

Let (X) be the ideal of K[[X]] generated by Xj, ..., X,,. Its powers (X)" define a topology
on K[[X]] for which K[[X]] is complete and separated. The graded ring associated to the
filtration (X)" on K[[X]] is the ring of polynomials

K[Xy, ..., X,] = K[X] = gr K[[X]] = % ()N /(X))

This isomorphism identifies the set of homogeneous polynomials of degree N with
g’ K[[X]] = (X)"/ ()"

The K-algebra K[[X]] is endowed with an augmentation, that is to say a K-algebra ho-
momorphism ¢ : K[[X]] — K. This maps any power series f to its constant term f(0).

't is written i instead of |i| in the original text.
Mt is written 4 < r instead of |i| < r in the original text.
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A homomorphism of augmented K-algebras ¢ : K[[Y]] — K[[X]] is a homomorphism of K-
algebras such that (p(f)) = e(f) for all f. This is equivalent to the requirement that
©((Y)) C (X). In this case, we speak simply of a morphism. It is obvious that the datum of a
morphism ¢ is equivalent to the datum of power series p(Y;) = ¢;(X1,...,Xy), i =1,...,m
such that ¢;(0) = 0. Let ¢’ : K[[Y']] = K|[[X']] be a second morphism. Then we define
ey K[[Y, Y]] = K[[X, X']| by ¢ @ ¢'(V;) = ¢(Yi) and ¢ ® ¢'(Y]) = ¢'(Y).

1.4. Lemma: A morphism ¢ : K[[Y1,...,Y,]] = K[[X1,...,X,]] is an isomorphism if and
only if the Jacobi matrix (0y;/0X;)(0) € M, (K) is invertible.

Proof: The morphism ¢ induces a homomorphism gr¢ : K[Y1,...,Y,] = K[Xyq,...,X,]. It
is well-known and easy (see [2] Chap. III § 8) that ¢ is an isomorphism if and only if gr ¢ is

an isomorphism. From
n

gro(Yi) =) (09i/0X;)(0).X;,

Jj=1

the claim follows.

1.5. Corollary: Let G be a formal group law. Then, there is a uniquely determined n-tuple
of power series (X)) = (¢Y1(X), ..., ¥n(X)) with

(1.5.1) Gi(X, (X)) =0, i=1,...,n.

Proof: Let o : K[[X,Y]] — KJ[[X,Y]] be the morphism defined by «(X;) = X; and o(Y;) =
Gi(X,Y). From we get that a is an isomorphism. The inverse mapping has the form
Xi— X;and Y; — ¢o(X,Y). Let us write p(X,Y) = (p1(X,Y),...,on(X,Y)). Then, we
have

Gi(X, p(X,Y)) = Vi

and this equality together with ¢(0) = 0 determines ¢ uniquely. It is visible that ¢(X) =
(X, 0) is the sought-for n-tuple of power series. It is unique, because for any solution ¢’ to

(1.5.1) we have
Gi(X,G(Y(X),Y)) = Gi(G(X,¢'(X)),Y) = Gi(0,Y) = Y;
and from the uniqueness of ¢ follows that (X, Y ) = G(¢'(X),Y). Thus we find that ¢’ = .

1.6. Remark: Let .4 be a nilpotent commutative K-algebra, which means that there exists a
natural number r € N such that any product of  elements of .4 equals 0, that is 4" = 0.
Let .+ (™ be the direct sum of n copies of 4. Whena = (ay,...,a,) € N (") is a vector and
f € K|[[X]] is a power series, the element f(a) € .#" has an obvious meaning. Let G be a
formal group law. We define an operation on .4 (") by

a+¢b=Gla,b).

Axioms|l.1jand Corollary imply that 4 defines a group structure on .4 (),
Let G be a formal group law. The datum of the power series (G1,...,G5,) is equivalent
to that of a morphism

3This is “From 1.3” in the original text.
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(1.7) pe KX, .., X)) — K[[X1, ..., Xo, Y1, ..., Yol

We can express the axioms in[1.1jconcerning series in the form of commutative diagrams:

(1.7.1) K[[X]] —— K[[X,Y]]

(1.7.2) ,{

(1.7.3) x J

Here c is the morphism exchanging X and Y.

1.8. Definition: Let G and H be formal group laws of respective dimensions n and m. A
morphism ¢ : G — H is a vector of power series

e(X) = (p1(X1, -, Xn), oo om(Xa, oo X))
such that ¢(0) = 0 and
(1.8.1) P(G(X, X)) = H(p(X), o(X)).
The power series ¢1, . .., ¢, define a morphism
" K[[Y1,.... Y]] — K[[X1,..., X,]]
Yi— 5.

We call this the comorphism of . The relation (1.8.1) may again be expressed in terms of a
commutative diagram:
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K[Y] ——— K[[X]]
(1.8.2) ) J‘L
K[y, Y] —222 KX, X'

Here the morphisms v and p correspond to the formal group laws G and H in the sense

of (1.7).

1.9. Example: The most popular example of an isomorphism of formal group lawsﬁ over a
Q-algebra K (i.e. Q C K)is

u: Gy — Gy, u(X):ZX”/n!:epr—l.

n=1

Let D1 — D3 be a homomorphism of K-algebras that are free as K-modules. Lete,..., e,
and f1,..., fi, be K-bases for Dy and Ds. Let Zj a; ; f; be the image of ¢;. Then, the m-tuple
of power series ¢; = > " | a; ;X; defines a morphism of formal group laws G, D1 — G Ds.

1.10. Letvy : H — F be a morphism of formal group laws. We define the composition
with ¢:
o p(X) = ¥(p(X)).

For the comorphisms, we have () o ¢)* = ¢* o ¢*.
Let G and H be formal group laws of dimensions n and m as above. The direct product
of G and H is a formal group law of dimension n + m:

(Gx H)(X,Y, X' Y= (G(X,X),HY,Y").

According to (1.7), it corresponds to the morphism ¢ ® v : K[[X,Y]] - K[X,Y, X' Y']].
The diagonal G — G x G is defined by the power series (X1,..., X, X1,...,X,). Itisa
morphism. When G is commutative, it is an easy exercise to see that G(X,Y) defines a
morphism G x G — G and ¢ from [1.5defines a morphism G — G. If o« : G — G’ and
p : H — H' are two morphisms, then one defines in an obvious fashion the morphism
axf:Gx H— G x H' Its comorphism is o* @ 3*.

1.11. Base change: Let K’ be a K-algebra, also assumed to be commutative and having a
unit element. Let G be a formal group law over K. The images of the G; under the mapping
K[[X,Y]] = K'[[X,Y]] are denoted Gk ;. Itis clear that Gx» = (Gk' 1,...,GKkr ) is a formal
group law over K'. We say that G- is obtained by base change from G. It is visible that the
mapping G — G- is a functor. By base change from G, and G,,,, one obtains again G, and
Gm but as formal group laws over K'. If we want to emphasize that we are considering G,
and G, over K, then we shall write G, x and G, k. One sees easily, with the notations of

[L.24f] that we have (G D) = G (D @ K').

4This is “formal groups” in the original text.
5This is (1.2.4) in the original text.
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§ 2 Derivations
1.12. Definition: A K-derivation D : K[[X]] — K[[X]] is a K-linear mapping such that
(1.12.1) D(fg) = fDg+gDf, for f,ge K[[X]].

Obviously D(X)V c (X)V~! holds. Therefore D is continuous in the topology of K[[X]].
From|1.12.1]and continuity it follows that

(1.13) Df =Y, (9f/0X)DX;.

The derivations form a K[[X]]-module. Equality (1.13) means that it is free and that the
partial derivatives f — (0f/0X;) constitute a basis.
Let G be a formal group law and p : K[[Z]] — K[[X, Y]] the comorphism attached to it

by (L.7).

1.14. Definition: A derivation D is called invariant when the following diagram is commu-
tative:

K[[Z]] —P— K[[Z]

‘| »

KX, Y] 25 K[[X,Y]).

According to (1.13), the derivation D may be written in the form D = )", u;(Z)(0/0%;). The
commutativity of the diagram in for the function Z; means, when written in full:

(1.14.1) > ui(Y)(0Gi/9Y;) = wi(G(X,Y)).
J
The invariant derivations form a K-module.

1.15. Theorem: The mapping D — (u;(0),...,uy,(0)) is an isomorphism of the K-module
of invariant derivations with K.

Proof: First, the mapping is injective, since from u;(0) = 0 and (1.14.1) it follows that
u;(G(X,0)) = u;(X) = 0. One finds solutions to (1.14.1) by differentiating the associativity
law

Gi(G(X,Y), 2)) = Gi(X, G(Y, Z)).

If D, ), denotes the partial derivative with respect to the k-th indeterminate from the second
series of variables, we have

0G;

i 0G
(G(X,Y),2) = DoyGi*
k

07

Y, Z).

Setting Z = 0 in this equality, one finds, with v; ;(Y') = (0G;/0Z;)(Y, Z)y—o:

0G;

(1.15.1) u; j(G(X,Y)) = 4 oY,

¥).
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For fixed j, we have found a solution to the system of equations (1.14.1). The surjectivity of
the mapping follows, since from[1.11) we have

u; 5(0) = (0G;/0Z})y=z=0 = di ;-

1.16. Remark: Let (J; ;) = J be the matrix (0G;/0Y};). Then with obvious notations, one
can write Equality (1.15.1) in matrix form:

(1.16.1) U(G) = JU(Y).

The matrix U(Y) is invertible since det U(0) = 1. Indeed, we have detU(Y) = 1 — f(Y),
f(0) = 0and (detU(Y))™* = >, f(Y)’. One can deduce from this an expression for the
partial derivatives (0/0X;) in terms of the invariant derivations D; = )", u j(0/0X}).
Thus the D;, j = 1,...,n, form a basis of the free K[[X|]-module of derivations Der K[[.X]].

[uny
[uy

§ 3 The module of differential forms

=
N

1.17. Definition: Let Q}f[[ x) be the free K [X]]-module with basis d X7, . .., dX,. Its elements
are called differential forms.

One has a K-linear map d : K[ X]] — Q}([[&H’ df = > (0f/0X;)dX;, f € K[X]]. It
satisfies:
d(fg) = gdf + fdg.

Let o : K[[X]] — K][[Z]] be a morphism and «(X;) = pi(Z1,...,2Zmn), i = 1,...,n. Then «
induces a mapping

. 1 1
e Qe = Qg

ae (32 ai(X)dXi) =3 ai(p(Z))dpi(Z).

It is characterized by the following properties:

ao(fw) = a(flae(w),  au(df) =da(f),  feK[X]], we Uy

When « is the comorphism of a morphism of formal group laws ¢ : G; — G2, we write p*w
for aew.
Let G be a formal group law.

1.18. Definition: A differential form w = ) a;(X)dX; € Q%([[X]] is called invariant with
respect to G when

0Gi (X, v) = a;(¥).

(1.18.1) > ai(GXY)) 5
J

Let D = > ui(X)(0/0X;) € Der K[[X]] be a derivation. Then one defines a bilinear form

(D,w) =3 u;a;:
() Der K[[X]] x Qqxy = K[[X]]-
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It is characterized by the equality:

(D, gdf) = gDf, fr9 € K[[X]].

1.19. Theorem: The mapping w = > a;dX; — (a1(0),...,a,(0)) is an isomorphism of
the K-module of invariant differential forms with K". When w and D are invariant, then
(D,w) € K. One obtains in this way a perfect pairing between the K-module of invariant
derivations and that of invariant differential forms. If w is an arbitrary differential form such
that (D,w) € K for all invariant derivations D, then w is invariant.

Proof: Let a be the row vector of the a;. Then the condition of invariance may be written, in
matrix form:

(1.19.1) a(G)J = a(Y).

Since the matrix U is invertible, it follows from (1.16.1) that U=}(Y) = U~Y(G)J. Thus
the row vectors of U~!(X) = (a; ;) are solutions of (1.18.1). We obtain invariant differential
formsw; = 3, a;;dX;. If Dy =3, u;(0/0X;) denotes the basis of the module of invariant
derivations constructed before, it follows that

(Dy,wi) = 0.

Since by the Dy, generate the K[[X]]-module Der K[[X]], a differential form w vanishes
if and only if (Dy,w) = 0 for k = 1,...,n. Let w be an arbitrary differential form, so that
(Dj,w) =¢; € K fori =1,...,n. Then the following holds:

(Dj,w) = (Ds, Y ciws).
Consequently w = Y ¢;w; is invariant. Q.E.D.

1.20. Exercise: Let G be a commutative formal group law and y the morphism associated
to it as in (1.7). Consider moreover the morphisms pi, p2 : K[[Z]] — K[[X, Y]], p1(Z;) = X;
and p2(Z;) = Y;. Show that a differential form w is invariant if and only if

(1.20.1) Lo = PleW + P2eW.

§ 4 Tangent space and curves

1.21. Definition: A curve is an n-tuple of power series ¥(T') = (W (1), ..., w(T)), (1) €
KI[T1], 7:(0) = 0.

One can conceive a curve as a homomorphism K[[X]] — K[[T]] such that X; — ~;(T).
1.22. Definition: The tangent space of K[[X]] is the K-module

Homg ((X)/(X)?, K).
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If G is a formal group law with coordinate ring K[[.X]]|, we also call it the tangent space of G
and denote it by ¢ or Lie G.

The tangent space has several interpretations. First, to each tangent vector
t € Homg ((X)/(X)*, K)

corresponds a homomorphism K[[X]] — K[[T]]/(T)?, X; — t(X;)T. Conversely, any such
homomorphism defines a tangent vector.

Any derivation D defines a homomorphism K[[X]] — K[[T]]/(T)?, f — f(0)+Df(0)-T
and hence a tangent vector. According to this mapping defines an isomorphism of the
K-module of invariant derivations with the tangent space.

The tangent vector to a curve y : K[[X]] — K[[T]] can be defined like this:

K[[X]] == k[[T]] — K[T7]/(T)*.
A morphism « : K[[X]] — K[[Y]] induces a mapping of tangent spaces
o : Hom (Y)/(Y)?) — Hom ((X)/(X)?, K).

When «o(X;) = p;i(Y), one can represent a® by the matrix (0p;/0Y;)|y—o. By a is an
isomorphism if a® is so. If v : K[[Y]] — K]|[T]] is a curve and ¢ is the tangent vector to this
curve, then ot is the tangent vector to the curve a*y = (p;(y(T"))). Let a be the comorphism
of a morphism of formal group laws ¢. Then we denote o* also by the symbol Lie .

1.23. Theorem: Let K be a Q-algebra. Then for any derivation D : K[[X]] — K[[X]], there
exists a unique curve (7") such that for all f € K[[X]] we have

of(v(1)) _
—or Df(v(T)).

The curve 7 is called the integral curve of D.

Proof: It is clear that it suffices to check the required equality for the functions f = X;. Let
DX; = u;(X). We obtain the following system of differential equalities.

0i(T)

(1.24) o7

=u;(y(T)), i=1,...,n.

It is enough to prove the following.

1.25. Lemma: Let K be a Q-algebra. Letu,...,u, € K[[X]]be powerseriesand ay,...,a, €
K. Then there exist unique power series 71 (Y =,...,7,(T) € KJ[[T]] such that ~;(0) = a;
and the equalities (1.14) are satisfied.

Proof: We show by induction on r that there exist unique polynomials 'yi(r)
such that 7\"”)(0) = a; and

)

(T') of degree r

3%‘” (T)

— i (A7) (r) r
5T wi(y; (1), ...,vy(T)) mod T".

n
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For r = 0, the statement is trivial. Let us write fy-(rH)(T) = v(r) (T) + ¢T" . Since

% 7

ui (7)) = ui(y") mod T+, we can find ¢; from the equality

ar

(r+1)T" = + ui(fy(r)) mod 77+,

§ 5 The Q-theorem

1.26. Theorem: Let G be a formal group law over a Q-algebra K. Let D be an invariant
derivation. Then, the integral curve v(7") of D defines a morphism

G, — G.

Conversely, for any homomorphism v : G, — G there exists a unique invariant derivation D
for which the integral curve is v.

Proof: The curve vy defines a morphism if and only if the following equality is fulfilled:
(1.26.1) T +8) = G(y(T),~(5))-

We consider, over the ring K[[T]], the system of differential equations:

(1.26.2) aOgés ) wi(a(s).

Here, we let u; = DX; and «(0) = (a1(0),...,0,(0)) = v(T). By the unicity statement in

it is enough to show that both sides of (1.26.1) are solutions of the system (1.26.2). For
a(S) = (T + S) this is clear. On the other side, we find:

9G;(v(T),~(5))
oS

The first equality holds because 7 is an integral curve and the second holds by (1.14.1).
Conversely, any curve -y defines a derivation D:

f(G(X,~(T)))
or

= > w(3(8) D2 Gi(4(T),7(S)) = wi(G((T),7(S))).

Df =

|7=0-

From the law of associativity follows that D is invariant:

f(G(X, G, ~(T))))
or

If(G(G(X,Y),~(T)))

(1®D)uf = 57

l7—0 = pDf.

l7—0 =

If v defines a morphism, then + is an integral curve of D:

of(v(T))  df(y(T + S))‘ _ Af(G(y(T),~(5)))
or a8 5=0 = a8

ls=0 = Df(y(T)).
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This proves the theorem.

1.27. Q-Theorem: Every commutative formal group lawHG over a Q-algebra is isomorphic
to GJ.

Proof: Let D1, ..., D, be a basis of the K-module of invariant derivations of G. Let vy, ..., 7,
be the integral curves of these derivations. Since G is commutative, we obtain a homomor-
phism
n
Z vi: Gy — G.
i=1

It induces an isomorphism on the tangent spaces.
For invariant differential forms, we have a fact which is dual to[1.26

1.28. Theorem: Let w be an invariant differential form for a commutative formal group
law G over a Q-algebra K. Then, there exists a unique morphism ¢ : G — G, such that
w = ¢*dT, where K[[T]] stands for the coordinate ring of G,.

Proof: Let f € K[[X]] be a power series defining the morphism . Then, we have:
(1.28.1) fGX,Y)) = f(X)+ f(Y), [f(0)=0.

The equality w = ¥*dT means that w = df.
Assuming that an f exists such that w = df and f(0) = 0, from the invariance of w it

follows using that
(1.282) A (G(X,Y)) = df(X) + df (V).

One verifies easily that over a Q-algebra K, a power series does not depend on X; when
the partial derivative with respect to X; vanishes. This implies that the second of the above
equalities implies the first.

In order to see that the equation w = df has a solution, one can restrict oneself to the case
G = GJ. Then any invariant differential has the form ) a;dX; where a; € K. The claim
follows.

§ 6 Differential operators

Let X = (X1,...,X,) and Z = (Z,...,Z,). We consider a continuous K-linear map-
ping D : K[[X]] — K[[X]]. A power series f € K[[X, Z]| may be written uniquely in the
form > p;(X)Z* where p;(X) € K[[X]]. We define a K-linear mapping

(1.29) Lp: K[X, Z]] — K[[X]]
S pi(X)ZE—— " pi(X)DXE

SThis is “formal group” in the original text.
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The last sum makes sense since D is continuous. Obviously Lp is continuous and K-
linear.
Let J C K[[X, Z]] be the ideal generated by the X; — Z;.

1.30. Definition: A K-linear continuous mapping D : K[[X]] — K[[X]] is called a differential
operator of order N when Lp(JN*1) = 0.

1.31. Remark: A differential operator of order 0 is K-linear. Indeed,

D(f(X)g(X)) = Lp(f(2)9(2)) = Lp(f(X)g(2)) = f(X)Dg(X).

The middle equality holds since f(Z) — f(X) € J and Lp(J) = 0. In particular, Df(X) =
f(X) - D1 holds. The differential operator D is therefore the multiplication by the function
D1. We will occasionnally consider a power series h € K|[[X]] as a differential operator of
order 0. The reader can check similarly that a differential operator D of order 1 with D1 = 0
is a derivation.

The differential operator form a K [[X]]-module. When we consider a power series f as a
differential operator of order 0, we can look at the composition of functions D o f. We have
(Do f)g = D(fg), and it follows that D o f is a differential operator of the same order as D.
Of course, D o f and D f have nothing to see with each other, whereas f o D = fD.

1.32. Lemma: A continuous K-linear mapping D : K[[X]] — K[[X]] is a differential
operator of order N if and only if for all f € K[[X]], the mapping foD— Do f is a differential
operator of order N — 1.

Proof: Let D be a differential operator of order N. Since f(X) — f(Z) € J, forall (X, Z) €
JN wehave Lp((f(X) — f(Z£))g(X, Z)) = 0. This equality is equivalent to

L¢op-porg = 0.

Conversely, when f o D — D o f is a differential operator of order N — 1 then Lp((f(X) —
f(Z))g) = 0forall g € JV. Therefore Lp(JN*!) = 0.

1.33. Theorem: Let D; and D, be differential operators of order Ny and Na. Then D; o D,
is a differential operator of order Ny + Ny and [D1, D3] = D; o Dy — D3 o D; is a differential
operator of order Ny + Ny — 1.

Proof: We lead the proof by induction on N; + No. When D, or D has order 0, the claim
follows from and Then one obtains the induction step using and the following
equalities.

fDioDy—DyoDyof=(foDy—Djof)oDs+ Dyo(foDy—Dyo f),

fo[D1, D] —[D1, Do) o f = [f,[D1, Ds]] = [[Da, f], D1] + [[f, D1], Da].

The last equality is a consequence of the following fact. Let R be a ring (that is associative
but not necessarily commutative or with unit element). For z,y € R let [z,y] = 2y — yz.
Then the Jacobi identity holds:
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(1.34) ([, 9], 2] + [ly, 2], ] + [[z, 2], y] = 0.

Let DO be the K [[X]]-module of all differential operators. According to the last theorem,
this is a ring. Let DOy C DO be the submodule of differential operators of order N, where
DOy = 0for N < 0. The composition of differential operators defines a map

DON/DON_1 X DOM/DOM_1 — DON+M/DON+M_1 .

We obtain a graded ring gr DO = €@ DOy / DOp_;. By|1.33| this ring is commutative.
N

1.35. Theorem: Let g € K[[X]]. Then, we have a representation
(1.35.1) g(X+Y)=> Dig(X

The mapping g — D,g is a differential operator of order |i| = i1 + --- + i [} The K[[X]]-
module DOy is free with basis D;, |i| < N.

Proof: The map g — D,g is K-linear and continuous. We have: ¢(Z) = ¢(X + (Z — X)) =
> Dig(X)(Z — X)L A differential operator of order N is given by means of a K[[X]]-linear
mapping L : K[[X, Z]] — K|[[X]] such that L(Z — X)! = 0 for |i| > N. Since any element
f € K[[X, Z]] may be represented uniquely in the form

2)=Y" Lx)(Z-

the datum of L is equivalent to the datum of L(Z — X )% = a;(X). Then it is clear that

L(g(2)) = Y ai(X)Dig(X).
The claim follows.

1.36. Corollary: Let 0; be the differential operator 9% ...9%. If K is a Q-algebra, every
differential operator of order NV has a unique representation

D = Z ai(X)0;
il <N
Proof: Indeed, by partial differentiation from (1.35.1) one obtains the Taylor formula

1.37. Definition: Let G be a formal group law and K[[X]] the coordinate ring of G. A
differential operator D : K[[X]] — K[[X]] is called invariant when the following diagram is
commutative (compare with|1.14):

K[[X]] —2— K[[X]]

‘| »

K[[X, Y]] “22 KX, Y]]

"This is “order i” in the original text. We added the | | and the definition of |i|.

NB
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For a derivation, this is just the old definition.

1.38. Theorem: Let!: K[[X]] — K be a K-linear map such that [((X)"V*!) = 0. Then there
exists a unique invariant differential operator of order N

D K[[X]] — K[[X]]
such that Df(0) = I(f).
Proof: For an invariant D with Df(0) = I(f), we have
Df(X) = Df(G(X,Y))ly=0 = pDf(X,Y)ly=o
= (1@ D)uf(X,Y)ly—0 = 1@ )(f(G(X.,Y))).
This proves uniqueness. If one takes the above equality as a definition, then D is con-
tinuous and K-linear. By definition, one has Lpg(X,Z) = (1 ® I)(¢9(X,G(X,Y))). From

X; — Gi(X,Y) € (Y)K[[X,Y]] it follows that ¢(X,G(X,Y)) € (Y)V*! for g € JN*!. From
this, it is seen that D is a differential operator of order N. The invariance follows from:

pDf = (1@l f(GIGX,Y), Z2)) = (11 )f(GX,G(Y, Z)))
=(1eD)f(GX,Y))=(1eD)uf. QED.

It is immediately clear that one obtains invariant differential operators H; in the follow-
ing way:

(1.39) fGX.Y) =Y Hif (X)Y*

1.40. Corollary: The invariant differential operators of order N form a free K-module with
basis H;, |i| < N.

Proof: An invariant differential operator can be written

(1) f(G(X,Y)) DY Hif-YH=> I(YHHf  QED.

The K-algebra of invariant differential operators of the formal group law G will be de-
noted Hg.

1.401. Lemma: ﬂ Let D;, i = 1,2 be invariant differential operators and /;(f) = D; f(0). Then
the following holds:

(D10 D7) f(0) = (lh ®2) f(G(X,Y)).

®This lemma has no number in the original text.
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Proof: We have:

DioDyf(Z)=Di(1®12)f(G(Z,Y))
=(1ehel)(101el)f(G(G(Z,X),Y))
=(1e0h k) f(G(Z,G(X,Y))).

The claim follows by setting Z = 0.

Let ¢ : G — G’ be a morphism of formal group laws, and let p* : K[[X']] — K|[[X]] be
the comorphism. By mapping a linear form [ : K[[X]] — K to the linear form [ o ¢*, we
obtain a map ¢, : Hg — Hegr.

1.41. Theorem: ¢, : Hg — Hg is a homomorphism of K-algebras that maps differential
operators of order N to differential operators of the same order.

Proof: We only have to show that ¢, respects the multiplication:

(0«D1 0 Do) f = (01 @ @ula) f(G'(X',Y)) = (lh ® 1) f(G'(9(X), p(Y)))
= (L @ L) f(p(G(X,Y))) = p(D10 D) f,
forall f € K[[X']]. Q.E.D.

1.42. Exercise: Let H; o Hj = } ; ay;jHy, ax;; € K, where we use the notations of

Prove that ay; ; is the coefficient of XY7 in G(X, Y )E. Describe the algebra Hgn (the algebra
of divided powers of the module K™).

§ 7 The Lie algebra and its enveloping algebra

Let G be a formal group law. The K-module of invariant derivations Lie G is a submod-
ule of Hg. When Dy, D, € Lie G, it follows from [1.33|that Dy, Ds] € Lie G. The bracket [, |
is K-bilinear on G, satisfies the Jacobi identity (1.34), and [D, D] = 0 holds. One makes the
abstract definition:

1.43. Definition: A Liealgebra gis a free K-module with a K-bilinear mapping [, | : gxg — ¢
such that [z,2] = 0, x € g and the Jacobi identity holds. A morphism of Lie algebras is a
morphism ¢ : g — ¢’ of K-modules such that [p(x), p(y)] = ¢[z,y], z,y € g.

Let {z;};cs be a basis of g. We denote by T'g the free associative K-algebra with genera-
tors x;. Let a be the two-sided ideal of T'g generated by the elementﬂ

[a:z-, l‘j] — Iil’j + l’jl’i,

where the brackets are understood in g. One calls U(g) = T'g/a the universal enveloping alge-
bra of g. There is a canonical mapping o : g — U(g), z; — x;, such that o([z, y]) = a(z)a(y) —

This is "[xs, ©;] — zsx; — x;x;” in the original text.

19
20
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a(y)a(x). Itis easy to observe that U(g) is characterized by the following universal property.
Let 8 : g — R be a map to an associative K-algebra with 3([z,y]) = B(z)5(y) — B(y)B(x).
Then there exists a unique factorization

g———U(g
We remark that every morphism of formal group laws ¢ : G — G’ induces a morphism

of Lie algebras Lie ¢ : LieG — Lie G’ and a morphism of their enveloping algebras. This
follows from [1.41]

1.44. Exercise: Let G be a formal group law with coordinate ring K[[X]]. We have an
isomorphism LieG = K", D — (DX;(0),...,DX,(0)) that induces a bracket on K. Let

Gi(X,Y)=X,+Y; + Z cf’leY} mod deg 3.
k.l

Letv,w € K" and u = [v, w]. Show that

k)l
w; = Z ¢;” (vpwy — wvg).

k,l

Let G be a formal group law and Dy,..., D, a basis of the K-module LieG. By the
universal property of U(Lie G), we find a K-algebra homomorphism

(1.45) U(LieG) — Hg.

We will show that over a Q-algebra K, this is an isomorphism.

1.46. Theorem: Let K be a Q-algebra. Let D be a differential operator of order N. Then D
has a unique representation:

D= a(X)Di'eo---oDy,  a(X) € K[[X]].
i <N

Proof: We show by induction on N that the claimed representation exists. The K[[X]]-
algebra gr DO is commutative and is generated by the derivations (9/0X;), by [1.36 Since
these derivations are linear combinations of the D; (by [1.16), then Dy, ..., D, form also a
generating system. It follows that we have:

D= Z aZ(X)Dil 0---0 D;” mod DOpn_1.
li|=N

The existence of the representation follows by induction.
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We can formulate what has been proven in the following way. Let L be the free K[[X]]-
module with basis D}' o --- o Din, |i| < N. Then the canonical mapping L — DOy is a
surjection. Since both modules are free of the same rank (see|1.35), this is an isomorphism.
Q.ED.

1.47. Corollary: With the same assumptions, let D be an invariant differential operator.
Then D has a unique representation

D= Y Wi oDy, wek

<N

Proof: Let D = " a;(X)D! o---oDin and D’ = 3" a;(0)D% o- - -0 Din. These two operators
are invariant, and (D — D') f(0) = 0, f € K[[X]]. It follows from that D = D'.

1.48. Theorem: Let GG be a formal group law over a Q-algebra K. Then the canonical map
U(Lie G) — Hg is an isomorphism.

Proof: It is obviously enough to prove that every element of U (Lie G) has a representation of
the form 3 ;D% o-- -0 Din. Since Dy, ..., D, generate the K -algebra U (Lic G), it is enough
to prove this for elements of the form D;, o---o D; . Let r be minimal such that the desired
representation does not exist. One has the relation:

Djyo---0Dj 0Dj ,0---0Dj
—Dj,0---0D;

Js+1

ODjSO"'ODjT‘i‘DjlO"'O[D' D;

VER] Js+1

Jo---oDj.

Since in the right-hand side the second summand has the desired representation by the
inductive hypothesis, the first summand cannot have it by assumption. From this follows
that D; , o---oDj . doesnot possess the desired representation, for any permutation .
This is a contradiction.

1.49. Remark: Let g be a Lie algebra over K with basis z,. .., z;,. The Poincaré-Birkhoff-
Witt Theorem states that every element of U(g) has a unique representation Y a;x}' ...z,
We have proven this theorem for U(Lie G). For the general case, we refer t [22].

§ 8 The bigebra of a formal group law

By we can write Hg = Hompg cont (K [[X]], K), where K is seen with the discrete
topology. Two continuous linear forms /; and ls of K[[X]] define a continuous linear form
L ® 1y : K[[X,Y]] - K. We obtain an isomorphism

He @k Hg = Hompg cont (K [[X, Y]], K).
The multiplication in Hg defines a map

;L* Heg ®x Ho — Hg.

9This is a reference to [21] in the original text.
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By we obtain it by application of the functor Homy, cont(—, ) to the map T
K[[X]] — K][[X,Y]]. We say that p* is the dual map of p.

The multiplication m : K[[X,Y]] = K[X]], m(f(X,Y)) = f(X, X) is the comorphism
of the diagonal G — G' x G, see Since the diagonal is a morphism of formal group laws,
m induces by dualization an algebra homomorphism

m: Hg — Hg ®x Hg.
The algebra homomorphism e : K — K]J[X]] induces by dualization the augmentation
e*Hg — K, 1~ 1(0).

1.50. Definition: A bigebra B over K is a K-algebra B with a unit, an augmentation v : B —
K and a K-algebra homomorphism A : B = B ®x B, such that the following diagrams are
commutative (compare with (1.7)):

B

/ T1®u
A

(1.50.1) BZ—2 ,B®yB

gy

B

B— 2 .BoyxB
(1.50.2) Al lA@l
Box B2 Box Bo B

A morphism of bigebras ¢ : B — B'is a K-algebra homomorphism such that the following
diagrams are commutative:

BL}B/ BL}B/
o y |
K——K Box B B oy B.

When G is a formal group law, then Hg; is a bigebra.
The bigebra structure is defined by A = m* and u = e*. One can obtain the last diagram
for example by dualizing the associative law in K[[X]].

K[[X]+—— K[[X,Y]]
mT Tm@l
K[[X, Y] 2™ K[[X,Y, Z].

A morphism of formal group laws ¢ : G — G’ induces a morphism of bigebras ¢, : Hg —
Her. In order to see for instance that ¢, respects the structure map A, one dualizes the
diagram:
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(1.51) ml h Jm

Here, a stands for the comorphism.
1.52. Theorem: Let G and G’ be formal group laws over K. Then, the map
Hom(G,G') — Hompigebras(He, Her)
is a bijection.

Proof: Let ¢ : Hg — Hg be a morphism of bigebras. By dualizing v one obtains a K-linear
map « : K[[X']] — K[[X]]. It is continuous, because the open submodules of K[[X]] are
the orthogonal complements of the finitely generated submodules of Hg. We must show
that « is the comorphism of a morphism of formal group laws. The required properties of «
are expressed by commutative diagrams that are obtained by dualizing the corresponding
diagrams for ¢ : Hg — Hr. We content ourselves with giving an example of this procedure
and leave the rest to the reader. The fact that a is a ring homomorphism is expressed by
Diagram (1.51). We obtain it by dualizing:

®
HG [} HG M HG/ (9] HG/

m*l lm/*
Y

He —— Her.

Let g be a Lie algebra over K. We define on U(g) the structure of a bigebra. Let A : g —
U(g) @k U(g) be the homomorphism A(z) =1® x4z ® 1, x € g. One verifies immediately
that Az, y] = AzAy— AyAuz. It follows that A factors through a K-algebra homomorphism
U(g) = U(g) ®k U(g) that we still denote by A. From the definition of U(g) one obtains an
augmentation u : U(g) — K, u(z) = 0 for z € g. The commutativity of the diagrams in[1.50]
follows from the universal property.

The map is a morphism of bigebras. In fact, for that it is enough to verify that the
following diagrams are commutative:

U(Lie G) —— Hg U(LieG) —— Hg
K=——K U(Lie G) ® U(Lie G) —— Hg ® Hg.

The verification for the first diagram is trivial. By the universal property, it is enough to
verify the commutativity of the second diagram for D € Lie G. Let(f) = Df(0), f € K[[X]].
Then commutativity means that m*l(g(X,Y)) = (1®{+1I®1)(9(X,Y)), g € K[[X,Y]]. Due
to the continuity of /, we may assume that g(X,Y) = f(X)h(Y). Then the claimed equality
means:

D(F(X)h(X))|x-0 = F(X)Dh(X)|x-0 + h(X)Df(X)|x—0-

23
24
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This is clear because D is a derivation.

1.53. Exercise: Show that conversely, from m*l = 1®141®1 it follows that D is a derivation.
When K is a Q-algebra, one obtains for D € U(Lie G):

DelieG < 1D+D®1=AD.

§9 The main theorems of Lie theory

1.54. Theorem: Let K be a Q-algebra. Let G and G’ be formal group laws over K. Then the
map
Hom(G,G") — Hom(Lie G, Lie G")

is bijective, where on the right-hand side are Lie algebra homomorphisms.
Proof: Since U(Lie G) = Hg and U(Lie G') = Hgy, one has a commutative diagram

Hom(G,G’) ———— Hom(Lie G, Lie G')

N

Homy, ... (U(Lie G), U(Lie G")).

Since the left-hand slanted arrow is bijective by itis enough to prove that the right-hand
one is injective. But this is clear, since Lie G C Hg ~ U(Lie G).
Using the Poincaré-Birkhoff-Witt Theorem (see(1.49), we show:

1.55. Theorem: Let g be a finite-dimensional Lie algebra over a Q-algebra K. Then there
exists a formal group law G over K with Lie algebra g.

Proof: The bigebra of G mustbe U(g). Let Dy, ..., D,, be a basis of the K-module g. By-
every D € U(g) has a unique representation D = Z azD“ o Din. Leti! = ij! I. We
define an isomorphism of topological modules:

¢ K[[X]] — Homg (U(g), K),  @(X)(D) = ila, [T

There, the topology on the right-hand side is defined by the orthogonal complements of the
finitely generated submodules. The map A : U(g) — U(g) ® U(g) induces by dualization
the map m : K[[X, Y]] — K[[X]]. Indeed,we must prove that

p(M(XY) (DY) = (p(XH) ® ¢(Y2)A(DY),
where DE = D ... Dkn. This is equivalent to

£ J12
- % fozenf

1 This is (X )(D) = ila;” in the original text.
There is / , 7 in the original text.
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For Dk = fo", this is the usual Binomial Theorem. The general case follows since A is an
algebra homomorphism. The algebra structure map « : U(g) ® U(g) — U(g) induces by du-
alization a morphism p : K[[X]] — K[[X, Y]] of K-modules that respects the augmentation.
The fact that y is a ring homomorphism is obtained by dualizing the following commutative
diagram:

A

U(g) U(g) @ U(g)

U(s) @ Uls) —225 U(g) ® U(g) ® U(g) ® U(g).

This expresses the fact that A is a ring homomorphism. The reader will check easily that p
is a formal group law (compare with (1.7)).

§ 10 Cartier duality

In the following, we interpret a morphism from a formal group law G to G,, with the
help of the algebra H,. Let ¢ : G — Gy, be a morphism and ¢* : K[[T]] — K[[X]] its
comorphism. The power series ¢*(1+1') € K[[X]] defines a K-linear map a : Hg — K. We
now prove that « is a ring homomorphism.

By definition, we have ¢*(1 + 1) =1 = ¢. Let ;1,15 € Hg. Then

a(ly l2) = (L1 - I)(e*(1+T)) = (L @12)(1 + pG(X,Y))
(h @)1+ ¢(X) + oY) + p(X)p(Y))
Le*(1+T)la(e*(1+ 1)) = a(li)a(ls).

Let o : Hg — K be an arbitrary K-algebra homomorphism. It is induced by a power series
1+ ¢ € K[[X]] with ¢(0) = 0. Thus the above series of equalities hold for all /1, l> € Hg. We
deduce from the third equality that ¢ induces a morphism G' — G,,. We have obtained the
following.

1.56. Theorem (Cartier duality): Let G be a formal group law over K. Then there is a
canonical bijection
Homg-p1g(He, K) — Hom(G, Gy).

Let K’ be a commutative K-algebra with unit element. Then, one has Hg ®@x K' =
Hg,, = Hom g cont (K'[[X]], K'). We obtain a bijection
HomK_Alg(Hg, K’) = HOHIK/_Alg(HG & K/, K/) = HOIn(GK/, Gm,K’)‘

Let G be commutative. Then H is also commutative. One can formulate [1.56]in the follow-
ing way. The functor K’ — Hom(G g, Gy, i) from the category of commutative K -algebras
is representable by the algebra of invariant differential operators on G.

1.57. Exercise: Let R be a K-algebra and M an R-module. Define the derivations from R
to M as follows:

Derg (R, M) = {6 € Homp (R, M) |§(rir2) = r16(ra) +128(r1) }.
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We consider K as an Hg-module via the augmentation e* : Hg — K. Show that
Hom(G, G,) = Derg (Hg, K).
Let K be a Q-algebra. Then, one has bijections:

{invariant differential forms w |w([D, D']) = 0 for all D, D’ € Lie G}
~ Hom(Lie G, Lie G,)
= Derg (U(Lie G), K).

§ 11 Lubin-Tate groups

We have seen in the last paragraphs that the theory of formal group laws over a Q-
algebra is equivalent to the theory of Lie algebras. Over an arbitrary ring, the situation
is considerably more complicated. In the following chapters, we will reduce the theory
of commutative formal group laws to the theory of certain modules over the Cartier ring.
However, before we begin with the general theory, it is good to have before one’s eyes a
non-trivial example of a commutative formal group law when K is not a Q-algebra. This is
why we give the construction of Lubin-Tate groups, that were the starting point for Cartier
Theory and other developments in the theory of formal groups. For the applications to
Algebraic Number Theory, we refer the reader to [13] and [25].

Let K be a discrete valuation ring and 7 a prime element. Let K /7K be a finite field of
characteristic p with ¢’ elements. Let ¢ = p® be a power of ¢’. Our goal is the construction
of one-dimensional group laws F'(X,Y’) over K. By base change, we obtain from F'(X,Y) a
formal group law F(X,Y) over k. Since the coefficients of F are in k, we have

F(X,Y)! = F(X,Y1).

This equality says that the power series g(X) = X? defines an endomorphism g : F' — F. It
is called the Frobenius endomorphism Fr.

Since F' is one-dimensional, Lie F is a free K-module of rank 1. An endomorphism of F’
induces on Lie I the multiplication by an element of K.

1.58. Definition: A Lubin-Tate group over K is a one-dimensional formal group law F' over K
for which an endomorphism ¢ : F' — F exists such that Lie ¢ is multiplication by 7 and such
that o induces the Frobenius endomorphism of F. In other words, the power series satisfies
the following conditions:

(1.58.1) e(X)=7X mod deg2, o(X)=X? mod 7K.

The construction of such formal group laws is based on the following

1.59. Lemma: Let ¢ and 1) be power series satisfying (1.58.1). Let L(X1,..., X,,) = > a;X;
be a linear polynomial with coefficients in K. Then, there exists a unique power series
F(Xy,...,X,) € K[[X]] such that

F(X1,...,X,) = L(X1,...,X,) mod deg2,
P(F(X1,..., Xp)) = F(Y(X1), ..., P(Xn)).
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Proof: We prove by induction on r that there exists a unique polynomial F,.(X) of degree r
such that F'(X) = L(X) mod deg2and ¢(F(X)) = Fr(¢(X) mod deg(r + 1). Obviously
Fy = L. Letus write F, 1 = F;. + A, 1 where A, is a homogeneous polynomial of degree
r 4+ 1. One finds the equalities:

p(Fr1(X)) = o(Fr(X)) + 7211 (X) mod deg (r +2),

Fr((X)) = F(9(X)) + 7" A 1(X) mod deg (r +2).
It follows that the left-hand sides are congruent if we can find A, such that
(7 = 1)A 11 (X) = 9(Fr(X)) — F($(X)) mod deg (r +2).

Thus existence and uniqueness of A, will follow if we can show that the coefficients of
the left-hand power series are divisible by 7. From (1.58.1) it follows immediately that

P(Fr (X)) — B (X)) = (Fr(X))? — (F(X%) =0 mod . 2

The lemma follows with the power series F' for which F' = F,, mod deg (r + 1) for all r.

Applying the lemma for ¢ = ¢y and L = X +Y’, one obtains a power series F,(X,Y). The
power series F,(F,(X,Y),Z) and F,(X, F,(Y, Z)) are solutions of the following equalities
for a power series G-

GX,)Y,Z)=X+Y +Z mod deg2, o(G(X,Y,Z) = G(p(X),p(Y),p(2)).

Since by the lemma the solution is unique, it follows that F,(F,(X,Y), Z) = F (X, F,(Y, Z)).
One sees analogously that F,(X,0) = F,(0,X) = X and that F, is symmetric in X and Y.
Thus F,, is a one-dimensional, commutative formal group law. It is a Lubin-Tate group.

For any a € K we define the power series (a), € K|[[T]] as the unique solution to the
following equalities:

(@)p(T) =aT mod deg2,  @((a)yy(T)) = (a)pu(¥(T)).

By the same principle as for the associative law for F', one proves:

1.60. Theorem: Let ¢, v, x be power series satisfying the conditions (1.58.1) and a,b € K.
Then, the following identities hold:

o (X), (@) (Y)) = (a) o (Fyp (X, Y)),
2) (@), ((B)yx(T)) = (ab)p (T),

ot (T) = Fo({a)ox (T)), (b (T)),

4) (M)eo(T) = @(T), (L)pe(T)=T.

The first equality says that (a),, , is a homomorphism F,, — F,,. The set Hom(Fy, F,,) is an
abelian group. Indeed, according to one can define the sum of two morphisms a and
in the following way:

1) Fy({a

Fy—FyxFy, X5 R, xF, — F,.



NB

NB

32 CHAPTER 1. FORMAL GROUP LAWS

The third equality says that X' — Hom(Fy, Fy,), a — (a),. is @ homomorphism from the ad-
ditive group of K to Hom(Fy, F,,). From the second equality, the composition of morphisms
corresponds to the multiplication in K. It follows that (1), ,, defines an isomorphism of F;
to F,. The map K — Hom(F,, F,) is a ring homomorphism. If ¢ is fixed, then (a),, ,; is also
denoted simply (a). Therefore, we obtain:

1.61. Theorem: Given K, 7 and g, there is up to isomorphism a unique Lubin-Tate group F.
There exists a ring homomorphism K — End F' = Hom(F, F), a — (a), such that (a) induces
the multiplication by a on Lie F. The endomorphism () induces the Frobenius endomor-
phism Frob, by the base change K — k.

Let K = Zp, m = p and ¢ = p®. Then using 3), one finds that
B)(T) = F(T,F(..., F(T.T))...),
where 7" stands p times. It follows by base change that
T =F(T,F(...,F(T,T))...)

Let ¢ # q@ and F”’ be the Lubin-Tate group attached to Z,, p, ¢’. Then, there is no nonzero
homomorphism « : F — F’. Indeed, we find the relation o(T%) = (a(T))?. The reader
can check easily that this is not fulfilled over any reduced IF,-algebra B. From this follows
that over an F)-algebra, there are always infinitely many non-isomorphic, one-dimensional
formal group laws. In comparison, over a Q-algebra there is only G,.

BThisis “F(T, F(..., F(T,T))...)” in the original text.
“This is "¢’ = ¢” in the original text.



Chapter I1

Formal groups as functors

§ 1 Definition of formal groups

In this chapter and all the following ones, a formal group law will always be assumed to
be commutative.

We denote by Nilg the category of nilpotent, commutative K-algebras. A formal group
law G defines by|[I.6|a functor to the category of abelian groups:

G : Nilg — Ab
N — (‘/V(n)>+G')

We can see (F as a functor to the category of sets, by forgetting the abelian group structure on
G (</V ). We denote this set-valued functor by Var G and call it the variety of G. The functor
Var G is just A+ A (),

Conversely, if we are given a functor G : Nilg — Ab, such that Var G (AN) =N (n),
then G is defined by a formal group law. Indeed, let K[[X, Y]] be the ring of powers series in
2n indeterminates X7, ..., X,,Y1,...,Y,, and a C K[[X, Y]] be the ideal which is generated
by the indeterminates. Then a/a” is an object of Nilx for all natural numbers N. Thus
G(a/aN) is an abelian group with underlying set (a/a™)(™). We construct in this group the
sum

(X1, X)) +a (Y1, V) =GV, .6y, 6™ e ajal,

As G(a/a™) = G(a/ a”) is a group homomorphism, we have

GVt = GZ(N) mod a”.

1

Thereby we find some power series GG; such that G; = GSN) mod deg N. The fact that the G;
define a formal group law is left to the reader.
The additive and the multiplicative groups are seen as functors in the following way:

Ga(t/i/) = (‘/Va"i')v
Gu(N) = (14 4%

'This is “G/(a/a™"!) — G(a/a™)” in the original text.
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Here (4", +) is the group .#” with the usual addition and (1 + .#")* the set of all formal
sums 1 + u, u € .4, with the obvious multiplication.

2.1. Remark: Instead of .#", we will sometimes consider the augmented K-algebra A =
K @& ./, where the ring structure is as followsﬂ

(k1,u1)(ke,u2) = (k1ke, kiue + kouy + uque), ki € K,u; € N .

The map € : A — K is the augmentation.
Conversely, let A be a commutative augmented K-algebra (that is, a K-algebra with unit
and a K-algebra homomorphism ¢ : A — K) such that Ker ¢ is nilpotent. Then we have

A=K ®Kere, Kere e Nilg.

We call A an augmented nilpotent K-algebra and also denote by A" the augmentation ideal
Kere. Note that G, (A™) is the subgroup of 1-units of A:

Gum(A*) = {z € A|e(z) = 1}.

2.2. Definition: A formal group is an exact functor G : Nilx — Ab which commutes with
infinite direct sums.

In detail, this means the following. For each exact sequence in Nilx
00— M — N —> N — 0,

the sequence
0 — G(M) — G(AN) — G(A5) — 0

is exact. For each set of objects {.4;};cs of Nilg, such that ,/IgN = 0 for some natural num-
ber N which is independent from i, the algebra ®;cr.#; is obviously a nilpotent K -algebra.

The injections «; : A4; — @ .4; induce a map
iel

D G(A) — G(DA)

il iel
©&— Y Glag)é.

We require that this map be an isomorphism.

2.3. Exercise: An exact functor commutes with finite direct sums. Show that an exact functor
commutes with infinite direct sums if and only if the following condition is fulfilled. Let I
be a directed set and {./4; },c; be a system of subalgebras of a nilpotent algebra .4, such that
N; C A fori < j. Assume that iLEJf/% = /. Then we have Z'LEJIG(J%) =G(AN).

2.4. Example: Let S be an augmented algebra and S™ its augmentation ideal. We define a

functor:
GuS(H) = (1+ 5 ©x N)*.

This is (k1 k2, k1uz + kau1)” in the original text.
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If STt is a flat K-module, it is a formal group, as tensor products commute with arbitrary
direct sums. A particular role is played in Cartier theory by the formal group G, K[t], that
we also denote by A:

A(JV) :{1+u1t+...+urtr\ui GJV}

The multiplication is the usual multiplication of polynomials.

§ 2 Representable and prorepresentable functors

In this paragraph, we consider functors from Nilx to the category of sets Ens. Let A be
an augmented nilpotent K-algebra. Then A defines a functor

Spf A : Nilg — Ens,

Spf A (A) = Homp-a1g(A", A) = Homg-a1g(A, K & A).

By the first Hom we mean K-algebra homomorphisms and by the second one those which
respect the augmentation.

2.5. Definition: A functor H : Nilg — Ens is said to be representable if it is isomorphic to a
functor of the form Spf A.

Now we introduce the category Comply of complete, augmented K-algebras. Let R be
a commutative K-algebra with unit and with an augmentation ¢ : R — K. We denote by a;
the augmentation ideal Kere. Let there be given in R a decreasing sequence of ideals a,,,
m € N:
ap DOay>Oag D ...

We say that (R, a,,) is a complete, augmented K-algebra, when the following conditions are
fulfilled:

(2.6.1) a1/a., is a nilpotent K -algebra,
(2.6.2) R= lglR/am.

The ideals a,,, define a topology on R. Condition (2.6.2)) is equivalent to the fact that R is
Hausdorff and complete with respect to this topology. Let (R', a/,,) be a second augmented,
complete K-algebra. A morphism o : R — R’ is a continuous homomorphism of augmented
K-algebras, that is, for each natural number M there exists an N such that a(ay) C d,.
Assume given in R a second sequence of ideals b,,,, m € N, which satisfies Condition
and (2.6.2). Then the identity map (R, a,,) — (R, by,) defines an isomorphism of objects in
Comply if and only if a,, and b,,, define the same topology.

Let 4 € Nilg and A = K & .4". One can view A with the sequence a; = .4 and a,, =0,
m > 2 as an object of Compl.. We obtain in this way an embedding of categories:

Nilg < Comply .

3This is “Conditions (2.6)” in the original text.
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One can extend a functor H : Nilg — Ens to the category Compl by setting: H(R) =
lim H (a1/a,,). We allow ourselves to denote H(R) also by H(a;).
An algebra R € Comply defines a functor (formal spectrum):

Spf R : Nilg — Ens,

Spf R (A") = Homcompl, (R, K © A) = @HomK-Alg(al/am,W).

2.7. Definition: A functor H : Nilx — Ens is said to be prorepresentable if it is isomorphic to
a functor of the form Spf R.

2.8. Example: Let G : Nilx — Ab be the functor of a formal group law. Then VarG is
prorepresentable by R = K[[X]] and a,, = (X)™. Indeed, the elements of Spf K[[X]] (/")
are in 1 — 1 correspondence with the n-tuples (21, . .., z,) € A4 ().

K[[X1,...,.Xp)]] = Ko A

When we extend the functor Spf R to the category Comply, then we obtain for S €
Compl:
Spr (S) = Homcomle (R, S)
The following lemma shows that the functor Spf R defines the complete, augmented K-

algebra R up to unique isomorphism.

2.9. Lemma (Yoneda): Let C be a category. We denote by C the category of all functors from
C to the category of sets. Each object R € C defines a functor Spf R (S) = Hom¢ (R, S) of C.
If F'is a functor on C, then one has a bijection

# : Homgs(Spf R, F') — F(R).
In particular we have Homz(Spf R, Spf S) = Home (S, R).

Proof: Let £ : Spf R — F be a morphism. The image of the identity idgp € Hom(R, R) =
Spf R (R) by the map &g : Spf R (R) — F(R) is k(§). Conversely, let ¢ € F(R). We define
forall S € Camap

£s : Spf R () — F(S5).

Let o € Spf R (S) = Hom(R, S). Then {s(a) = F(a)(c). The {g clearly define a morphism of
functors ¢ such that x(&) = c.

To summarize, we now have the following embeddings of categories:
Nilg «—— Comply — Functors(Nilg, Ens).
2.10. Base change: Let K’ be a commutative K-algebra with unit. Each object of Nilx can
be viewed as a K-algebra. We obtain a functor
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If H : Nilg — Ens is a functor, then we say that Hx = H o bis deduced from H by base change.
Let (R, a,,) be a complete, augmented K-algebra, and let H = Spf R. We haveﬁ

HK/(JV/) = thOmK-Alg(al/am,JV/) = hﬂHOmK/-Alg(CU/Clm QK K/,JV/).

We denote by R K’ the K’ -algebra @(R/ am @k K'). Let af, be the kernel of the pro-
jection R kK — R/a,, ®x K'. Then (RQxK’, al,) is a complete augmented K’-algebra
and Hy = Spf R®k K'. Prorepresentable functors are thus turned into prorepresentable

functors by base change. If H = Spf R is representable, so is H, and we have R&@x K’ =
R K !

2.11. In this point, we generalize Example[2.8] Let P be a K-module. We associate to P the
following functor:

hp : Nilg — Ens
N — N QK P.

We are going to show that the functor & p is prorepresentable when P is a projective module
which admits a countable generating system.

We first consider the case where P is a finitely generated projective K-module. Let P* =
Homp (P, K) be the dual K-module. Then the canonical map

P — P*

is an isomorphism. This is clear for a finitely generated free module. The general case
follows from the fact that P is a direct summand of such a module. The same argument
shows that for a K-module M the canonical map

Mg P— HOInK(P*,M)

is an isomorphism.

Let M be a K-module. We denote by S(M) the symmetric algebra of M. It is character-
ized by the following universal property. Let K’ be a K-algebra like in Then one has a
bijection

Hompg (M, K') = Homg-a15(S(M), K').

Also S(M) is an augmented K-algebra. Let J be its augmentation ideal. Clearly

S™(M) = lim S(M)/JV
N

is an object of Comply. With A = K @ .4/, we find:
N @k P =Homg (P*, ) = Homg-a15(S(P*), A) = Homcoempl, (57 (P*), AP}

Consequently the functor hp is prorepresentable in this case.

“The "lim” are "li

5
,,HomComle (S

=

1” in the original text.
(P*),A)” is "Homg-a15(S” (P*), A)” in the original text.

>
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We now consider the case where P is not necessarily finitely generated. The reader can
first skip these considerations and begin with the next paragraph.

We denote by UL C P* the orthogonal complement of a submodule U C P. We en-
dow P* with the topology in which {U~} is a system of neighborhoods of 0, where U runs
through the finitely generated submodules of P. Let M be a K-module. Then one has a
canonical homomorphism

Mg P — lingomK(P*/UJ‘,M) = HomK,cont(P*vM)'

We show that it is an isomorphism for a projective module P. First, let P be a free module.
Then one already obtains a system of neighborhoods {U~} of 0, when we let U run through
the finitely generated, free direct summand U of P. We obtain:

li%mHomK(P*/UL,M) = HgHom(U*,M) = hg(M @rU)=M®k P.
In the general case, P is a direct summand of a free module L;. We find an exact sequence
0—P—1L — L27

in which the cokernel of the middle map is a direct summand of the free module L;. One
obtains from this an exact sequence of continuous homomorphisms

L5 — L] — P* — 0.
One obtains the claim from the following commutative diagram with exact rows:

00— HomK,cont(P*a M) B— HomK,cont (LT7 M) B— HomK,cont(L§7 M)

T T T

0————— MRk P——— Mg L1 ———— M Qg Lo.

Let P be a projective module with a countable generating system {e; };cn. Let Uy, be the
submodule of P generated by ey,...,e,. We define the completed symmetric algebra of the
topological module P*:

Stop(P*) = lim S™(P*/Uy).

Let J,, be the augmentation ideal of S™(P*/U;-). We denote by a,, the inverse image of J?
by the canonical projection:
Stop(P*) — S™(P*/Uy).

One finds some maps
Stop(P*)/ay = S™(P*JUL)/Jn — S™(P*JUL) /IR, fori < n.
By taking the limit, one obtains:
I‘Lnn S%P(P*)/a” — SA<P*/UZJ—)7
lim Stop(P*)/an, — Stop(P*).
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The latter morphism comes from the universal property of inverse limits. Consequently,
Stop(P*) is an object of Comply. For an augmented nilpotent K-algebra R, we havejﬂ

Homcompl, (Stop (P*), R) = lim Homcompi, (S~ (P*/Uy), R)
= liﬂHomK(P*/UnL, RT)
= Homp cont(P*, R") = R @k P.
We have thus proved that hp = Spf St (P*).
One can calculate Stop (P*) rather explicitly, when P is a free module with basis {e; }ien.

Indeed, let X; € P* be such that
Xi(ej) = d; 5.
Then we have:
SNPJUE) = $7UE) = KX, ., X
The morphism S™(U}t) — S™(U}) for i < n is the projection:

K[[X1,..., Xp)] — K[[X1,...,X]]
. Xj itg <i,
X H>{ 0 ifj>i.

We denote the inverse limit by K{X1, X»,...}. It consists of all power series of the following
form. Let o : N — N U {0} be a function with finite support (that is, a(n) = 0 for almost all

n € N). Let X be the monomial [],, . X5™. Then:
K{X|,Xy,..} = { Y X | €K }
o:N—NU{0}

Here o runs through the functions with finite support, and the ¢, are arbitrary coefficients.

The ideal a,, consists of all power series for which ¢, = 0if 0, a(i) + 3., na(i) < n.
It is convenient to use another system of neighborhoods of 0 than that of the a,,. We define
the weight of a monomial:

(2.12) w(X®) =" ia(i).
i€N
Let a), be the ideal generated by all the power series ) ¢, X such that ¢, = 0 for
w(X*) < n. The a;, obviously define the same topology as the a,,.

§ 3 Left-exact functors

Let @1 : My — M3 and ¢y : My — M3 be maps of sets. We denote the fibre product by
M1 X Ms MQZ

My X pr, M3 = {(m1,mg) € M1 x Mz | ¢1(m1) = pa(ma)}.

°In the original text, "Homcompl  (Stop (P*), R)” is "Hom g-a1g (Stop (P*), R)” and
“Homcompl, (S™(P* /Uy ), R)” is "Homg-a15(S™ (P* /U, ), R)”.
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This definition extends in an obvious way to other categories (e.g. abelian groups, K-
algebras or functors with values in these categories). For example, when the M; are functors
Nilg — Ens, one defines the functor M; x5z, Ms by

(My X pgy Ma) (A7) = My(A) X pgy(nry Ma(A).

The usual universal property is fulfilled: let ¢y : My — M; and )9 : My — M be morphisms
such that ¢y 1 = 12p2. Then there exists a uniquely defined morphism o : My — My X,
M3 such that the following diagram is commutative:

When « is an isomorphism, then we call

M4*>M1

|

Mg*)Mg

a fibre product diagram.
We consider a fibre product diagram in Nil:

M Xy Ng —— M

L

Ny ———— M3

Let H : Nilx — Ens be a functor. Due to the universality of the fibre product, one obtains a
map

2.14. Definition: A functor is said to be left-exact if is an isomorphism for all fibre
product diagrams and if H(0) = {0}.

A functor H is said to commute with finite direct products if H(0) = {0} and is an
isomorphism for .43 = 0.

Let 4" € Nilg and let .# C .4 be an ideal, thatis, 4" - .# C .#. Then the quotient
N | A is in a natural way a nilpotent K-algebra.

2.15. Theorem: A functor H : Nilg — Ens is left-exact if and only if H(0) = {0} and H
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transforms any fibre product diagram

A"

‘/HT)’/’{‘

where ¢ is a surjection with .4 Ker¢; = 0, into a fibre product diagram. If we assume
that H commutes with finite direct products, then it is enough that H respects fibre products
of the above form where moreover ¢, is an isomorphism onto an ideal of . #3.

Proof: The necessity part of the claim is clear. Conversely, let H be a functor which satisfies
the sufficient conditions of the claim. We first show that H turns injections into injections.
Let .41 C A3. One can assume that .41 is an ideal in .4;. Indeed, each algebra in the
following chain is an ideal in its predecessor:

Ny D M A MM D MAMANED =M.
We assume that .47 is an ideal in .45 and we consider the following chain:
Ny D MANED MANE =MD MM D MAZ =0
We denote its terms by .#;:
(2.15.1) No=Ms D Ms1D...D My=0.

Then we have A5.4; C ;.
We show by induction on s that all the arrows H(.#;_1) — H(.#;) are injective. Fori < s
this holds by the inductive hypothesis. For i = s we consider the fibre product diagram

H(%s—l) ? H(%S)

J |

H(%s—l/%l) —_— H(%s//ll)

As the lower map is injective by the inductive hypothesis, the injectivity of the upper map
follows.

We consider a fibre product diagram as in[2.15, where ¢, is an arbitrary surjection and ¢,
an arbitrary injection. Then H respects such fibre product diagrams. Indeed, as putting
fibre product diagrams one after the other produces another such diagram, one can with the
above filtrations reduce to the case where .45 is an ideal in .45 and .#; Ker ¢1 = 0.

Assume given a fibre product diagram [2.15 such that ¢ is injective and ¢ is arbitrary.
We show that it is respected by H. One can assume that .45 is an ideal in .#3. Then one
finds a filtration of .43 as in (2.15.1), where .43 appears. We consider the fibre product of this
filtration with .41:

My C M C - M C M= M

Ll ! Lol

0://0C//1C"'/%5_1C//S:,/1{3.
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We show by induction on s that H turns all the squares into fibre product diagrams. By
the inductive hypothesis it is enough to consider the last square. Let &, € H(#]), {s—1 €
H(Ms-1) and & € H() be their common image. We denote by ¢; (resp. E;) the images
in H( ;| ) (resp. H(M]/.#])). By the inductive hypothesis we have a fibre product
diagram:

H(AM | M) —— H (M M)

J |

H(.//Sfl/jfl) —_— H(«/%s/%l)

For s = 2 we use that H turns injections into injections. We set &, ;| = &, , Xz €. One
considers the fibre product diagram

H( My 1) —— H( M| M)

J |

H (M) ——— H(M| ).

Let& | =&, Xl €,_,. As H respects injections, ¢, , is mapped to &_1. It follows that

£l =&, X¢, &1 is the desired fibre product.

By considering a chain of the form (2.15.1)), one sees by induction on s that H (.4 x .A43) —
H(A) x H(43) is an isomorphism. Indeed, one considers the diagram

N X My —— N X M| M

J |

%5 E— %s/%o-

Finally, assume given a fibre product diagram as in in which ¢ and 9 are arbitrary.
Then the following diagram is a fibre product diagram too:

JVM%X% (ul,uQ)

W T

M X Ny ——— M X Ny X Ny (u1,u2, p2(u2))
(uy, ug) —— (u1, u2, p1(u1))

As the arrows in this diagram are injections, H turns it into a fibre product diagram. Be-
cause H commutes with finite direct products, it follows easily that H turns also the dia-
gram into a fibre product diagram. Thus the theorem is proved.

2.16. Theorem: Let H : Nilx — Ab be a functor to the category of abelian groups. Then H is
left-exact if and only if for each exact sequence in Nil:

0— M — Ny —5 Nz — 0,
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the sequence
0 — H(M)— H(AM) — H(N3)

is exact.

Proof: If the upper sequence admits a section (¢ : A5 — A3, mo = id), so does the lower
one. It follows that H respects finite direct products. Let

N —— N

| ]

MM

be a fibre product diagram, such that .45 is an ideal of .45 and that the lower arrow is
surjective. Then we have an exact sequence

0— N — M —> M/ No — 0.
We obtain a commutative diagram with exact rows:

L] |

0—— H(AMN) —— H(AN3) —— H( N5/ N3).

One sees that the first square is a fibre product diagram. Conversely, it is clear that a left-
exact functor turns exact sequences into left-exact sequences.

¢ 4 Tangent spaces

We can view each K-module M as a nilpotent K-algebra, by setting M/ = 0. One obtains
in this way an embedding of the category of K-modules

Mod K — Nil K -
2.17. Definition: Let H : Nilg — Ens be a functor. We call the restriction of H to Modg the
tangent functor tp.

2.18. Lemma: Let ¢ : Modx — Ens be a functor, such that the map t(M & N) — t(M) x t(N)
is an isomorphism for all M, N € Modg. Then t(M) carries a canonical K-module structure
for all M, that is, the functor ¢ factors as

t: Modg — Modg L Ens,
where V is the functor which maps each module to the underlying set.

Proof: Let k € K. We consider the addition and multiplication-by-k£ maps:

+ Me M — M, k:M — M.

40
41
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By applying the functor ¢, we obtain
+:t(M) @ t(M) — t(M), k:t(M) — t(M).

These define a K-module structure on t(M), as is easily seen by expressing the correspond-
ing conditions in terms of commutative diagrams. We remark that the hypothesis implies
t(0) = 0.

2.19. Remark: Let ¢t : Modg — Ab be a functor which satisfies the hypotheses of the lemma.
Then we have two additions on ¢(M): the addition + from the lemma and the addition +’
of the abelian group ¢(M). These both additions coincide. Indeed

+ (M) x t(M) — t(M)
is a homomorphism of abelian groups. It follows from this that:
(a1 + a2) + (by +' b2) = (a1 + b1) +' (ag + b2).
We obtain the claim.

Let ¢ be a functor as in Each m € M defines a K-module homomorphism ¢, : K —
M, en(1) = mﬂ One obtains a K-module homomorphisnﬁ

(2.20) M @ t(K) —> t(M)
m® & — t(cm)(§).

2.21. Theorem: Let ¢ : Modx — Mod g be a right-exact functor which commutes with infinite
direct sums. Then (2.20) is an isomorphism.

Proof: The proof is based on a standard trick, with which one compares right-exact functors.
Clearly is an isomorphism for M = K. As the functors on both sides of commute
with infinite direct sums, we obtain the claim for M = K), where I is an index set (X))
denotes the direct sum of I copies of K). In the general case we find an exact sequence
KU — K) — M — 0. One obtains the claim from the following diagram:

KD @ t(K)—— K @k t(K) —— M @k t{(K) ——0

| l |

HED) ———— (K ) ¢(M) 0.

Let G : Nilx — Ab be a formal group. Then ¢ satisfies the hypotheses of Conse-
quently t¢(K) determines the functor t¢.

2.22. Definition: We call ¢ (K) the tangent space of G.

"This is "¢m(1) = 1” in the original text.
8This is “isomorphism” in the original text.
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As tg is exact, t¢(K) is a flat K-module. If tG(K) is a finitely generated projective K-
module of rank d, we say that G is finite dimensional of dimension d.

Let H : Nilg — Ens be a functor which respects finite direct products. We consider an
exact sequence
0— A — M — N —0

such that .# - % = 0. Then the addition defines a morphism in Nilg:
‘X OM— M.
By applying the functor H, we obtain an action of the abelian group H (%) on H (. ):

When H is a functor to the category of abelian groups, one sees as in that this action
coincides with the addition in H (.#Z).
We have a fibre product diagram:

(wm) A &M~ M
[
m M—— N
When the functor H is left-exact, we obtain a fibre product diagram
H(#)x HM)—— H(A)

(2.23) l JH(W)
H(M)— H(N).

Let £ € H(A). We set He(.#) = H(m)~'(£). Then (2.23) is a fibre product diagram if
and only if for all £ the following condition is fulfilled.

2.24. Condition: H(.#') acts simply transitively on H¢(.#). That is, for ¢’ € H¢(.#), the
map

H(X) — He(A)
n—n+¢

is bijective. The set H¢(.# ) can also be empty.
2.25. Exercise: A functor which satisfies Condition turns injections into injections.

2.26. Definition: A functor H : Nilg — Ens is called half-exact if it respects finite direct
products and if for all £ € H(.#"), the group H (%) acts transitively on H¢(.#).

2.27. Exercise: Let H : Nilgx — Ab be a half-exact functor. Let p be a prime number, which
is nilpotent in K. Then we have p¥ H(.#") = 0 for .#* € Nilg fixed and N large enough.
Thereby we obtain a map Z, — End H to the endomorphism ring of H.

42
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§ 5 Prorepresentability of smooth functors

2.28. Definition: A morphism H — G of set-valued functors on Nilg is called smooth if for
each surjection .# — .4 in Nilg the following map is surjective:

For example the canonical morphism H — Spf K is smooth if and only if H turns sur-
jections into surjections. In this case we say that H is smooth.

We call a surjection o : .4 — A small if # - Kera = 0. One sees that a morphism is
smooth if it satisfies Condition for small surjections.

We remark that a smooth functor does not necessarily turn surjections in Comply into
surjections.

2.29. Lemma: Lety: (R, a,) — (S, b,) be a surjection in Compl, such that ¢(a,,) is a system
of neighborhoods of 0 in S. If H is a smooth, half-exact functor, then H () is surjective.

Proof: We need the following property of half-exact functors. Assume given a fibre product
diagram:
N M

M —— N3

Let the map « be surjective. Then the map H(.4") — H (A1) X g(_13) H(A2) is surjective too.

One reduces to the case of a small surjection «. Then ¢’ is a small surjection too, with
the same kernel #". Letn € H(.41) and 7 € H(.43) be its image. We must prove that the
following map is surjective:

(2.29.1) Hy(AN) — 1 x Hy(N5)

As H is smooth, we have H,(.#") # (). As H is half-exact, H(.#) acts transitively on both
sets. Hence is surjective.

Now we show that H(yp) is surjective. Clearly, one can assume that ¢(a,) = b,. Let
n € H(S) and let 7, be its image in H(S/b,). We construct by induction on n an inverse
image &, € H(R/a,) of n,, such that &, is mapped to §,—1 by H(R/a,) - H(R/a,_1). Let
S = R/I. We consider the diagram

R/api1 —— R/T + app1 = 5/bpya

| J

One checks that the map R/a,+1 — R/a, X g/, S/bpy1 is surjective. Due to the hypotheses
on H, we obtain a surjection H(R/a,11) — H(R/a,)X H(S/bn)H(S/an). We choose for &, 1
an inverse image of &, X, 7,4+1. Q.E.D.
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The following theorem is a generalization of

2.30. Theorem: Let o : H — G be a morphism of set-valued functors on Nil g, which induces
an isomorphism of the tangent functors t — t¢. Then a is an isomorphism if the following
conditions are fulfilled:

1) H is half-exact and G is left-exact.

2) H is smooth or « is smooth.

Proof: Let 4" € Nilg. One finds a sequence of small surjections A" — # — ... = 4, = 0.
We prove by induction on k that H(.#") — G(./") is an isomorphism. Let .4] be the kernel
of A" — .#,. We consider the diagram

H(AN)—— H(")
e
G(N) —— G(MY).

By the inductive hypothesis, a4, is an isomorphism.
Letn € H(.#1) and ¢ be its image in G(.#1). It is enough to prove that

Hy(AN) — Ge(A)

is an isomorphism. By the first condition, the group H(.#1) ~ G(41) acts transitively on
H, (/") and simply transitively on G¢(.#"). The claim follows from this, except in the case
where H,(4") = 0 and G¢(A4") # (. The second condition excludes this possibility.

2.31. Theorem: Let H : Nilg — Ens be a functor which satisfies the following conditions.
1) H is left-exact and smooth.
2) ty commutes with infinite direct sums. I5
3) tu(K) is a projective K-module with a countable basis.

Then H is prorepresentable.

Proof: From one has an isomorphism
(2.31.1) (M) = M @k P = Hompg cont (P*, M)

where P = ty(K) and P* is the dual module of P in the sense of With the topology
introduced on P*, K & P* is an object of Compl. By taking inverse limits from (2.31.1), we
find a bijection

H(K & P*) = Homg cont (P*, P¥).
Let & € H(K & P*) be the element which corresponds to the identity map of P*ﬂ From the NB
Yoneda lemma one can view ¢; as a morphism:

(2.31.2) Spf K @ P* — H.

This is ” P” in the original text.
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For an .4 € Nilg with 42 =0, & 4 : Spf(K & P*)(A) — H(/) is the isomorphism
(2.31.1). The map
H(Stop(P*)) — H(K @ P*)

is surjective by Let £ € H(STop(P*)) be an inverse image of ;. It defines a morphism
&:hp = Spf Stop(P*) — H,
which is an isomorphism by

2.32. Corollary: Let H : Nilx — Ab be a formal group. If H(K) is a projective K-module
with a countable basis, then H is prorepresentable. If H(K) is a finitely generated, free
module, then H is defined by a formal group law.

Proof: The first assertion is clear. If H(K) = K", then it follows from the proof of that
H = hgn. One obtains the claim from the considerations at the beginning of this chapter.

2.33. Exercise (Curves lemma): Let G = Spf K[[X,...,X,]] and H : Nilx — Ens be a
functor which commutes with finite, direct sums and which turns injections into injections.
Let 49 be the curve (see(1.21)

n—1
%(d) =T°%,  where ¢(i) = Z d"
k=i—1

Show that the kernel of the map 79 : K[[X]] — K[[T] — K[[T))/(T%"") lies in (X)<.
Conclude to the injectivity of the map

H(K[[X])) — [[ HE&[T]).
~(d)

Thereby one obtains an injection:
(2.33.1) Hom(G, H) — Homgns(G(K([T]]), H(K[[T]]))-

In general this map is injective in the case where G = hy, for a K-module L.

Let G : Nilx — Ab be a right-exact functor which commutes with infinite direct sums.
Let P be a finitely generated, projective K-module, and a : P — t(K) be amap. Then there
exists a morphism hp — G, which induces « on the tangent spaces. More generally, assume
given a family P, 2% t5(K), i € I of such maps. Then there exists a morphism hep, — G,
which induces o; on the tangent spaces. Consequently, there is a surjection h;, — G for an
appropriate module L. Therefore is injective for G.

§ 6 Bigebras

In we have associated to each formal group law G a bigebra Hg. The same con-
struction is possible in a more general situation.

Let H : Nilg — Ab be a functor. We denote by H its variety, that is, the underlying set-
valued functor. The group structure on H(.#") is given by a morphism (+) : H x H — H.
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One can interpret the zero element as a morphism (0) : Spf X' — H, which maps the unique
element of Spf K (./#") to the zero element of H(.4"). Finally, one has the multiplication-by-
(—1).

Conversely, let H be a set-valued functor which is endowed with morphisms (+), (0)
and (—1), such that the following diagrams are commutative:

HxHxH- N gxnH Spf ik x H— 2 gy
ldx(+)J( l \ /
HxH—S g
ﬂ id x(— Xﬂ HX
Spf K ———— H ﬂxﬂ

Here p denotes the maps that switches the factors. The diagrams express the fact that H(./")
is an abelian group for the operation (+). Therefore (H, (+), (0),(—1)) defines a functor
Let H = Spf R be prorepresentable. Then we haveﬂ NB

HxH(WV) = liﬂ(HomK_Alg(R/an,K@JV) x Hompg-p1g(R/an, K & A))
= ligHomK-Alg(R/an RK R/an,K D JV)

The algebra R®KR = @(R/an ®K R/a,) = 1’£1R QK R/a, ® R+ R ®k a, is an object of i—g’
Compl, which prorepresents H x H.
The morphisms (+), (0), (—1) define comorphisms

A:R— R®kR, ¢:R— K, v:R— R
The K-algebra structure on the K-module R is given by the following maps:

p:R®xR — R, .: K — R.

One obtains the following commutative diagramsﬂ NB
R——=—— R&kR R+—"—— R&gR
AJ J{id ®A MT Tid@u
N A®id ~ ~ —~ p®id ~ ~
Ry R—— R R®kR Rk R R R®kR

O Homg-a1g(R/0n @k Rfan, K & )" is "Homg-a1g(R/an X xR/an, K & .4)” in the original text.
1Some hats ” ™ ” are omitted in the original text.
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. R®kR ) R®kR
R/ li’ R/ })
x

R®kR R®xR
R—= S R&xR R+ R®xR
\ J{id ®e \ Tid Rt
R R

—~ ARA ~ ~ ~
Rk R— Rk RIx R®KkR

J [

R R®xR

R—2 5 ROxR

LEJ lid ®v

R«——R®xR

Conversely, let R be a K-module endowed with a filtration by submodules a,, such that
R =1lim R/a,,. Assume given morphisms A, u, ¢, ¢, v such that the above diagrams are com-
mutative. Then (R, a,, )|E| with the ring structure p is an object of Compl;; and Spf R with the
operation Spf A : Spf R x Spf R — Spf R is a functor to the category of abelian groups.

Let R be an object of Comply, such that for all n, R/a, is a finitely generated projective
K-module. Let

R* = Hompg cont (R, K) = @HomK(R/an, K).

Then we have:
(R&xR)* = limHomp (R/a, @k R/ay, K) =lim((R/a,)* @k (R/a,)*) = R* @k R".

One obtains a bigebra structure on R*, which is moreover provided with the additional
structure v* : R* — R*.

2.34. Remark: Let R be an augmented nilpotent K-algebra. Then we have R®x R = Rk R.
The above diagrams are then self-dual, that is, if one replaces R by R*, A by u*, uby A*, e by
*, L by €* and v by v*, then one obtains the same diagrams as when applying the functor .
If the augmentation ideal of R* is nilpotent again, then Spf R* defines a functor Nilx — Ab
again, that one calls the Cartier dual of H = Spf R. The fact that R* is not necessarily nilpotent
can be checked by the reader with the following example.

2This is ”(R, a, R)” in the original text.
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Let K be a ring of characteristic p, that is, pK = 0. The functor
(N ) = {w € (1+.4)" |27 =1}

is represented by the augmented K-algebra R = K[T']/(T? — 1), where the augmentation is
defined by (7") = 1. One shows that R* does not contain any nilpotent element. On the
contrary, the following functor admits a Cartier dual in the above sense:

ap(N) ={z e N | 2P =0} C Gu(N).

One checks that the dual functor is oy, again. For a treatment of Cartier duality in a more
general setting, we refer to Mumford [16]].

2.35. Theorem: Let H : Nilx — Ab be a functor, which is prorepresentable by a complete,
augmented K-algebra (R,a,). We assume that the R/a,, are finitely generated, projective
K-modules. Then one has a canonical exact sequence of functors Nilg — Ab (see :

0— H—GuR* — GuR" @ R”.

Proof: Let A be an augmented nilpotent K-algebra. We have an embedding:
H(AT) = Homcompl, (R, A) C Homg cont (R, A) = R* @k A.

Two homomorphisms ¢1, ¢2 : R — A can be added when viewed in the group H(A™) as

follows{|

©1 4102 =pa0(p1 ®p2)oA:R— ROxR — ABKxA — A.

This composition law extends to Hom g cont (R, A) and defines on R* Q@ the usual
multiplication. Indeed, as the composition law is bilinear, one can assume that the ¢; are of
the form:

oi(r)=ri(r)a;, r€eR, r,eR, a;€A, i=1,2.

Then we have:
(nalpr @ p2)A) (1) = (rf @ 73, A(r))araz = (A*(r] @ r3),7)a1az = rir3(r)aras

where ( , ) denotes the canonical pairing R* ® R — K. Thereby we obtain an embedding in
the group of units of the K-algebra R* @ A:

H(AY) C (R* ®x A)*.

As a ¢ € Homcompl, (R, A) respects the augmentation, we have ¢ = idg +oT : K@ RT —
K @ A™T. Thereby we find:

H(AY) c 1+ (R @ AT) = GLR*(AT).

BOne hat ” ™ ” is omitted in the original text.
“This is “Hom s (R, A)” in the original text.
DThisis "R ®x A” in the original text.

NB

NB
NB
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We want to characterize the elements of (R* @k A)* which define K-algebra homomor-
phisms ¢ : R — A, that is, for which the following diagram is commutative:

R———A

(2.35.1) 4 TMA
Rx R—— A®kg A

We consider the following mapﬁ
ClZM*®idA:R*®KA—>R*®KR*®KA,
o RFQkA— R*QrkAQKk R* QA —— R* Qg R* QA
rT—— T XX

When ¢ corresponds to the element z, then the commutativity of is equivalent to
c1(x) = c2(z). The maps ¢, c2 define homomorphisms of the groups of units of the algebras.
This is clear for ¢3, and for ¢; this follows from the fact that ;* is an algebra homomorphism.
As c; and ¢y turn elements with augmentation 1 into such ones, we obtain an exact sequence

0 —— H(A") — GuR*(A") =% GuR* @K R*(A™).

2.36. Remark: R* is flat, as it is the direct limit of the projective modules (R/a,,)*. Thereby
GmR* and G, R* ® g R* are formal groups.

"R @k A®k R* ®@x A”is"R®k A®x R* ®x A” in the original text.



Chapter III

The main theorems of Cartier theory

§1 Elementary symmetric functions

Let us recall the main theorem in the theory of elementary symmetric functions. Let ¢ be
an indeterminate over the polynomial ring Z[T1, . .., T,]. The elementary symmetric functions
oi(Th,...,T,) € Z[T1, ..., T,] are defined by the following identity:

(3.1)

(1-Tit) =1—o01t+ -+ (=1)"ont".
1

n

(2

Let G denote the permutation group of the set {1,...,n}. Then G operates as a group of
automorphisms on the polynomial ring Z[T1, ..., T,]:

(gf)(T17 s ’Tn) = f(Tg_l(l)a s 7Tg—1(n))a g €G.

The functions o; are obviously left-invariant under the operation of G, i.e. go; = 0;.

Let N be an abelian group. We set N[T1,...,T,,] = N ®z Z[11,...,T,]. The group G
then operates on N[T1, ..., T,] through the second factor. We denote by N[T1,...,T,]% the
subgroup of invariants for this operation.

3.2. Theorem: Let X1, ..., X,, be indeterminates. There is an isomorphism of abelian groups
N[X1,...,X,] — N[Ty,...,T,],
T — 0.
We defined in (2.12) the weight of a monomial X“. Let N[X1, ..., X,]() be the subgroup

of N[X] spanned by the monomials of weight m and N[T1,...,T,],, the subgroup of N[T]
consisting of degree m homogeneous polynomials. This yields the graduations:

m=0

NIT) = 3 N[

50
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Since the operation of G defined in[3.2)is compatible with these graduations, we have
N[X]m) = NIT]5,

m*

Se C(m) = Dpzm NIX]w and ¢y = >, N[T];n. We have then an isomorphism

(3.2.1) NIX]/¢(my = (N[T]/em)®.

Let N[[X1,...,X,]] be the abelian group of power series with coefficients in N. It is easy to
see thatﬁ

(3.2.2) N[[X]] = N[[T]]*

Let A be an augmented K-algebra whose augmentation ideal is nilpotent. Then A[[X]] =
im A[X]/c,, is an object in Comply. Also, whenever (R, a,,) is an object of Compl then so
is R[[X]]. Indeed, let a/,, be the kernel of the projection

RIX]] — (R/am)[X]/(cm)-

Then a], is a system of neighbourhoods of 0 in R[[X]]. Obviously we have R[[X]|[[Y]] =
R[[X,Y]]. Let F : Nilx — Ens be a functor. Since projective limits commute together, we
have

F(R[[X]]) = lim F((R/an)[[X]]).

Let F' : Nilx — Ens be a functor and A an augmented nilpotent K-algebra. We have then a
canonical morphism

(3.3) F(A[[X]]) — F(A[[T]))C.

3.4. Condition: For all A4, (3.3) is an isomorphism.

By the previous remarks, if this condition holds, it also holds for A € Comply. Condi-
tion is satisfied, for instance, in the following situations.

3.4.1. Every left-exact functor satisfies Condition Indeed, let us consider the following
commutative diagram:

AX]/¢(m) ——— A[L]/em
| |2
AlL/em — ngG AL/ em

where A(f) = (..., f,...) is the diagonal and ¢(f) = (..., gf,...). According to (3.2.1) this
is a fibre product diagram. Therefore, an application of the functor F' yields

F(A[X]/¢(n)) = F(A[L]/e) .

1We are not sure what the letter used for this notation in the original text is.
Sentence added by the translator.
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The conclusion follows by taking limits.

3.4.2. Let M be a K-module. Then [3.4]is satisfied by the functor hy; (¢f 2.11). Indeed, since
har(A[[X]]) = (M @k A)[[X]]T, the conclusion follows from (3.3).

3.4.3. Exercise: Let H : Nilx — Ab be a functor that takes an exact sequence 0 — 4| —
Ny — Ny — 0 where 432 = 0 and .43 is a free finitely generated K-module, to an exact
sequence 0 — H(A1) — H(A3) — H(A3) — 0. Show that H satisfies Condition [3.4]

Let H : Nilg — Ab be a functor satisfying Condition We consider the morphisms of
algebras
u K[X]] — K[[T,.. T, w'(X) =T

7

: 51
We obtain a map 25

ufy =Y H(u}') : HK[[X]]) — H(K[T]) = H(K[[X]).
We compute this map for the functor H = A and the element 1 — Xt € A(K[[X]]) (see chap-
terll] §[2.1). We have A(ul)(1 — Xt) = (1 — T;t) and

uf(1=Xt) = [J(1 = Tit) =1 = Xat + - + (—1)"Xpt".

§ 2 The first main theorem of Cartier Theory

3.5. Theorem: Let H : Nilx — Ab be a functor satisfying Condition Then, we have an
isomorphism of abelian groups

A - Hom(A, H) = H(K[[X]])
d+— q)K[[X}](l — Xt).

Proof: It is obvious that Ay is a group homomorphism. We prove first its injectivity. Let A =
K&/ be an augmented nilpotent K -algebra. Let f € A(A) = A(A), f = 1+ait+---+a,t”,
a; € A . We consider the morphisms

ph o K[[X1,..., X)) — A
X; — (—1)a,.

For each ® : A — H we get a commutative diagram

AKX — 3 AGKTXT) 297, A (a)

P r(x7) P K [1x7) P4

AKX s m (X)) 29 ()

The identity A(pfl)uﬁ(l — Xt) = f holds. If & € Ker Ay then ® g x}(1 — Xt) = 0 and the
commutativity yields ® o (f) = 0. This proves the injectivity.
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Conversely, let § € H(K[[X]]). We put 8, = u}(0) for n € N. Let ®4(f) = H(pﬂ)(@n)
The number n is not determined by f, for we did not rule out a,, = 0. Let us show the
independence of ® 4( f) from the chosen value of n.

We consider the commutative diagram:

K[[X1,..., X /= K[[T1, ..., Th_1]|

J J

K[[Ty,..., T, — K[[T1, ..., Th_1]|

There we have 7, (X;) = X, fori < n and 7, (X,,) = 0, the same holds for the T;. We get

H(7n)(0n) = H () (Z H(u?)(9)> = H(6nu}')(8)
i=1 i=1

25 Hence ®4 is well-defined and obviously is a morphism of functors. We still have to prove
that ® 4 is a morphism of groups.
We now consider the case where A = K|[[X,Y]]. Let &,,¢! € A(K][[X,Y]]) be the ele-

ments

& =1—Xqt+- -+ (=1)"X,t", E=1-Yit+- + (=1)"Y,t"
We show that
(3.5.1) P [[X,Y]|(&, + &) = Pr (X, Y(E,) + Pk [[X, Y]I(E)-

Let K[[X,Y]] — K[[T,U]] be the morphism givenby X; — o;(T1,...,T,) and Y; — o;(Uy, ..., Upy).
The group G x G operates on K|[[T, U]] by letting the first factor permute the X; and the sec-
ond factor the Y;. We get

K([T, U = (K[[TN[[U]]>) e = K[Z][[Y]]*! = KX, Y]],

H(K[[X,Y]]) = H(K[[T, U)*“ ¢ H(K[[T,U])).

It is therefore enough to show that (3.5.1) holds in K[[T', U]].
Letu,,,u, : K[[X]] = K[[T,U]] be the maps u,(X) = T; and v/ (X) = U;. We get D [[ X, Y]](&],) =

ny» -'n

> H(u})(#). Since a similar relation holds for £, the right-hand side of becomes
ST H)0) + S H@)(0) = w3 (6) = O
On the other hand the equality &/, + £/ = u**(1 — Xt) holds. Thus
O ([T, UlJu" (1 — Xt) = uif Ppeppxy (1 — Xt) = ujf = bap.

and this proves (3.5.1)).
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Let A be an arbitrary nilpotent augmented K-algebra. We consider two elements f' =
1+adit+ - +atmand f" =1+ aft+ - -+ allt™ of A(A). Let p : K[[X,Y]] — A Dbe the
morphism defined by p(X;) = (—1)%al, p(Vi) = (—=1)’a’. Then we have

a(f) = H(p) 2 [[X, Y] (&),
a(f") = H(p)®x [[X, Y]I(&),
Qa(f + [") = H(p) @k [[X, Y]I(&, + &)-

With (3.5.1), this yields immediately ®4(f" + ") = ®a(f') + @a(f").

§ 3 The Cartier ring

For any ring R, we denote by R°P the opposite ring of R. As an abelian group, it is the
same as Iz, but the multiplication is processed the other way around.

3.6. Definition Let Ex = (End A)°P be the opposite ring to the endomorphism ring of the
functor A. We call it the Cartier ring of K and denote it shortly by E. According to the first
main theorem 3.5, we have a bijection B4

A Ex — A(K[[X]).

We consider a base change morphism K — K’ (cf 2.9). The correspondence K — Eg is
functorial. More precisely, we have a commutative diagram

Ex —— Ax (K[[X]])

]

We define the following elements of Ex:

Vo=M11-X"t), F,=X'(1-Xt"), forneN,

(3.7) T
el =Xy (1 —cXt), force K.

For each functor H : Nilx — Ab the group Hom(A, H) is a right End(A)-module and a
left E-module. When Condition 3.4]is satisfied, we consider on H(K[[X]]) the left E-module
structure given by Ay. We denote this module by M.

We now consider the following endomorphisms of K [[X]]:

6n : K[IX]] — K[[X]], neN, Ve : K[[X]] — K[X], ceK.
X— X" X+—cX

3.8. Lemma: Let H : Nilx — Ab be a functor satisfying Condition 3.4 Then the following
holds:

Vay =H(¢n)y, v =H(We)y, v e H(K[X]).
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In particular V,[c]F,,, = A (1 — ¢X™¢™) holds in the Cartier ring.

Proof: The first main theorem yields a ® € Hom(A, H) such that @k x) (1 — Xt) = 7. Then:

Vay = @ (1 = X7t) = @y Alon) (1 — Xt)
= H(an)q)K[[X}](l — Xt) = H(¢n)y
and
[c]y = Pgpxp (1 — eXt) = Prpx)A(ve) (1 — Xt) = H(the)y-

We now consider H : Nilg — Ab an exact functor. We consider on My the descending
filtration given by
M =Im (H(X"K[[X]]) — H(XK[[X]])).

From the exactness follows the existence of isomorphisms

My /M ~ H (X"K[[X]])/ (X" K([X]])) -

3.9. Definition: A V-reduced Cartier module M is a left E-module equipped with a filtration
by abelian groups
...CM"C...CMle

such that the following conditions hold:
1) Viple)M™ c M™" for allm,n € Nand ¢ € K.
1’) For all m,n there is a r such that F,,, M" C M™.
2) Vi : M/M? — M™/M™"! is a bijection.

3) M = lim M/M".

We see M as a topological module, where M™ is a system of neighborhoods of the origin.

3.10. Example: Let H : Nilx — Ab be an exact functor. Then My is a V-reduced Cartier
module. Conditions 1)-3) are obviously fulfilled. We show that Condition 1’) holds. For this,
we introduce a suitable notation. Let 0 — .41 — .4 — .45 — 0 be an exact sequence in Nil g
and ¢ € H(A). We write { = 0 mod 4] when the image of £ in H(.43) is zero. Let § €
H(K[[X]]*) = Mg. Then # = 0 mod X" means § € M};. Let p: K[[X1,...,X,]] = K[[X]]
be the morphism defined by p(X;) = 0 fori < n and p(X,,) = (-1)""1X. Let ® : A — H be
the morphism associated to 6 by [3.5 By the definition of ®, we have

Fo0 = ®(1 — Xt") = H(p)u,(6).

Assume § = 0 mod X™". It is enough to prove that F,,0 = 0 mod X™. Let 7, be
the ideal of K[[X]] generated by all monomials whose weight is greater than or equal to mn
(cf . We see easily that uf;(0) =0 mod 7(,,,). Since p induces a morphism K [[X]]/7(;,n) —
K[[X]]/(X™), we have H(p)u};(6) =0 mod X™.
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Let M be a V-reduced Cartier module. We consider a system of representatives {za }ocnr/nr2
for M/M?in M, ie. a =z, mod M?. Since M is complete, each sum similar to Y oo ; V,,za,,
converges.

3.11. Lemma: Each element x € M admits a unique representation

o0
T = E Vhza, -
n=1

Proof: We construct iteratively the z, such that x — Z;”:_ll VaZa, = ym € M™. According

to Zﬂwe have a unique representation y,, = V;n2a,, + Ym+1 With yp, 11 € M m+l NB
We are allowed by 3.5 to identify E and My. We put E,, = M}. Every sum of the

following form is convergent:

i Vibn,  &n €E,.
n=1

3.12. Theorem: Each ¢ € E has a unique representation

f = Z Vn[an,m]Fma an,m € K,

n,m>1
where for fixed n almost all a,, ,, vanish. =

Proof: In A(X K[[X]]/(X?)) the identity

N N
1= anXt™ = ] (1 - amXt™)
m=1

m=1

holds. Therefore {3 [amm]Fy, | am € K} is a system of representatives of My /M3. The claim
then follows from
In particular, we have:

E, = Z Vilars)Fs | ars € K,  ars = 0for s> 0and fixed r

ren,s>1
3.13. Theorem: The following identities hold in E:
a) i=F =1,
b) [c]V, = V,[c"] forall c € K,
c) VinVio = Vinn,
d) [e1][eo] = [erca],

*The original text quotes 3.8.2.
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e) F,V, =n,

f) Fylc] = [c"|F, forallc € K,

g) FrnFp = Fum,

h) F,V,, = Vi, F,, whenever (n,m) =1,

i) there exist polynomials a, (X1, X2) € Z[X;, X5] such that [c; + ¢2] = [c1] + [c2] +
Yoo Vanlan(cr, )| Fy forall e1, ¢ € K.

Proof: Properties a)-d) are a direct consequence of[3.8] In order to prove e)-h), we introduce
the morphism ¢ : Z[X| — K, X +— c. It induces a morphism of Cartier rings Ezix) — Ek,
> ValenmlEm = 2 Vaglenm] Fm. It is therefore enough to check the relations in Ezx;. If we
choose an embedding Z[X] — C, we see that we can assume that K = C. Let ¢, = ¢*™/™.
Then we have (1 — X"t") = [["; (1 — ¢} Xt), that is, V,,F,, = 37"} [¢]. Furthermore

n—1 n—1 n—1
ViV =Y (Ve =) ValGM =" Vi =nV,.
=0 =0 1=0

Since V,, operates injectively in Ex = A(K[[X]]T), we gete). But according to d), [c] and >[¢}]
can be permuted, so that
Vi Fpolc] = [c)Vi Ey, = V[ F.

We thus get f). Relation g) follows from

n—1 n—1
Vi Fnlom = Vin Z (G Fm = VinFm Z [C’Z:Lm]
1=0 =0
m—1 n—1 ' mn—1
=D Y Gl = D Gl
k=0 1=0 r=0
= anan
For h) note that if (n, m) = 1 then
n—1 ) n—1 ' n—1 ‘
=0 1=0 =0

We still need to prove i). By introducing the morphism Z[ X, X3] — K, X; — ¢;, we may
assume that K = Z[ X, X»| and X; = ¢;. One shows directly that any series 1 + Zi21 a;T" €
K|[T] admits a unique decomposition 1+ a;7" = [[(1 — w;T"), u; € K. The element [¢; +
ca] — [e1] — [e2] € E corresponds to (1 — (c1 + ¢2) Xt)(1 — 1 Xt) 71 (1 — o Xt) 1. It admits a
decompositiorﬁ Hi22(1 — a;(Xt)") and the a; € Z[X}, X»] are the required polynomials.

3.14. Remark: Let ®,, be the minimal polynomial in Z[X] of ¢*™/". We say that K contains a
primitive n-th root of unity if there is ¢,, € K such that ®,((,) = 0. Then the relation 1 — 7" =

*The product is “[],_,” in the original text.
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[Licz/nz(1 — ¢¢) holds in K[T)]. Indeed, there is a morphism Z[X]/®,(X) — K, X ~ (.
Since we can embed Z[X]/®,(X) in C, it is enough, as in the proof of to show the
relation for K = C. In this case, it is clear that the polynomials on both sides have the same
roots.

In the Cartier ring E, this relation is written as

|
—

n

[C:J = Vo F.

7

Il
o

We can obviously embed any ring K in a ring K’ containing a primitive n-th root of unity.
If K has characteristic p, then 1 is a primitive p-th root of unity and in this case we have V,,F}, =
EV,=np.

pVp

3.15. Exercise: a) Let .#" € Nilg. The Cartier ring E operates on the right on A(.4"). Show
that every element of A(.#") has a unique representation

n n

Y (—ath=)"F

=1 =1

where the sums are taken in A(.4").

b) Let £ = )" Vi[zs], Fs € E. Show that £ is a unit precisely when all the sums > =, szl
are units in K. For this, compute the operation of £ on A(.#") when .#? = 0 and conclude
with[2.300

c) Let M be a V-reduced Cartier module. Show that the multiplication by [c], c € K
defines on M/M? a K-module structure. Assume that M/M? is a free K -modul and let
{mi};c; be a set of elements of M whose residues modulo M? form a basis of M/M?. We
call {m;},.; a V-basis. Show that each element m € M has a unique representation

m = Z Vilerilmi.
r>1

i€l
d) In the case where K contains all primitive n-th roots of unity, Condition 1’) in[3.9)is a
consequence of the remaining ones.
§ 4 The reduced tensor product

Let N be a V-reduced Cartier module. From [3.9/1) and [3.9]3) follows that E,M C M™.
We denote by [, M the topological closure.

3.16. Lemma: WehaveE, M = M™ and if M is a finitely generated E-module, we have E, M =

M™.

Proof: By[3.92), each m,, € M™ has a unique representation m,, = V2, +my41 withz, € M
and m,41 € M. We find m,, = 5 . V,x, € E, M. Letuy,...,u, be generators of M. We

rzn

>The formulation is “Let M/M? be a free K-module” in the original text.
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then have m,, = Zj Vién,juj + mypy1, where &, ; € E, which yields m,, = Zj(Zr Virj)u; €
E,M.

3.17. Remark: The proof also shows that for a finitely generated E-module M, Condi-
tion[3.9]1") follows from the three other conditions in[3.9

Let R be a right E-module. Let R, = {r € R | rE; = 0}. We denote by R, o M* the image
of Ry ®7 M* — R ®g M. We then have R,, o M™ C R;,+1 © M™+1 Indeed, using the same

notations as in we haveﬂ
(3.19) Tn @My =1n @ (Vpop + Mpg1) = rp @ Mg

We put (R ®r M) = |J Ry o M™.

3.20. Definition: We call reduced tensor product the abelian group
R®r M = R®g M/(R®g M)s.

According to we have R @g M = R®g M for finitely generated abelian groups. We
call R a torsion right module when R; = R.

3.21. Theorem: Let Ry — Ry — R3 — 0 be an exact sequence of torsion right modules.
Then
Ri@ M — Ry ®k M — R3@g M — 0

is exact again.

Proof: The usual tensor product is right-exact, it is therefore enough to show the surjectivity
of the map (R2 ®r M)oo — (R3 ® M)s. We take r,, ® m,, € R3, o M™. Then r, lifts to
an element u; € Ry for some | > n. But allows us to assume that m,, € M'! and the
conclusion follows.

3.22. Theorem: Let .4 € Nilg. Then A(./) is a torsion right E-module.

Proof: We choose some s such that .45 = 0. Let f = 1+ a1t + --- + ant™ € A(4). By3.5
an endomorphism ® € End A corresponds to a polynomial § = 1 + Y u;t’, where u; €
K[[X]]. The endomorphism ¢ belongs to E,, precisely when u; = 0 mod X". With the
same notations as in the proof of 3.5, we have

Oy (1+art+ - ant™) = A(pl)u™(0) = A(p]) <H 9(n)> :
=1

Put [T, 0(T3) = 1+ pi(Th, ..., To)t + -+ pn (T, ... , T»)tY. The p; are symmetric power
series in the T;. If ® € E,, then the monomials occurring in the p; have a degree greater
than m. According to we can also see the p; as power series in the X;. Monomials in
the X; occurring in the p; have a weight greater than m and a degree greater than m/n. It

follows that p},(p;) = 0 for m > ns. We get ® 4 (1 +art’ + -+ ant™) =0 form > ns.

SThere is no item numbered 3.18 in the original text.
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Each V-reduced Cartier module M therefore defines a right-exact functor Nilx — Ab,
N = A(A) @ M. We will determine in the sequel which modules M yield a formal

group.
3.23. Examples of reduced tensor products:

a) E/E, ®g M = M/M". Indeed, M" is obviously contained in the kernel of the sur-
jection M — E/E,, @g M, m — 1 ® m. By definition, this kernel is generated by all
the em such that eE; C E,, and m € M?*. We must show that em € M"™. Since E;M is
dense in M, it is enough to show that the operation eE;M C M™ is continuous, which
is obvious.

b) Let EX) be a direct sum of some copies of E and e; the standard basis of E(). When I

is infinite, the module E!) with the filtration Eg) is not a V-reduced Cartier mod-

ule, because [3.93) is not satisfied. We get a V-reduced Cartier module by taking the
completion

B0 — limED /RO
ED) = lim EO) /E(D.

Then E() consists of all sum Y icr &iei where &; € E, such that for each fixed n, almost
all of the ¢; belong to E,,. For each torsion right module we have an isomorphism:

—

R ®g EO =5 RO
Z i @ e «— (1;)
r® Zéiei — (r&;).
In order to prove that these maps are mutual inverses, it is enough to show that
reY &Gei=» r&®e,  rER
This equality is clearly true when almost all §; are 0 or when ¢; € E,,. Indeed, in the

latter case we have > e; € Eg). By the definition of the reduced tensor product, the
two sides of the equality are zero. The general case follows.

¢) According to a) we have:
M/M? = A(XK[[X])/X?) G M.

Let 4 € Nilg with 42 = 0. If we apply to the functor A4 — A(A) @ M, we
obtain a canonical isomorphism

N @ M/M? = A(N) @ M.

In the sequel, we define reduced Tor groups by analogy with the usual Tor groups.
A morphism of V-reduced E-modules is a morphism ¢ : N — M of E-modules such
that o(N") C M".

3.24. Lemma: The following conditions for ¢ are equivalent:

"These sums are denoted @icr&ie; in the original text. Since they are really infinite sums, the nota-
tion ), ; {ie; seemed more appropriate.
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(i) ¢ is onto.
(ii) G(N™) =M™,
(iii) ¢ : N/N? — M/M? is onto.

Let L be the kernel of L, with the filtration L™ = L N N™. Then L is a V-reduced Cartier
module.

Proof: The equivalence of the three conditions follows directly from We show that L
satisfies Condition [3.9]2), the remaining ones being trivial. We have a commutative diagram
with exact rows:

0 , Ln/Ln—i-l N Nn/Nn—H , Mn/Mn+l )

The bijectivity of V,, : L/L? — L™/L™** follows.
Let M be a V-reduced E-module. We then have a bijection
Homg (ED), M) = M
¢ — [J o(e:)
i€l
where M stands for the direct product of I copies of M.

We see easily that every V-reduced Cartier module M admits a resolution

oo—P— ... — P — P — M —0,

—

where P, = E(i). By a standard result in homological algebra (see [26]) any two resolu-
tions are homotopically equivalent. The following definition is therefore independent of the
chosen resolution:

3.25. Definition: Let R be a torsion right E-module and M a V-reduced Cartier module. We
define the reduced Tor groups:

Tor, (R, M) = Hy(R ®g Ps).

We say that an algebraﬂ A € Nilg is flat if it admits a filtration 0 = .4 C --- C A = AN
such that Jiﬁl C A; and A1 /.4; is a flat K-module.

3.26. Theorem: Let ./ ¢ Nilg and M be a V-reduced Cartier module. If .4 is flat or
if M/M? is a flat K-module, then

Tor, (A(A),M)=0 fori > 0.

8The letter ”.#"” is missing in the original text.
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Proof: We consider an exact sequence of V-reduced Cartier modules

0O—L—P—M-—70

—

where P = EU). Assume now that .#2 = 0. If we construct the reduced tensor product
with A(.4"), we obtain by c) an exact sequence

N @k L)L — N @K P/P? — N @ M/M? — 0

which is also exact on the left if .4/ is flat or M/M? is flat. In theses cases the long homology
sequence yields

Tor, (A(A), M) =0, Tor, (A(A), M) = Tor,;y (A(A), M)

fori > 1. If M/M? is flat, so is L/L? and an induction yields Tor, (A(A), M) = 0 for i > 0.
In the general case, we use a filtration 0 = 4] C --- C A} = A4 such that </V82 C Ns_1.
If . is flat, we may also assume that .#;/.#;_; is flat. We consider the sequence

0 — A(As1) — A(A5) — A( A5/ Ns—1) — 0.
After tensoring by M, we get the exact equence
Tor,” (A(AHs—1), M) —s Tor; (A(A5), M) — Tor;” (A(As/Nim1), M).

By induction, we may assume that the outer terms are 0, and the claim follows.

§ 5 The second main theorem of Cartier theory

3.27. Definition We say that a V-reduced Cartier module M is V-flat if M/M? is a flat K-
module. If M/M? is projective and admits a countable system of generators, we say that M
is reduced.

3.28. Theorem (second main theorem): A functor H : Nilg — Ab is isomorphic to a functor
of the form A(4#) ®g M for some V-flat Cartier module M if and only if H is a formal
group. If Hy and H; are formal groups and M; and M their Cartier modules (see ,
then there is a natural bijection

Hom(Hy, Hy) = Homg (M, Ms).

Proof: A functor of the form .4 — A(4") ®g M commutes to infinite direct sums and is
exact by It is then a formal group.
Conversely, let H be a formal group. We then have a canonical morphism

(3.28.1) AAN) @ My — H(N).

Indeed let f € A(4) and m € Mpy. By [B.5 m defines a morphism ®,, : A — H. The
correspondence f x m — ®,,(f) € H(A) is E-bilinear since if e € E and &, : A — A'is
the corresponding morphism, we have by definition ®,,(fe) = ®,, 0 ®c(f) = Py (f). This
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yields a map A(A) ®g My — H(4"). We will now show that it factors through the reduced
tensor product, that is, that f ®m lies in the kernel of this map when f-E; = 0 and m € Mj,.
Indeed, f ® E;Mp lies obviously in the kernel. Since E;Mp is dense in M7}, it is enough
to show that f ® Mj; is in the kernel for large enough r. Let f = 1+ a1t +- - - +a,t™ € A(A).
By definition ®,,(f) = H(p})(u}(m)) (¢f B.5). With the notations of for large r the
map pfl factors through
K[[Xl, e ,Xn]]/’r(r) — Kae .

If m =0 mod X" then u};(m) =0 mod 7. We obtain H(pfl)(u?](m)) = 0. Henceﬂ (3.28.1)
is well-defined.

If 4% = 0 then (3.28.1) is an isomorphism according to and c). From the ex-
actness of H follows that My /M12—1 is a flat K-module. Hence the functor on the left-hand

side of (3.28.1) is a formal group. With we see that (3.28.1) is an isomorphism. The last

statement in the theorem is trivial.

The theorem shows that the category of V-flat Cartier modules is equivalent to the cate-
gory of formal groups.

3.29. Exercise: A functor H : Nilx — Ab is of the form .4 +— A(#) ®g M for some V-
reduced Cartier module if and only if it satisfies the following conditions:

a) H is right-exact and commutes with infinite direct sums.

b) For each exact sequence 0 — .4 — A5 — A3 — 0 where Jl{f = 0and 435 is a
free K-module, 0 — H (A1) — H(A43) — H(A5) — 01is exact (cf |3.4.3).

Let G be a formal group such that G(X K[[X]]/X?) is a free K-module. Let m; € M =

G(K|[[X]]), i € I be curves whose residues modulo X? form a basis of Mg /M3 = G(XK|[[X]]/X?),

that is, the m; form a V-basis of M. We can consider m; as a morphism m; : Spf K[[X]] —
G. By we get an isomorphism:

(3:30) D Spf K[[X]] — G
i€l

The functor on the left-hand side of (3.30) is obviously isomorphic to hy). Let p; :
hyy — hi be the canonical projection on the j-th summand. The isomorphism (3.30) can
then be written as

(3.30.1) Z m;p; : hgery — G.
jel

3.31. Definition: We call (3.30.1) the curvilinear coordinate system relative to the m; on G. If we
identify the set-valued functor underlying Var G with h ), we get

Z m;p; = idG .

The original text refers to 3.20.1.



Chapter IV

Local Cartier theory

§1 Cartier theory over a Q-algebra

4.1. Theorem: Let K be a Q-algebra. Then there is an isomorphism

A~ Ga.

s

=1

Proof: Let S be a Q-algebra and = € S a nilpotent element. Define then

> ﬂfi > $i
expmzzﬁ, log(l—x):—zj.
i=0 i=1
We consider the algebra S = K[t] ®x (K & /), for A4 € Nilg. Then exp and log define

inverse maps

4.1.1) (10t i (t )

exp

The ring E acts to the right on the functor A. This action extends to @;2, G,. Let z €
D2, Ga(N) = P;2, A. We denote the i-th component by ;.

4.2. Corollary: The action of E on G, is as follows:

Tm if n | m (n divides m),

(-Tvn)m = NTnm, (I[C])m =ImC (IFn)m - { 0 otherwise.

Proof: Identifying @ G. (/) with ¢t #[t], represent z as the element " z;t!. Let us prove
the first identity. By the first main theorem 3.5, it suffices to verify that
log((1 — Xt)V,,) = (log(1 — X1t))V,.

67
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But
log((1 = Xt)V,) =log(1 — X™t) = = Y _ X"t /m

and
tm
log(1 - Xt)V, = | — X"— )V, =— X" /m.
(og(1 = XDV, = (=SS X" ) v == 3
The remaining verifications are left to the reader.

One sees immediately that %VnFn P2, Ga — P;2 G, is the projection onto the sum-
mands whose indices are divisible by n.

1 |z ifn|m,
(:13 nVnFn>m N { 0 ifntm.

The producfl| [T (1 — $V;F%) = P over all prime numbers ¢ converges in the Cartier ring E.
It acts on @ G, as projection onto the first factor. We have:

Ty ifn=m,

1 =
(4.3) (annPFn)m { 0 otherwise.

4.4. Definition: Let M be a left E-module. The elements of the subgroup PM C M will be
called typical elements of M.

An element m € M is typical precisely when F;,m = 0 for n > 1. Indeed, let m € PM.
For every prime number /, we find that F} (1 — %WFg) = 0 and therefore F;P = 0. Hence
F,m = 0forn > 1. On the other hand, assume that F,,;;n = 0 for n > 1. Since P has the form
143,51 @ Vo Fy, for suitable a,, € Z, we conclude that Pm = m.

From [3.13)it follows that, for c¢1,co € K and m € PM,

[c1] m + [ea] m = [e1 + ca] m.
Therefore PM is a K-module.

4.5. Lemma: Let M be a V-reduced E-module. The inclusion PM C M induces an isomor-
phism of K-modules:
PM — M/M?.

Proof: We show that M? lies in the kernel of the projection P : M — PM. An element
m € M? can be written in the form Y n>1 Vamy. Since M is stable under the action of E, it
suffices to show that PV,, = 0. We are easily reduced to the case where n = / is a prime
number. Then we get (1 — %WF() Ve = 0, hence PV; = 0. Clearly P : M/M? — PM is an
inverse map.

4.6. Theorem: Let M be a V-reduced E-module. Then every element m € M has a unique
representation

m:ZVnmn, my € PM.

'This is “The product (1 — $V;F;) = P” in the original text.
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Let M; and M; be V-reduced E-modules and @ : M;/M? — My/M23 a K-linear map. Then
there is a uniquely determined E-module homomorphism « : M; — M, inducing @.

Proof: Bywe have theidentity %VnPFn = 1, from which the existence and unique-
ness of the desired representation follow. By £.5a map induces a K-linear map « : PM; —
P M. Clearly, the required E-module homomorphism is given by > V,m,, — > Vya(my,).

4.7. Corollary: Let K be a Q-algebra. The functor H — ty(K) is an equivalence of cate-
gories between the category of formal groups with the category of flat K-modules. If ¢ (K)
is a free K-module, then H is isomorphic to a direct sum of copies of G,.

4.8. Corollary: Let K be a field of characteristic 0. Then every prorepresentable functor
H : Nilg — Ab satisfying the conditions of is isomorphic to a direct sum of copies
of G,.

Proof: We have an exact sequence
0— H— Hi — Hy,

where H; and H; are formal groups. By[4.7 the functor H; is isomorphic to to the functor
N = N @k ty,(K) and Hi — H is induced by a homomorphism tg, (K) — tg,(K).
Denoting by M the kernel of this homomorphism, we obtain an isomorphism A4 ®x M =
H(AN).

4.9. Exercise: Let H : Nilx — Ab be a functor satisfying the conditions of Then H is
isomorphic to a functor of the form A" — A4 ®x M, where M is a K-module.

4.10. Exercise: Let H be a formal group and My its Cartier module. Show that there is an
isomorphism
Hom(G,, H) — PMy = My /M%.

For a formal group law H, this is[1.26]

§ 2 p-typical elements

We have seen that the V-reduced Cartier modules over a Q-algebra are rather simple,
since in the Cartier ring there are many projectors The rest of this chapter is devoted
to the following more complicated case, in which however we will still have plenty of pro-
jectors. Let Z,) be the localization of the integers at the prime ideal pZ. From now on, we
assume that K is a Z,)-algebra.

Let H be a formal group. From it follows that the multiplication n : H — H by an
integer prime to p is an isomorphism. Taking H = A, we get that n is a unit in the Cartier
ring. Let e1 = [[(1 — $ViF}) € E, where the product runs over all prime numbers ¢ # p. For
a prime-to-p integer n, let ¢,, = %Vnlen € E.

2

4.11. Lemma: The elements ¢, satisfy the relations ¢,

2 (np=16n =1

= €n, €ném = 0 for n # m, and

65
66



66
67

NB

70 CHAPTER IV. LOCAL CARTIER THEORY

Proof: Clearly one can reduce to the case K = Z,. Since £y, w C Eg, we are further reduced
to the case K = Q. With notations as in[4.2) we have:

(4.11.1) (€)= { 0 otherwise.

From this one deduces all the claims of the Lemma.
For any .4 € Nilg, we get a decomposition

AA) = D AN )en

Indeed, for any £ € A(.4") we have &g, = 0 for large n, since A(.4") is a torsion module.
Hence the functor A, (.#") = A(A4")ey, is a formal group. For A; we will also use the notation

W and call it the formal group of Witt vectors.
4.12. Lemma: Left multiplication by V,, induces an isomorphisnﬂ
An(N) — W(A)

T — x2V,.

Proof: Let = ye,,. Then we have
1 —
YenVn = yﬁVneanVn =yVper € W(A).
The inverse map is given by z +— 21 F,,.

We have thus found an isomorphism

(4.13) A~ @ W.
(n,p)=1

The identity transfers to all E-modules.

4.14. Definition and Theorem: Let M be a reduced E-module. The elements of the sub-
group 1M C M are called p-typical. An element m € M is p-typical precisely when F,,;m = 0
for (n,p) = 1and n > 1. Every m € M has a unique decomposition

m= Z Vama, where m,, is p-typical.
(n,p)=1

Proof: Let ¢ # p be a prime number. Since Fy(1 — %VgFg) = 0, it follows that Fye; = 0. As
a consequence, F,,m = 0 for every p-typical element m. Conversely, assume Fym = 0. Then
(1— %WFg)m = m, so eym = m. The decomposition is obtained by taking m,, = %51an.

It is written “IW” instead of “W” in the original text.
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§ 3 Local version of the first main theorem

Let H be a formal group. The p-typical elements of My = H (K[[X]]) will also be called
p-typical curves. Let v = (1 — Xt)e; € W (K[[X]]), i.e. v is the curve corresponding to ¢; by
the first main theorem. Then by definition ¢,y = 7.

4.15. Theorem: Let H be a functor for which the first main theorem holds. Then there is an
isomorphism
Hom (W, H) =% e1H (K[[X]]) .

Proof: This follows immediately from the isomorphism

Hom(Aey, H) ~ ¢1 Hom(A, H).

4.16. Corollary: The endomorphism ring of W is c1Ee1. Every element of ¢1E¢; admits a
unique decomposition

e1 Y VirlrrdFpe = Y VprlanslFpper  aps € K,

r,s>0 r,s=0

where for any fixed r almost all z,. ; vanish.

Proof: The first statement is trivial. According to g1 commutes with V,r, Fjs and [z] for
x € K. When n is not a p-power, we have €1V,, = F,,e1 = 0. The existence of the required
decomposition follows from [3.12} We show the uniqueness. Let & = 3 Vyr [, ;] Fps. We have
to show that £1§ = 0 implies { = 0. Since the action of V), on E is injective, we may assume
¢ ¢ M?. On the other hand, it follows from ;£ = 0 that

1
§= Z ené = Z Vnﬁgan S M?2.
(n,p)=1
n>1

This contradiction completes the proof.

4.17. Definition and Theorem: We call e;Ee; =: E, the local Cartier ring corresponding to
the prime number p. Set V = ¢,V, = V&1, F = e1F, = F,¢1, [z], = e1[z] = [z]e1. Then
every element in E, has a unique decomposition

Z V' s F® xrs € K,

r,s>0

where for fixed r almost all z, ; vanish. The following relations hold:

—_

b= FV=p
[z],V = VI]z], Flzly = [2"],F
[=]plylp = [zylp [z 4+ ylp = [2lp + [Ylp + 2ozt V" lapn (2, )], F™
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where the a,» are the polynomials defined by When K is a ring of characteristic p, then
VF =FV =p.

All the claims follow from When there is no risk of confusion, we will simply
write [z] instead of [z]).

4.18. Lemma: Let M be a V-reduced Cartier module. Then there is a canonical isomorphism

e1M/VerM = M/M?>.

Proof: The map 1M — M/M? is surjective, since ey = m mod M?. Let ey € M2. Then
we have a representation

e1m = E V.m,

r>2
Multiplying this identity by ¢; we get
e1m = Z Vpnermpn € Ve M.

n=1

4.19. Lemma: Let {m;},.;, m; € 1M, be a complete set of representatives for e;M/Ve1 M.
Then every element m € ;M has a unique representation

m = Z VM-

n=0
This follows immediately from and
4.20. Definition: We shall say that an E,-module M), is V-reduced when
a) V : M, — M, is injective,

b) M, = lim M,/V"M,.

§ 4 Local version of the second main theorem

4.21. Theorem: Let M be a V-reduced E-module. There is a canonical isomorphism

—

W(AN) ®eiEe, 1M — AN )R EM.
Proof: We shall define amap 3 : A(A) ®z M — W(JV) ®eRe; €1M. According to we
have a unique decomposition

m = Z Vamay, my, € e1M.
(n,p)=1
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Let B(a @ m) =3, =1 @Vne1 ® my. The last sum is finite, as A(.#) is a torsion module.

This map vanishes when aE; = 0 and m € M?. Indeed ¢,E; C E, implies that ¢,,mm =
Vam, € M?. Let r be the smallest integer greater or equal than s/n. Then we have m,, € M".
From .19 we get a representation

my, = Z Vpamip, o = V;)bm;l, > s/m, ml €e M.
pezs/n

Therefore f(a @ m) = 3 aV,Vyper @ my, = 0.

We prove that § is bilinear. It suffices to show that 3 (a€ ® V,m,) = S (a® &EV,my,),
because for a given £ and large n both sides vanish. One is easily reduced to the cases
¢ =V, & =[z]and { = F,. The first two cases are obvious. For the last one we remark that
one always has Fye1 = €1 F¢;. First, let (r,n) = 1. Then,

B (aF, @ Vomy) = aF,Vyer @ my, = aVype1 Frer @ my,

=aVpey ®@e1Freymy, = B (a®@ Vo Fomy) = B (a® F.Vymy,) .
Let r be a divisor of n. We have:
Baly @ Vamy) = arVy, ,e1 ®@my, = aV, e1re; @ my
= aVyre1 @ rmy, = (a ® Vn/rrmn) = (a® F.V,my) .

Allin all, 8 defines a map B:AN)REM — W(JV) ®e e, €1M. This map is obviously an
inverse to the one in the theorem.

4.22. Theorem: The functor M — €M is an equivalence between the category of V-reduced
E-modules with the category of V-reduced E,-modules.

Proof: We shall construct from any V-reduced E,-module M, a V-reduced E-module M
such that ;M = M,. To this end, we consider the E-module Ee; ®.,r., M, and equip
it with the topology defined by the submodules E,e1 ®. g, M,. The completion of this
module will be denoted by M. Clearly, every element in M can be written uniquely as a
convergent series

Z Vier @ my, my € M.

Let {m;},c;, m; € M, be a set of representatives for M, /V M,. Then any element in M has a
unique representation:

S e om = 5 v (3 vmon)
- s=0

(n,p)=1

From this it follows that M is a V-reduced E-module.

4.23. Theorem: Let H : Nilx — Ab be a formal group. The p-typical curves ¢ H (K[[X]])
constitute a V-reduced E,-module M, ;. There is a canonical isomorphism

W (AN) @5, Mpg — H(N)
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The functor H — M), f is an equivalence between the category of of formal groups with
the category of V-reduced E,-modules such that M,/V M, is a flat K-module. The tangent
space to H identifies with M, i /V M, g.

In the following, when working over a Z,-algebra K, we shall simply write My instead
of ]\4107 H-

§ 5 The formal group of Witt vectors W/
We give an alternative description of W(JV ).

4.24. Lemma: Every element of A(.4) has a unique representation [, (1 — z;t). Every
element of W (/") has a unique representation Hf:fzo (1 — ynt?") e, for z;, y, € AN

Proof: We have the following morphism of set-valued functors on Nil Kﬂ

DN — A(N), @n¢'—>H(1—niti)-

i=1
When .42 = 0, we have [] (1 — n;t") = 1 — " n;t". Hence in this case, the morphism is an
isomorphism. The general case follows from For the proof of the second claim, we may
for the same reasons assume that .42 = 0. Every element of W (.#") can be written as

[T@—zt)er =] Q- zit) Fier = [[ (1 — zpnt) Fpres

Let [T (1 — ynt?") e1 = 1. Since y2 = 0, it follows that (1 — ynt)EpnVin, = (1 — ypt) Vi Fpn =
(1 — yt)Fyn = 1 for (m,p) = 1, m > 1. Therefore (1 — y,t?") em, = 1. Since Y e, = 1, we
conclude that [] (1 — ynt?") = 1, whence y,, = 0.

One calls (z;) (resp. (yy)) the Witt vector corresponding to the element of A(.#") (resp. of
W(AN)).

We define the following Witt polynomials:

m —s s
um(Xl,...,Xm):Z7ijn/r, wn(Xo, ..., Xn) = > p" XD = upn.

rlm 5=0

4.25. Theorem: The polynomials u,, and w,, define homomorphisms of functors

AA) — @ Ga(N),
(4.25.1) m=1

II (1 — J}iti> — U (T1, ..oy Tin)

W(AN) — @ GalH).
(4.25.2) w2

I (1 — yntpn) g1 — wn (Yo, -+, Yn)

*1t is written “n; —" instead of “@n; —" in the original text.
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Proof: First, we consider the case where K is a Q-algebra. Then the first morphism is a slight

modification of (4.1.1)). Indeed:
logH(l—miti) :Z 1—acztZ ZZ

This shows that 1i is a group homomorphism. According to , €1 induces on the
right-hand side of (4.25.1) the projection onto those summands whose index is a p-power.
From this, it follows that is a group homomorphism. For the general case, let us
consider the ring Z[X,],c » with the canonical augmentation ideal a. For large r, we have
a surjection a/a” — 4. In this way, one may reduce to the case where K = Z and ./ is
torsion-free, i.e. .4 C A ® Q. From this last inclusion, one can immediately reduce to the
case K = Q.

T'tl’r‘

x, "
__ZZ/T

m rim

4.26. Remark: Over a Q-algebra, (4.25.1) and (4.25.2) are isomorphisms of functors. The fact
that these are group homomorphisms commuting with base change determines uniquely

the group structure on A(.#") and W(,/V ). The E- (resp. E,-)module structure on A(.4)
(resp. W(.4")) is similarly determined, due to the following theorem.

4.27. Theorem: Let { € A(A) (resp. & € /W?(JV)) and z = (z;) (resp. y = (yn)) the corre-
sponding Witt vector. Denoting the Witt vector corresponding to {e, for e € E (resp. e € E;),
by xe (resp. ye), the following relations hold:

m

U (z]c]) = um(x)c™, W, (ylc]) = wm(y)e?
Um (xvn) = umn(m)v Wm (yV) = wm—i—l(y):
0 otherwise,

where ¢ € K and w_1 = 0. Furthermore

(Yos -+« s Yny .- )] = (yoc,...,yncpn,...)

(y()v"'vyna"')F :(07y07"'7y7’b7"')

and, if the ring K has characteristic p,
(yov"'ayna-n)vz (yg,,yg,)

Proof: To prove the relations for the u,,, one is quickly reduced to the case where K is a
Q-algebra. Then the relations follow immediately from The relations for the w,,, follow
immediately from the following commutative diagram:

AMAN) —— D Ga(N)

W(N)——DGa(N)
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Here the ¢ to the right is the projection onto those summands whose index is a p-power.
We prove now the last three identities. For the first two, we may again assume that K is
a Q-algebra. As (4.25.2) is an isomorphism, it suffices to check that

Wi, (YE) = Wi, (0,905« -+, Yny - -+ ) W, (ye]) = wp, (yoc,...,yncpn,...).

This is trivial. In order to prove the last identity, consider the ring of polynomials Z[Y, ..., Y,, ..

Let a be ideal generated by the Y;. For a sufficiently large integer M we have a homomor-
phism a/aM — 4, Y, > y,. Let

Yo,...,Y,..)V=(Py,...,P,,...),  P,caja.
We must prove that P; = Y mod p. Assume that this is proved for i < m. Then for i < m

we get that

m—1 . m—i+1 m+1

pzf)ip — sz'ip mod P
The relation wy, (Y V) = wp,41 (Y) yields
m-+41 m m m—1
Y& +pY! +. )Y+ Y = (B +pP) +.. ) +p" P

Since the terms in brackets are equal modulo p™*!, the claim follows.

§ 6 The Witt ring

We use remark to define Witt vectors W (K) for an arbitrary ring K. Analogous
considerations could be made for the functor A.

4.28. Definition and Theorem: There exists a functor from the category of commutative
rings to itself W : Rings — Rings uniquely characterised by the following properties.

a) There is an isomorphism as set-valued functors

W(K) = EOK.

In this way one can describe elements in W (K) as vectors (ay,), a, € K.

b) The following map is a ring homomorphism:

W(K) — K.

n=0

(an) — (wp(ag, ..., an))

4.29. Remark: From the definition of the w), it is clear that, over the ring Z[1/p], the X,, can
be written as polynomials in the w,,. Thus, over a Z[1/p]-algebra K, the map in b) above
an isomorphism. The existence and uniqueness of W (K) is therefore clear in this case. For

1.
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later applications, it is useful to compute the first components of the vectors (a,) + (b,) and
(ay)(bn) on the basis of these considerations.

The proof of the Theorem rests on the following lemma:

4.30. Lemma: Let & € Z[X,Y] be a polynomial. Then there exist uniquely determined
polynomials

(pO(X(),X(I)), .. .,(pn(Xo, e ,Xn,X(/), R ,X;.L), RS Z[Xo,Xé,Xl,Xi, .. ]
such that

o (wn(Xo, e X)), we (XY, 7X7/1)) = wy, (ch(XO,X{)), e on(Xoy ooy Xy X0y - ,X;L)) .

Proof: Denote by ¢ the vector (4o, ..., ¢n,...), by ¢ the vector (¢h, ..., ¢h,...) and so on.
We have

¢ (wn(X% wn(il)) = wn(‘P) = pngpn + w”—l((pp)‘

Therefore, over the ring Z[1/p], the following recursive formula holds:

Pn = pln ((I) (wn(£)7wn(5/)) - wn—l(‘Pp)) .

This proves the uniqueness of the ¢,,. It only remains to check that their coefficients are
integers, namely:
s (wn(i)a wn(i’)) = wp_1(¢?) mod p".

Since wy, (X) = p" X, + wp—1(X?) mod p", the last congruence is equivalent to
% (wn—1<ip)a wn(ilp)) = wn—l(@p) mod pn‘

Since we may assume by induction hypothesis that ¢;(X, X’) has integer coefficients for
1 < n, it follows that
pi(XP, X'P) = (X, X') mod p.

From the form of the Witt polynomials, it follows immediately that
Wn—1(¢") = wp—1 (p(XP, X'P))  mod p".
The right-hand side of this identity is by construction

P (wp—1(XP), w,(X'?)).  QED.

Proof of [4.28; Applying[#.30[to ® = X + Y and ® = XY yields polynomials
So(Xo, X0)s -3 Sn(Xoy ooy Xy Xy oo, X0,

and
PO(XO,X(’)), .oy Po(Xo, ... ,Xn,X(’], X)),

73
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The addition and multiplication of two vectors in W (K) are defined as follows:
(an) + (a)) = (So(ao,ag), oy Sn(aos -y an, ag, ... a), . )

(an)(ay,) = (Poao, ag), - .., Pu(ao, ..., an,ag, ..., ay),...).

As in the proof of we see that every ring K is a homomorphic image of a torsion-free
ring K'. Thus, in order to check that the definitions above define a ring structure, it suffices
to do so in the case where K is a Q-algebra. Since in this case the map defined by a) is
an isomorphism, the claim follows. The same kind of argument can be used to prove the
uniqueness.

4.31. Exercise: Let A be a ring without zero-divisors and 7 € A an element such that A/m =
[F, is the finite field with ¢ = p® elements. By analogy with the polynomials w,,, define

wo = Xp

w1 :Xg+7TX1

wn =X& +7XTT 44X
n.o T <0 1 n-

One shows that for any polynomial & € A[X, Y], a result analogous to Lemma holds.
Consequently, there exists a functor from the category of A-algebras toitself W, . : A-Alg —
A-Alg such that Wy »(K) = [[,2, K as a set-valued functor and such that the w,, define a
ring homomorphism Wy (K) — [[72, K.

4.32. Corollary: The map
W(A) — W(A)

(1—cntpn)51r—>(c(),...,cN,...)

3
==

is a homomorphism of abelian groups.

Proof: When ./ is a Z[1/p]-algebra, via the w,,, we may identify this map with
by —I].

The general case follows as in[4.25

4.33. Corollary: The set of all elements of the form ) | V"[a,|F", a, € K, defines a subring
of the Cartier ring E,,. The map

W(K) —E,
(@0y -y pye ) —> > VT ay|F™

is an isomorphism onto this subring.

Proof: The first claim follows immediately from We get an action of E, on the tangent
space to WW:
W (XK[[X]|/X?) = E,/VE,.
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An element of this tangent space has a unique representation Y [¢;]F?. We compute this
action:

(Z[CZ]F’) Vi a,JF) =3, ani[ci]pnFi_"[an]F"
=3, [ci (anapi—nﬂ i
= Zz [ciwi(ao, ooy az)} Fi mod V]Ep.

From this it follows that the map > V"[a,|F" — (wo(ap), ..., w;i(ao,...,a;),...) is a homo-
morphism to the ring []>° ; K. The claim now follows by functoriality and from[4.28|

§ 7 The universality of Witt vectors

Originally, the Witt polynomials were introduced in order to describe unramified exten-
sions of Z,. We would like to quickly survey this theme, although it will not be needed in
the sequel.

Let K be a ring of characteristic p. The Frobenius Frobg is the ring homomorphism ¢ —
c?, c € K. When Frobg is an isomorphism, the ring K is said to be perfect.

Let A be a commutative ring with unity and let a be an ideal of A such that the residue
class ring A/a = K is perfect. We assume that there exists an integer n such that, foralla € a
and0<i<n

pla?" T = 0.

We shall define a multiplicative map ¢ : K — A, i.e. t(c1t(ca = t(cico. Since K is perfect,
any element ¢ € K can be seen as a p"-th root. Let 27" = cand u € A a lifting of z,i.e. z = u
mod a. Then u?" is independent of the choice of x. Indeed, let v’ be another lift of . One
sees by induction on m that

" =u"" mod Gy
where a,, is the ideal generated by all elements of the type pla?” " fora € 6,0 < i < m. We
may therefore define ¢(c) = u?". The multiplicativity is straightforward.

4.34. Lemma: There exists a uniquely determined multiplicative map ¢ : K — A such that
t(c) = ¢mod a.

4.35. Theorem (Universality of Witt vectors): Under the assumptions above, there exists
a uniquely determined homomorphism ¢ : W(K) — A making the following diagram
commute:

Proof: The map w,, : W(A) — A is a ring homomorphism. By assumption, when a Witt
vector a = (ao, ..., an,...) has its components in a, we have wy(a) = 0. Therefore we get a
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factorizationﬁ
W(A) —2— A

\an

W (K)

We have wy(c)?" = ay,(c) mod a. Let Frob" be the inverse of the isomorphism Frob} and
¢ = apW(Frob ") : W(K) — W(K) — A. Then we have wy(c) = ¢(c) mod a. Thus we
have proved the existence.

Clearly ¢ — ¢([c]), for ¢ € K, is a multiplicative map from K to A. Therefore ¢([c]) = t(c).
Let )" V"[c,|F™ € W(K). Since K is perfect, we find

&' — Z Vn[cn]Fn — Z VnFn[Cg*n] _ an [C’Ir)l*n]‘
Therefore ¢(¢) = 3. p"t(ch, ). This concludes the proof of the theorem.

4.36. Exercise: Let A be a p-torsion-free ring (pa = 0 = a = 0), such that A = 1£1A/ p".
Assume that K = A/pA is a perfect ring. Then A is isomorphic to the Witt ring W (K). In
particular, W(F,) = Z,.

§ 8 The structure equations of a Cartier module

4.37. Lemma: Every closed submodule of a V-reduced E,-module is V-reduced. Let M; —
M be a homomorphism of V-reduced E,-modules such that M; /V M; — Ms/V M, is injec-
tive. Then M; — M, is injective and M = M; /M, is a V-reduced E,-module.

Proof: The first statement is trivial. Furthermore, it is clear that M; — M5 is injective. From
the snake lemma, it follows that V' : M — M is injective. By taking projective limits in the
exact sequence 0 — My /V" My — My /V™" My — M/V"M — 0, we get that M is V-separated
and complete. Q.E.D.

—

Let I be an index set. We denote by IEI(DI) the completion with respect to the V-adic

topology of a direct sum of I copies of E,. Thus Eél) is the module of p-typical curves
of W,

Let M be a V-reduced Cartier module such that M/V M is a free K-module. Let {m;},.;
be a family of elements of M whose residue classes mod V' M form a basis of the K-module
M/V M. Then a complete system of representatives for M /V M is given by the elements
> icrlcilmi, where ¢; = 0 for almost all i. According to every element of M has a
unique representation > V"[c, | mi, where ¢, ; = 0 for fixed n and almost all i. We call
the m; a V-basis of M (compare [3.15). In particular, we find the identities

(4.38) Fmy =Y V'enijlmj, i€l cnij € K.

n>0
jel

*The horizontal arrow is "W (K) — A” in the text.
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We call these identities the structure equations for M.

—_

These equations can be expressed by an exact sequence. Let L = IEI(,I) and e;, i € I the
standard basis.

L= {Z §iei | &icp, and & € V"'E, for almost all 7 and given n}
i€l

Let L — L be the map e; — Fe; — > V"[cn ;] e;. By there is a sequence

L—L—M—0.
e —— m;

4.39. Theorem: Let o, j, 7,7 € I, n € N be elements of W(K) C E, such that for fixed n
and i almost all a, ; ; vanish. Let ¢ : L — Lbe themap e; — Fe; —3_, ; V" an; je;. Then the
cokernel of ¢ is a V-reduced Cartier module M. The images of the e; in M form a V-basis of
M. There is an exact sequence

0—L-25L—M—30.

Conversely, every V-reduced Cartier module such that M/V M is a free K-module can be
obtained by this construction.

Proof: By it suffices to prove that the map L/VL — L/VL is injective and that its
cokernel is freely generated by the images of the e;. We have . V"ay,; je; = > [aij]e;
mod V'L, where a; ; = wo(c,; ;. Since the elements F"e;, for n € Nand ¢ € I form a V-basis
of L, it follows that the elements

p(Fre;) = F" <Fez- = Zvnan,i,jej> = F" ey = > )| Fre; mod VL

n,J r<n,j

are linearly independent in L/V L. They span a subspace that is complementary to the mod-
ule @,.; Ke;. Therefore the images of the ¢; form a basis of M /V M. The last claim follows
from

4.40. Exercise: Let R be a commutative ring. The polynomials Sy, ..., S,—1 from the proof
of define an abelian group structure on the vectors (ao, ..., an—1), a; € K. We denote it
by W;,(K) and call its elements the Witt vectors of length n. The restriction of the functors W,
to Nilg will be denoted by W,. It is a formal group of dimension n. The Cartier module of
Wy, has the following structure equations:

Fm; =myyq, forl<i<n, Fm,=0.

We take my to be the curve corresponding to the canonical projection W — W,.

§9 Base change
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4.41. Theorem: Let M be a V-reduced E,-module. When .4" is flat or when M /V M is a flat
K-module, then:

Tor™ (W(,/V),M) —0, fori>0.

)

Proof: As in the proof of one can restrict to the case .42 = 0. According to we
have an isomorphism

—

W (A ) ®r, M = N @k MJVN.

Consider the exact sequence
00— N-—L-—M-—0.
where L is a free E,-module. Tensoring with W(A) we get the sequence
0— Sk NJVN — N @k L/VL — N @k M/VM — 0.

It is exact when either .#” or M /V M is flat. The claim follows as in[4.23]
From [4.41we obtain a new proof of

4.42. Exercise: a) Generalize [4.21]to Tor groups.

b) Let K be a reduced Z,-algebra and H : Nilx — Ab a functor which is representable
by a finitely generated projective K-algebra R. Then there exists an E,-module N and an
isomorphism of functors

H(AN) ~ Tort (W(JV), N> .

In keeping with[3.27, we shall say that a V-reduced E,-module is V-flat when M/V M is
a flat K-module.

4.43. Theorem: Letp: K — K'be a homomorphism. Let M be a V-flat Ex ,-module. Let
M’ =Egp @ g, , M be the completion of Ex, ®g,., M for the V-adic topology. Then M is
a V-flat Egs ,-module and we have

—~

W(AN) ®gy, M = W(A) R, M, A € Nilgr .

If M has a V-basis m;, i € I,and Fm; = > V", ; jm;, with oy, ; ; € W(K), are the structure
equations of M, then the structure equations of M’ are F'm; = » V"« , /m, where the
a,, ; ; are the images of the o, ; ; under the map W(K) — W (K").

If H is a formal group whose module of p-typical curves is M, then M is the module of

p-typical curves of H.

Proof: Set E, = Ex , and E}, = Eg/ . Tensoring by M the exact sequence K], Y E, —
E,/VE, and applying[4.41|we get that V : E}, ®g, M — E}, @, M is injective. Thus V" is also
injective on M’. We conclude that A/’ is V-reduced.

We have a map

W(JV) ®E, M = /W(JV) ®]E; (]E;, ®E, M) — /W?(JV) ®E; (E;@EPM) .
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There is an inverse map. Indeed, leta @ m’ € W(JV ) ®g, M'. For large n, we have aV" = 0.
By definition, m' has a representation m’ = my + V"mj, where m; € E, ®g, M C M’ and
m5H € M'. Define a ® m; as the image of the inverse map. The remark on the structure
equations follows by taking the exact sequence given by 4.3

0—L—L—M—0,

tensoring it by E}, and completing. The last claim in the theorem is trivial.

4.44. Lemma: Let M be a V-reduced Cartier module. Assume that there is an exact se-

quencqﬂ

(4.44.1) P, 2 MV — 0,

where P, and P, are free K-modules. Then there exists an exact sequence of V-reduced
Cartier modules
Lo— L1 —M—0

such that L/V Ly — L/V Ly — M/V M — 0 is isomorphic to Sequence (4.44.1).

Proof: Let e;, i € I be a basis of P;. Pick m; € M lifting the ((e;). We find expressions
Fm; = 5 V"™ecpj]m;. Let Ly be the V-reduced E,-module defined by these structure
equations. The reduction mod V' of the obvious map B : Ly — M can be identified with .
Let K = Ker 3. Then K is a V-reduced E,-module nd K/V K = Ima. Applying the same
procedure to K and P» — Im «, one gets the desired exact sequence.

4.45. Theorem: Let M be a V-flat E,-module such that the K-module M/V M is of finite
presentation, i.e. there is an exact sequence P, — P; — M /V M — 0 where the P; are free
K-modules with a finite basis. Let X' — K’ be a ring homomorphism. Then the map

Exrp ®kg, M — Egrp Oy, M|

is an isomorphism.

Proof: Assume first that M /V M is a free K-module with a finite basis. By we have an
exact sequence
0 —Eg, —Ek, —M-—0.

The claim follows, since Ex+, ®g, , E) = E},  is separated and complete with respect to
the V-adic topology.

In the general case, provides an exact sequence Ly — L1 — M — 0. We get a commu-
tative diagram with exact rows

Exrp ®pg, L2 —— Exrp Qry, L1 —— Egrp ®p, M —— 0

| | |

Errp®pk, Lo ——Ex p @5y, L1 —— Er/ p @py ,M —— 0.

°The sequence is labeled (T) in the text.
SThis is "Ex’p @ g, M — Exrp ®x,, M” in the text.

NB
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Since we have shown that the first two vertical maps are isomorphism, the claim follows.

4.46. Theorem: Let K — K’ be a surjection of rings. Let H' be a formal group over K’
whose tangent space ¢y is a free K’-module. Then there exists a formal group H over K
such that t7 is a free K-module and Hy+ = H'. One says that the formal group H' can be lifted.

Proof: Let M’ be the module of p-typical curves of H'. We have structure equations for M':

_ nr./ ) / /
Fm; = E V™ ey il my, Cnij € K
n?j

/
nﬂ":j/

Let ¢,;; € K be pre-images of the c
structure equations

such that ¢, ;; = 0 whenever ¢, ; = 0. The

Fmi = V[cni lm;
define a V-reduced E ,-module whose associate formal group has the desired properties.

The question whether a homomorphism of formal groups can be lifted is rather more
complicated.

4.47. Theorem: Let a be an ideal of K such that pa = a? = 0 and K’ = K/a. Let Gy
and G; be formal groups over K and ¢’ : G g — G2,k a homomorphism. Then there
exists a homomorphism ¢ : G; — G3 such that pp’ = Yk Let p1,02 : Gi — G2 be two
homomorphisms such that ¢ g7 = 2 k7. Then pp1 = pps.

Proof: We have an exact sequence
0 —Ey(a) — Exp — Egrp — 0.
If M is a V-flat Ex ,-module, we get an exact sequence
0 — Ep(a) D, ,M — M — Egr, @5, M — 0.

Put Ex ® Ex,M = Mg:. Thus the kernel of the map M — Mp consists of elements of
the form o = 3" V"[ani] m;, with a,; € a. Clearly, pa = ([p] + Yo V" [cn] F™) a = 0.

Therefore the multiplication by p factorsas p : M — Mg 25 M.
Let M; and M be the modules of p-typical curves of G; and G2. Then we define v as
the composite map

/
My — My gr = My oo =5 M.

If ¢ is any lifting of ¢/, then pp = 1), from which the last claim follows.



Chapter V

Isogenies of formal groups

§ 1 Homomorphisms of formal groups over a perfect field

5.1. Theorem: Let M’ C M be an inclusion of reduced E,-modules over a perfect field K.
We assume that V¥ M N M’ C VM’ for large enough integers N. Then there exists a V-basis
{m;}icr of M, a subset J C I and natural integers n;, j € J, such that {V"m;}c; is a
V-basis of M'. The assumption VN M N M’ C VM’E| is fulfilled if M/V M or M'/VM'is a
finite-dimensional K-vector space.

Proof: Let gt M = V"M /V" 1 M. The field K acts via the operators [c] on V"M /V"* 1M,
In this way, one obtains a structure of K-vector space on V" M/ VAL Let us consider the
K-vector subspace (V"M N M')/ (V"M N M') = G,,. The bijection V : gr M — gr" ™! M
maps G, onto a K-vector subspace VG, of Gp41. Indeed, if m = Vm; € VG, and ¢ € K,
we have [cjm = []JVm; = V[c’lm; € VG,. Let Upq1 be a K-vector subspace of Gy 41
complementary to VG,,. Then one has a direct sum decomposition of K-vector spaces

(5.1.1) Gn= @ VU,

0<i<n

We choose a basis {u;}c, of the K-vector space Uy,. Let u; € V"M N M’ be representatives,
and let m; = V""u; € M. Let J = U, J,. Then the {m;};c; are linearly independent
modulo VM. Indeed, assume ) [c;|m; € VM. If we multiply by V" for large enough n, we
obtain a relation

S WV e VITIM M, uy € Uy,

From the direct sum decomposition follows that c; = 0. It remains to prove that the
u; are a V-basis of M’. With the help of the decomposition it follows easily that every
element m’ € M’ may be written as a convergent sum:

(5.1.2) SN V™ amyn] ;.

n  jeJn

'Thisis VN M N M' C VN'” in the original text.
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Here, for all fixed m and n, we have a,, j,, = 0 for almost all j. If VNM N M’ C VM, we
find U,, = 0 for n > N. The claim follows immediately. If M/V M or M'/V M’ is finite-
dimensional, the dimension of G, is bounded independently of n. From then follows
that U,, = 0 for large n. The theorem is therefore proved.

5.2. Theorem: Let f : H — G be a homomorphism of formal groups of finite dimension
over a perfect field K of characteristic p. Let e = dim H and d = dim G. Then there are
isomorphisms of functors

H ~ Spf K[[Y3,..., Y]], G~SpfK[X,..., X4,
such that the comorphism f* of f has the following expression:

(X)) =YP", fori<rand f5(X;)=0fori>r.
Here 0 < r < min(e, d) and nq, ..., n, are natural integers.

Proof: Let N and M be the Cartier modules of H and G. Then f induces a mapping N — M.
The image M’ C M is a V-reduced Cartier module that corresponds to a finite-dimensional
group G’'. Let us now consider the case when H = G'. Let my, ..., mg be a V-basis of M and
u; =V™m;,i=1,...,ebeaV-basis of N[5.1] In the curvilinear coordinates3.31} we obtain
a map
f+Spt K[[Y]] — Spf K[[X]].

We identify the varieties of H and G with Spf K[[Y]] and Spf K[[X]]. Let¢; : H — Spf K[[X]]
and p; : G — Spf K[[X]] be the projections ¢/ (X) = Y; and p}(X) = X;. Letg : H — G be
the map ¢*(X;) = Yipni, i < e g*(X;) = 0,7 > e. One finds immediately m;pig = fuiq;
fori =1,...,eand m;p;g = 0 for i > e. From the definition of the curvilinear coordinate
system, it follows that g = Z?Zl mipiq = Y i, fuigi = f. In the general case, we consider
the surjection o : N — M. Let uy,...,u, be a V-basis of M’. One finds a V-basis vi, ..., ve
of N such that o(v;) = u; for i < r and a(v;) = 0 for ¢ > r. In the curvilinear coordinates,
the map takes the form

Spf K[[Y1,..., Y]] — Spf K[[X1,..., X,]], o (X;) =Y.
The theorem follows.

5.3. Theorem: Let K be a perfect field of characteristic p and let H : Nilg — Ab be a functor
that is represented by a finite K-algebra R. Then R is isomorphic to

1

K[ X1, ..., X ]/ (X7, X2,

Proof: This is a direct consequence of and

One calls ) | n; = log, dimg R the height of H.

§ 2 Definition of isogenies

5.4. Definition: A morphism ¢ : Gi — G2 of formal groups of the same finite dimension is
called an isogeny if the kernel of ¢ is representable.
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Explicitly, this definition means the following. Let G; = Spf R;, ¢ = 1,2 and let aiEI

be the augmentation ideals. Since by assumption the tangent spaces ¢, (K) are finitely
generated, projective K-modules, the ideals a; are finitely generated, and aiv is a system of
neighbourhoods of 0 in R;.

5.5. Lemma: The morphism ¢ is an isogeny if and only if a; is nilpotent in Ry /asR;.
Proof: The kernel of ¢ is prorepresented by

Ry ® pyRa/ag = @(RMO{V ®R, R2/a2) = R1/( 0 al + asRy).

Here, a¥ + asR; is a system of neighbourhoods of 0. The last ring is a nilpotent, augmented
K-algebra if
a +agRy = al ™ 4 agR; = ..., forlarge N.

Let b be the image of the latter ideal in R;/asR; and a; be the image of a;. Since R; is
complete, the elements of 1 + a; and 1 + @; are units. It follows that @; lies in the radical of
Ry /azR;. Since a1b = b and b is finitely generated, it follows from Nakayama’s lemma that
b=0.

5.6. Remark: The property that ¢ is an isogeny is preserved by base change. Indeed, if
K — K'is aring homomorphism, then ker(pg/) = (ker @) g.

Let K be a field of characteristic p and R a finite K-algebra that represents ker . Let K’
be a perfect field extension of K. Then, according to[5.3|there exists a natural number h such
that dimg R = dimy R @ K’ = p". One calls h the height of the isogeny ¢.

An isogeny over a Q-algebra is an isomorphism 4.7}

The notion of isogeny is local in the following sense. Let fi, ..., f,, be elements of K that
generate the unit ideal. Then ¢ is an isogeny if ¢ s, is an isogeny for i = 1,...,m. Indeed,
let (R, a,) be a complete augmented K-algebra that prorepresents ker ¢. Then ker ok, is
represented by R® K, = im R/a, ®x Ky, If ker o is representable, then it follows that
for large n we have a,, ® Ky, = a,11 @k Ky,. From this, one gets a, = a,41 =--- = 0.

5.7. Lemma: If ¢ is an isogeny, then the comorphism Ry — R; is finite.

Proof: Since a; is finitely generated and nilpotent in R;/asR;, the latter ring is a finite K-
module. Let fi, ..., fs be elements that modulo a; form a generating system of this module.
One considers the map:

(5.7.1) Ry — Ry

1
®r; —— Z Tzfl

s

()

Tt is written ;" in the original text.

NB
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We equip ®;_; Ry with the filtration by the © aév , and Ry with the filtration by the R aév .
Then the map (5.7.1) is a map of complete, filtered modules such that the associated map of
graded modules is surjective. The lemma follows.

§ 3 The Weierstrass preparation theorem

5.8. Theorem: Let K be a commutative ring with unit element. Letpq,...,p, € K[[X1,..., X,]]
be power series such that X; is nilpotent in K[[X,...,X,]]/(p1,...,pn) for i = 1,...,n.
Consider the mapping

(5.8.1) K[[Y1,..., Y]] — K[[X1,...,X,]]

Yi— pi.

Then K[[X]] is a finite projective K[[Y]]-module. The morphism (5.8.1) is a faithfully flat
ring homomorphism.

Proof: The proof is pure commutative algebra, which is not necessary for the understanding
of the sequel. It can therefore be skipped on a first reading. We prove a series of claims.

Claim 1: K[[X]] is a finite projective K|[[Y]]-module if and only if for all N, the module
K[[X]]/(Y)NK[[X]] is a projective K[[Y]]/(Y)"-module.

Actually, we proved the finiteness already. Let P be the finite projective K-module
K[[X]]/Y)K[[X]]. Itis clear that P[[Y]] is a projective K[[Y]]-module. Therefore the map
of K[[Y]]-modules P ~ K[[X]]/(Y)K[[X]] lifts to a map P[[Y]] — K[[X]]. We must show
that this is an isomorphism. Since both modules are complete and separated in the (Y')-adic
topology, it is enough to prove that P[[Y]]/(Y)" — K[[X]]/(Y)Y K|[[X]] is an isomorphism
for all N. By[5.7]this map is surjective. We obtain:

0 — C — PIY])/(¥)" — K[X])/)NK[X]] — 0

0 — Cgpy)yy K — P — K[ X]]/(Y)K[[X]] — 0.

The second sequence is exact since by assumption K [[X]]/(Y)" K[[X]] is a projective K[[Y]]/(Y)"-

module. We obtain (Y)C' = C and since (Y) is nilpotent in K[[Y]]/(Y)", then C = 0.
Before we continue, let us remark that P = K @ P’ and hence P[[Y]] = K[[Y]] ® P'[[Y]].
Using this, the last claim of the theorem follows from the others.

Claim 2: one can assume that the p; are polynomials. Indeed (X)" is 0 in K[[X]]/(p) if and
only if (X)V C (p) + (X)"VT!. This inclusion implies that

(p) + XN = () + (XN =
Using this we can conclude like in[5.5 Let p} be polynomials such that

pézpi mod degM for M > N.



Then we find () © (p) + (X)¥ = (p) and (X)¥ € () + (XY = (&) + (). By
symmetry we find (p) = (p’). We consider the map

K[Y]]/(Y)* — K[[X]]/(p)* = K[[X]]/(¢')*
Y;- — Dj.

Since (p)° contains a power of (X), we can choose the polynomials p] in such a way that
p; = p; mod (p)°. Then we obtain the claim.

Claim 3: We may assume that K is noetherian.

Let p1,...,p, be polynomials and let Ky C K be the subring generated by their co-
efficients. Then K| is noetherian. Let py C Ky[[X]] and p C KJ[[X]] be the ideals gen-
erated by p1,...,ps. If we assume that the theorem is proved for noetherian rings, then
Ko[[X]]/p} ®K, K is a finite projective Ko[[Y]]/(Y)® ®k, K-module. In fact, by adjoining
finitely many coefficients to Ky, we can arrange that the inclusion (X)V C po + (X)V+!
holds. But then (X) is nilpotent in Ko[[X]]/po. Let a = p5N Ky[X]. Since (X)V C p§ for large
enough N, we find

Ko[[X]]/p5 @k K = Ko[X]/a ®x, K = K[X]/aK[X]
= K[[X]]/aK[[X]] = K[[X]]/p* K[[X]]
and Ky[[Y]]/(Y)* ®k, K = K[[Y]]/(Y)®. The claim follows.

Claim 4: One can assume that K is a complete noetherian local ring.

According to Claim 1, is is enough to show that K[[X]]/(p)® is a projective K[[Y]]/(Y)*-
module. A finitely generated module over a noetherian ring is projective if and onyl if its
localizations at maximal ideals are free modules. The maximal ideals of KI[[Y]]/(Y)* are
of the form m + (Y'), where m is a maximal ideal of K. Hence is is enough to prove that
Kn[[X]]/(p)® is a free Ky[[Y]]/(Y)*-module. Since a module over a local noetherian ring is
free if and only if its base change to the completion is freeﬂ we can finally assume that K is
complete.

Claim 5: One can assume that K is a field.

Let K be a complete local noetherian ring with maximal ideal m. Let f1, ..., f5 € K[[X]]
be power series whose residue classes form a basis of the K /m-vector space K/m[[X]]/(p).
The elements f; define a map B

(5.8.2) K[[Y]]" — K[X]].
Since the theorem is taken for granted for a field, the map
(58.3) K/m[[Y]]" — K/m{[X]

is an isomorphism. Now we consider the modules in (5.8.2) equipped with the filtrations
(m*[[Y]])" and m[[X]]. The map on graded objects (m’/m*[[Y]])* — m’/m*1[[X]] is ob-
tained by applying the tensor product m’/m* ™ @, in (5.8.3). Therefore, the graded objects

*Here we modified the text slightly.
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are isomorphic. Since the filtrations are complete and separated, it follows that is also
an isomorphism.

When K is a field, the result is well-known and is a consequence of the follwing general
result of Commutative Algebra. Let A — B be a morphism of regular local rings of the same
dimension such that B is finite over A. Then B is a free A-module (cf [21]]).

§ 4 The fibre criterion for isogenies

Let K be a Z,)-algebra and ¢ : G1 — G2 be an isogeny. Let p be a prime ideal of K and
k(p) = Kp/pK, the residue field. By[5.8} the kernel of ¢ is represented by a finitely generated
projective K-algebra R. According to Remark we have dim,,,y R @k K(p) = p®) where
h(p) is a natural integer. The function h(p) is a locally constant function on Spec K (cf [2]). If
K contains no idempotent elements other than 0 and 1, then Spec K is connected and hence
h(p) = his a constant function.

5.9. Definition: We say that ¢ is an isogeny of height h if h(p) = h for all primes p € Spec K.

Let for a moment K be a ring of characteristic p. We look at the multiplication by p on
the multiplicative group:

p:Gu(AN) — Gu(A)
I4+n—— (1+n)’=1+nP.

Obviously, the kernel is represented by K [T']/TP. It follows that the multiplication-by-p map
is an isogeny of height 1.

If ¢ is an isogeny of height h, we say also that the height of ¢ is defined and we write
height ¢ = h.

5.10. Theorem: Let ¢ : G; — G2 and 3 : G2 — G3 be morphisms of formal groups of the
same dimension. Then 3 01 is an isogeny if and only if 1 and - are isogenies. Moreover,
we have

height ¢1 + height w9 = height @2 0 @1

if two of the heights are defined.

Proof: By Remark one can assume that G; = Spf K[[X]], G2 = Spf K[[Y]], G5 =
Spf K[[Z]]. We show that ¢, is an isogeny if @2 o ¢; is one. The remaining implications
are trivial. We must show that the multiplication-by-Y;¥ map vanishes for large enough N:

KIYI/(2KY]) 2 K(Y/(2K(Y])
If we tensor with ® x((y)) K'[[X]], we obtain

KX /(2)K(X)) —— KX /(2)K(X]).

Since by assumption (X) is nilpotent in this ring, it follows that the mapping is 0 for large
enough N. Since we already knowﬂ by 5.5/ that ¢; is an isogeny, the morphism K[[Y]] —

4 Added reference to
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K[[X]] is faithfully flat. Therefore the morphism was already 0 before tensoring. For the last
claim, it suffices to observe that K[[X]] is a free K[[Y]]-module of rank p"¢isht#1 etc.

5.11. Lemma: Let a be an ideal of K consisting of nilpotent elements and K’ = K/a. Let
P1,-.-,0n € K[[X1,...,X,]] be power series. If (X)) is nilpotent in K'[[X]]/(p) - K'[[X]], then
(X) is nilpotent in K[[X]]/(p) also.

Proof: By assumption, for large enough natural integers N we have:
(20N < a[lX]] + (p) + ().

Obviously, there exists a finitely generated ideal a’ C a such that
(XON € [[X]] + (p) + (X))

From Nakayama’s lemma it follows like inﬁthat (X)N c o/[[X]] + (p). Since o is finitely
generated, it follows that o’[[X]]™ = 0 for large M and hence (X)"™ c (p).

5.12. Corollary: Let ¢ : Gi — G be a morphism of formal groups over K. Let K — K’ be
as in Lemma i If px is an isogeny, then ¢ is an isogeny.

5.13. Lemma: Let K — K’ be a faithfully flat ring extension. Let py,...,p, be power se-
ries in K[[X1,..., X, ]]. If (X) is nilpotent in K'[[X]]/(p)K'[[X]], then (X) is nilpotent in
K[[X])/ (p) K[ X]]-

Proof: One has an isomorphism:
(5.13.1) (K[[X])/(p) + (X)) @k K' = K'[[X]]/(p) + (X).

Indeed, in order to see this one may assume that the p; are polynomials. In this case, we
have:

KX/ (p) + ()" = K[X]/(p) + (X)"f}
Since K[X] ®x K' = K'[X], one obtains the isomorphism (5.13.1). By assumption, the
multiplication by X on K'[[X]]/(p) + (X), |a| = N —1,is 0 for large enough N. Since K’
is a faithfully flat extension, it follows from (5.13.1) that X< vanishes in K[[X]]/(p) + (X)".

5.14. Corollary: Let ¢ : G; — G be a morphism of formal groups over K. Let K — K’ be
as in Lemma i If ¢k is an isogeny, then ¢ is an isogeny.

5.15. Theorem: Let ¢ : G; — G2 be a morphism of formal groups of the same dimension
over K. Assume that for every prime ideal p C K, the morphism ¢,y is an isogeny whose

height we denote by A(p). Then h(p) > h(q) holds for p D q. If h(p) = h is independent of p
and K has only finitely many minimal prime ideals, then ¢ is an isogeny.

The Theorem follows from:

5.16. Lemma: Let py, ..., p, be power series in K[[X}, ..., X,,]|. Assume that for every prime
ideal p of K, the ideal (X) is nilpotent in x(p)[[X]]/(p), and let (p) = dim,, (p)[[X]]/(p)-
Then r(p) > r(q) holds for p O q If r(p) = r is independent of p and K has only finitely

*Sentence added by the translator.

*It is written ” K X /(p) + (X) ®x K'” in the original text.
’Sentence added by the translator.

8We added “for p D q”.
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many minimal prime ideals, then (X) is nilpotent in K [[X]]/(p).

Proof: By one can assume that K is reduced. We show that one may assume that K is
an integral domain. Let py, ..., p, be the minimal prime ideals of K. If the Lemma holds for
an integral domain and r(p) = r is independent of p, then we have for large enough N:

(X)Y < (p) + pil[X]).

From this follows:

O < (@ +willXID € (@) + [ willX0) € ().

Since K — [] K;,, where p runs through the minimal prime ideals of K, is a faithfully flat
ring extension, one can moreover assume that K is a local ring with maximal ideal m.

We can assume that the p; are polynomials. Indeed, we can find an integer N indepen-
dent of p such that

(0N € (p) + (X)) in k(p)[[X])/ (p)-

Let p} be polynomials such that p, = p; mod (X)™*L. If the theorem is proved for polyno-
mials, it follows that (X))* C (p') for large s. Let L be the field of fractions of K. Then, the
following holds:

K[[X])/(¢') ¢ K[[X]]/(¢) @k L = L[X]]/(¢') (cf GI3.0)).

From this we get (X)V C (p/). Then we have (p) + (X)V = (p) + (X)V*! = (p/) and
consequently (X)V c (p).

We now consider the subring K C K generated by the coefficients of the p;. Let K’ =
K} C K. Then K’ is a noetherian local ring. Let q be a prime ideal of K and ' = q N K.
Since x(q") — k(q) is faithfully flat, the ideal (X) is nilpotent in x(q')[[X]]/(p)x(q")[[X]] and
we have r(q') = r(q). Therefore follows from the following;: B

5.17. Lemma: Let K be a noetherian local ring with maximal ideal m. Let py,...,p, €
K[[X1,...,X,]] be power series such that (X) is nilpotent in «(p)[[X]]/(p) if p = morif p is
a minimal prime ideal of K. Then r(p) < r(m) for all minimal prime ideals p. If 7(p) = 7(m)
for all minimal prime ideals p, then (X)) is nilpotent in K[[.X]]/(p).

Proof: Let K be the completion of K. Since the minimal primes of K lie over minimal
primes of K, the assumptions are fulfilled by K. Since K is faithfully flat over K, we may
by assume that K = K. One sees as above that one can also assume that K is an integral
domain. Let L be the field of fractions of K and k = K /m.

We choose a k-basis e1,...,es of k[[X]]/(p). Lete; € K[[X]]/(p) be liftings of the €;.
Consider the mapping B -

S

a: @ K[Y]] — K[[X]] (of GZI)).

m=1

D1y Y Tie;
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By the preparation Theorem this is an isomorphism if we replace K by K /m". It follows
that « itself is an isomorphism. The map

K[[X]]/(p) ®x L — L{[X]]/(p) L[ X]]

is surjective, since (X) is nilpotent in the right-hand ring. Therefore

s > dimg, L[[X]]/(p) LI[X]].

Now assume that we have equality, then the above map is an isomorphism. Since K [[X]]/(p) C 23
KI[[X]]/(p) ®K L, the desired claim follows.
Theorem is now completely proved. We call it also the fibre criterion for isogenies.

§5 The V-divided Cartier module

In this paragraph K is a ring of characteristic p. An important example of isogeny is the
Frobenius homomorphism.
We consider the ring homomorphism

Frob: K — K

c+— cP.

Clearly Frob defines a functor Nilg — Nilg, A" — A (P). As functors .4 and .4 (®) are
isomorphic, but the K-algebra structure on .# () is the following;

c-n=cln.

If one goes to the m-th power Frob™, one obtains .4 (»™).
Let G : Nilgx — Ens be a functor and G*™) = Frob™ G be the functor obtained by base
change. By definition, one has

The map A — A ™), n s nP™ is a K-algebra homomorphism. Applying the functor G
one obtains

G(N) — GNPy =GP ().
The resulting morphism of functors is called the Frobenius:
G — GP,

We set Frg = Frg;. Then Frf} = Frm-1,0Frm-2 0--- o Frg. The rule G — GP™) is a
functor. If a : H — G is a morphism, one has a commutative diagram

#}G

H
Fr}l}J/ lFrg
a®™)

HE™) —— ™)
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Similar statements hold for functors G : Nilg — Ab.

Let R € Comply and R’ = R® K Frobm K = I&nR/ an, @k Frobm K. We consider R’ as a
K-algebra via the K-action on the second factor. By definition of the tensor product, one has
the relation

re;®cy = r@c’fmcz, reR, c,c0€ K.

We have (Spf R)P" = Spf R'. The comorphism of Fr'™ is
R @ K,F‘rome — R

r@c——srP"c, reR, cekK.

Let R = K[[X]]. Then we have R’ = K[[X]]. The comorphism of Fr'™ is

K[[X]] — K[[X]]
X —s X7

The kernel of Fr' is represented by K[[X]]/(X?",..., X5"). This is a free K-module with
basis X{'... X5, 0 < e; < p™ of rank p"™. We find:

5.18. Lemma: Let G be a formal group of dimension n. Then Fr" is an isogeny of height nm.

For the formal group of Witt vectors, one has W~ W™, By the map Fr'™ :
W(AN) = W(AH)is right multiplication by V™. We now compute the effect of Frobenius on
the Cartier module.

The homomorphism Frob™ : K — K induces an endomorphism of the Cartier ring
E, = E,, & F7 166 =3 Ve F5, then €57 = 3 V'[P ] F5. One has the relations

v =ve', Fe=¢"F
Let G be a formal group and M its Cartier module. According to we find
Mgom) =Ep pm g, ® M.

In the tensor product, the relation &; R Eou = flﬁf " Ru, 1,6 € E,, u € M holds. One has a
map of Cartier modules

i M —— Ep pm g, ® M
u— V" @ u.
This map is E,-linear:

i (Eu) = V" REu =V Qu=£EVnQ@u = M.

5.19. Lemma: The Frobenius Frl} : G — G®™) induces fr™ on the Cartier modules.

Proof: We remarked already that W(H®™) = W(A) as abelian groups. One obtains
W (A ™) from W (4) as right E,-module by the following definition:

w- €& =wek™, whereweﬁ/\(ﬂ/), §cE,.
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This follows immediately from [4.27] Therefore
GNP = W( NP g, M = W(AN) @pm &, M.

Since we have seen already that Fr" acting on W(N)is right multiplication by V™, the
claim follows.
Let G be a formal group. Consider the inductive system

Fr

a o a0 _Fr

From this we obtain an inductive system of E,-modules M m,.

5.20. Definition: ZTJ/G = hg Mo is called the V-divided Cartier module of G.

If K is reduced, the map K[[X ]]( P - K[[X])®™ as well as the map Mgpm) —
M, ym+1) are injective. In this case Mg is the union of the submodules MG(pm) The maps
E, pm, £, ® Mg = By pmt1 g, Mg, § @ u— &5 ® uinduce a map Mg — Mc that we denote
by VL. One checks easily the relations

Vi ="V, VT =vTlV =idy , ue Mg, € € E,.

The V-divided Cartier module IEP can be described in the following way. One considers
the set of all symbols £V ¢, ¢ € E,, a € N. Call £V~¢ and nV ~° equivalent if there exists
7 > a,bsuch that (V7= = V"% in E,. The set of equivalence classes of such symbols can
be identified with I~E . A ring structure is defined on IEp:

VU4Vl = (VP 4 gy v —ath) ey mapyb — gty —(ath),
Obviously IEP acts on M.
5.21. Remark: Let M be a flat E,-module. such that M /V M is a K-module of finite presen-
tation. The maps
E, prog,® M — E, ®g, M
EQui—— EVTQu
define an isomorphism (cf}4.45)
M =E, ®g, M. 94

Let M be a V-reduced Cartier module with a V-basis m;, i € I. Thenm, = 1@ m;, i € I
form a V-ba51s of M®) = =K, pE, ® M. Let Fm; = > V"™, ; jm; be the structure equations

of M (cf|4.39). Then F'm) = V” F.m/ are the structure equations of M. The Frobenius
any ,4,07%9 q

fr : M — M) has the following expression:

> Vienalmi — > VP Jmi.

Let G be a formal group and M its Cartier module. The map E,p 5, ® M — M, @ u — EFu
defines a morphism Vg : GP) — G that we call the Verschiebung. We have

Frg Vo =VgFrg =p
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§ 6 The surjectivity of isogenies

In this paragraph, we will show that the V-divided Cartier module classifies formal
groups up to isogeny. For this, we need a few elementary techniques of faithfully flat de-
scent.

5.22. Lemma: Let K — K’ be a faithfully flat ring extension and M a K-module. Then, one
has a fibre product diagram

M—— Mg K’

M ex K' ="+ M ox K' ok K,
wherepi(m @ k) =m@k @landps(m@K)=me 1o K.
Proof: The lemma claims that the following sequence is exact:

d di=p1—
0 M= M ok K 1=p1—Pp2

m———me1

Mok K' @k K’

Since K’ is faithfully flat over K, it is enough to prove exactness of the following sequence:

d ! d !
(5.22.1) I— MoK X ek ok 25 Mok K o K' o K.

We define mapﬂ
51 MO K@K 9K - MK @K', m®k,®k @k—me k) kK,

and
so: MK @K' - M®K', m®k)®k —me kik.

One verifies immediately that
S1 0 (dl X K/> + (do [} K/) 0 Syg = idM@K’@K’ .

The claim follows immediately.

Let o : K — K'be a faithfully flat ring extension. We consider left-exact functors G1, G :
Nilg — Ens and a morphism ¢’ : Gy g — Ga k. If p1, p2 have the same meaning as in[5.22)
then one has a commutative diagram

p1
K%K’p:;K’@)KK’.
2
Then, we have:

P1xGi o = (p10)«Gi = (p20)Gi = p2:.Gi 0 = Gy KoK

!

Tt is written “m ® k{ ® k" instead of “m ® k( ® ki ® kb” in the original text.
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for i = 1, 2. By base change, one derives from ¢’ two morphisms
/ /
©1, 99 : Grrer — Ga gk

where ¢} = pi.¢’. The equality ¢} = ¢, means the following. Let .# be a K’ ® K’'-module.
Then, the map ¢’ : Gy g/ (A#) — Go x/(A) is independent of whether we look at .Z as a
K'-module via the first or the second factor. If a morphism ¢ : G; — G5 such that ¢’ = ¢k
exists, then obviously ¢} = ¢} holds.

5.23. Lemma: If ¢/ = ¢}, then there exists a uniquely determined morphism ¢ : G1 — G»
such that o = .

Proof: Let .4" € Nilg. From the fibre product diagram

N ————— N QK

| |

N QK — N QK @ K’

one derives a commutative diagram with exact rows

CL(N) —— G (N @ K) %Gl(ﬂ/ ® K' @ K')

Jw’ J@i =0

Go(N) —— Go( N @ K) z:; Go( N @ K' ® K').

/

Hence we obtain a morphism ¢ : G1(4") — G2(./#"). One sees easily that g = ¢'.
5.24. Theorem: Let ¢ : G; — G2 be an isogeny of formals groups and N its kernel. Let
1 : G1 — H be a morphism to a left-exact functor H : Nilx — Ab such that ¢|; = 0. Then

there exists a uniquely determined morphism x : G2 — H such that the following diagram
is commutative:

0 N Gi —2 Gy
of A
H

Proof: Let A be a nilpotent augmented K-algebra with augmentation ideal A*. Let £ €
G2(AT). We define x(¢) € H(A"). Using one can reduce easily to the case where
G2 = Spf K[[X]] and G; = Spf K[[Y]]. Indeed, if we have constructed x’ over a faithfully
flat extension K’ of K, it follows from uniqueness that x; = x5. We then obtain the desired 52
morphism x with[5.23]

Let K[[X]] — K[[Y]] be the comorphism of ¢. Then to £ corresponds a homomorphism
K[[X]] — A. Let A" = A ®gjxy K[[Y]]. This is a nilpotent augmented K-algebra which
according to[5.8]is faithfully flat over A. By Lemma one derives an exact sequence

G1(p1)—Ga(p2)
— 5

0—— G1(AT) —— G1((4A)7T) Gi((A' @4 A)T).
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The map K|[[Y]] — A’ defines a point £’ € G1((A")"). One sees easily that the image of ¢’ in
G1((A' @4 A)t) liesin N((A’ ®4 A’)T). Since N lies in the kernel of the map v, we have

(H(p1) — H(p2)) (&) = 0.

Thanks to the exact sequence

0 —— H(AT) —— H((A)") 2P0 g4, a0y

one finds a uniquely determined point x(§) € H(A™) that maps to ¢(¢’). Uniqueness fol-
lows, since the morphism K[[X]] — K[[Y]] is injective.

§ 7 Isogenies over a ring of characteristic p

5.25. Theorem: Let ¢ : G; — G2 be a morphism of formal groups of the same dimension
over a ring of characteristic p. Then, the following conditions are equivalent.

(i) ¢ is anisogeny.
(ii) There exists a morphism ¢ : Go — Gﬁp ") such that Yo =Fry,.
(iii) ¢ induces an isomorphism of the V-divided Cartier modules.

Proof: Let ¢ be an isogeny and NV its kernel. We show that (ii) is fulfilled. Indeed, let
N = Spf R. The comorphism of the Frobenius has the following expression:

R QK Frobm K — R

rek—s rP"k.

For large enough m, we have (R*)?" = 0. Then this map factors through the augmentation
¢ of R:

R®g popm K — K — R
r®k—se(r)P"k.

Therefore Fr'{; is the zero mapping. We find a commutative diagram

N G1

s
0 7
| =

N@®") —— Ggpm)

The existence of v thus follows from
By the condition (i) follows conversely from (ii). We show that an isogeny induces
an isomorphism of V-divided Cartier modules. Indeed, the maps ¢ and ) induce maps of

V-divided Cartier modules ¢, : Ml — Mg and v, : My — Mj such that ¥,p, = id1\71' It
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follows that ¢, is injective. Since v is likewise an isogeny, we obtain that v, is injective.
From this follows that ¢, is bijective. The last implication (iii) = (i) is obtained from the
following;:

5.26. Theorem: Let G, and G; be finite-dimensional formal groups over a ring of character-

isticp. Let a : M, 1— M2 be an isomorphism of their V-divided Cartier modules. Then there

(™)

exists an isogeny ¢ : G; — G ’, for suitable m, that induces «. Moreover, there exists an

isogeny v : G¥") — G such that oy = Fry, . If ¢ : G1 — G is a morphism inducing «,
then ¢ is an isogeny.

Proof: We first consider the case where M; and M; possess a V-basis. Let uy,...,us be

a V-basis for M;. Then a(u;),...,a(us) are in the image of Mépm) — MQ for suitable m.

Let vy,...,v, € MQ(p ") be preimages. We wish to show that u; — v; defines a morphism
M, — MZ(pm). Let Fu; = ) V™an, ;] u; be the structure equations of M;. It is enough to
show that these equalities are also fulfilled by the v;. Obviously p; = Fv;—)_ V"[ay ;] v; lies
in the kernel of M. 2(p ") s M,. It follows that we can find an m/ such that the pi are mapped

to 0 under the Frobenius M) — M{P™). From this we obtain a map M; — M"" ) that
induces «. This proves the existence of ¢. The map ¢ is unique in the following sense.

Given another map M; — M

diagram is commutative:

inducing «, there exists a ¢t > m’ such that the following

My —— M)

L

Mg(p’" ) Mz(pt)
One constructs the map ¢ in a similar way. The equality 1 o ¢ = Frg, follows from unique-
ness.

We consider the comorphisms:

It follows that (Y) is nilpotent in K[[Y]]/(X)K][[Y]]. Therefore the kernel of ¢ is repre-
sentable. It follows like in[5.7]that K[[Y]] is a finite K[[X]]-algebra. In order to prove that G,
and G2 have the same dimension, we may assume that K is a field. Then, we find:

dim G; = Krulldim K [[Y]] < Krulldim K[[X]] = dim Ga.

By reasons of symmetry, it follows that dim G'; = dim G». Thus ¢ and v are isogenies. The
last assertion of the theorem is clear.

5.27. Exercise: Let K be a field of characteristic p. Let ¢ : Gi — G2 be a morphism of
formal groups of the same finite dimension and K [[X]] — K|[[Y]] the comorphism. Then the
following conditions are equivalent.

98
99
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(i) ¢ is anisogeny.

(ii) ¢ induces an injection of the Cartier modules M; — M.
(iii) The comorphism K[[X]] — K][Y]] is injective.
(iv) The comorphism K[[X]] — K[[Y]] is finite.

We remark that for the proof, one can reduce to the case of a perfect field.

§ 8 p-divisible and unipotent formal groups

5.28. Definition: A formal group G over a Z,)-algebra K is called p-divisible if the multi-
plication by p : G — G is an isogeny. If p is an isogeny of height h, one says that G has
height h.

5.29. Theorem: Let G1, G2 be formal p-divisible groups of heights hy and hs. If there is an
isogeny ¢ : G1 — G, then hy = hs.

Proof: One considers the commutative diagram

GlL}GQ

and applies .

5.30. Theorem (Rigidity): Let K be a Z,)-algebra. Let a C K be a nilpotent ideal and K’ =
K/a the quotient ring. Let G; and G2 be formal groups over K, and assume that G is
p-divisible. Let ¢1, @2 : G1 — G2 be morphisms such that ¢; g = 2 7. Then 1 = po.

Proof: One can obviously assume that a? = 0. According to we have p1p = pop. From
the uniqueness statement in the claim follows.

5.31. Corollary: The group Hom(G1, G2) is torsion-free and we have:
Hom(G1,G2) ® Q = Hom(G1 g/, G k) ® Q.
Proof: By the group Hom(G1, G2) has no p-torsion. A prime ¢ different from p in-

duces an isomorphism on the tangent space of GG; and hence an isomorphism of G;. Thus
Hom(G1, G2) is torsion-free. The last claim follows from and

5.32. Lemma: Let G be a finite-dimensional formal group over a field of characteristic p.
Then G is p-divisible if and only if F' : Mg — Mg is injective.

Proof: This follows from[5.27and the equality p = V' F.
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Let G be a 1-dimensional formal group over a field of characteristic p. Lety € Mgbea V-
basis and Fry = > >°_, | V™[am]~, an—1 # 0, the structure equation. Then G is p-divisible
of height h when h # oo and isomorphic to the additive group when h = co. In fact, one can
write the structure equation in the form py = V"4/, where +' is a V-basis of Mg. It follows
that in suitable coordinates, the multiplication by p has the form K[[X]] — K[[Y]], X — yr"

5.33. Theorem: Two 1-dimensional p-divisible formal groups over a separably closed field
of characteristic p are isomorphic if and only if their heights are equal.

Proof: Let G be such a group and M its Cartier module. We must show that there exists an
element v € M such that Fy = V. Let Fyg = Y . _. V™[am] Y0, as # 0. Let z € K. Then
we have:

Flalyo = [27] Y V™amlvo = Y V™ ame?™ 7Y [2] 7o.

We can choose z in such a way that

s+1_
asx? L=

1.

Therefore, we may assume besides that a; = 1.

We show by induction on r the existence of a 7, such that o

101
Fyp =V mod Vo[l NB

Assume that v, is already constructed. Then we have Fy,_1 = Vvy,_1 + V57 [c]y,_1
mod VST M. We look for ~, of the form 7, = 1 + V"[z,]7-—1. Then, we have ,_; =
Y — V7[zr]y, mod V7+. We find:

Frypy = Fypoy + V' [28] Frypg
= VSy,_1 + Vs+r[c]%_1 + st [m$s+1:| -
=V 1+ V5 c+ xfn’sﬂ]%—l
=V + V" |~z +c+ :L‘ZT’SH} v mod VTS,

Since K is separably closed, we can choose z, so that —z, + ¢ + x‘fSH = 0. Then ~, satisfies
the equation F'y, = V*%y, mod V*T"T1). The element v = lim ~, fulfills our wishes.

5.34. Exercise: Show that the structure equation Fy = V"~1y defines a Lubin-Tate group
over Z,). We denote it by G. Let G = Spf Z,[[X ]] be the curvilinear coordinate sys- NB
tem corresponding to the curve 7. Show that the power series L(X) = >2°2) X P p7
defines a homomorphism G — G,. This means L(G(X,Y)) = L(X) + L(Y),or G(X,Y) = NB
L~YL(X),L(Y)), where L~} (L(X)) = X.

Show that G(X,Y) is a power series with coefficients in Z. Find the invariant differential
of G.

Tt is mod “V**"*1” in the original text.
"t is written “Z,) [X]” in the original text.
2The bound ”00” is missing in the original text.
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The objects opposite to p-divisible formal groups are the unipotent formal groups.

5.35. Definition: A formal group G is called unipotent when F' acts as a nilpotent operator
on Mg.

5.36. Theorem: Let G be a finite-dimensional formal group over a field K of characteristic p.
Then, there exists an exact sequence of functors

0—G"—G— G —0,

where G is a unipotent group and G is a p-divisible group. Moreover there exists an
isogeny G" x G"* — G.

Proof: Let M’ = {m € Mg |p"m = 0 for some N > 0}. Then M’ is a Cartier submodule of
M such that VM N M’ = V M'. Therefore, M /M’ = M" is a V-reduced Cartier module over
which p operates injectively. The exact sequence

0O— M —M-—M"—0

provides the desired sequence of formal groups.

From the fact that M’ is finitely generated, it follows that p™°M’ = 0 for some large
enough Ny. Thus p™o defines an injection M” — M. We obtain an injection M’ & M" — M
which according to defines an isogeny.

5.37. Theorem: Let G be a unipotent formal group over a field K of characteristic p. Then
there exists an increasing sequence of subgroups 0 = Gop C G1 C --- C G, = G and exact
sequences of functors

0 — G — G — G, — 0.

Proof: Let M be the Cartier module of G. Consider an increasing sequence of Ep—submodules
of the V-divided Cartier module

0=DMyC-- CM =M.

Then M; = ]\Af,ﬂM is a V-reduced Cartier module such that V M; = M;NV M = M;NV M; 4.
It follows that M;11/M; is a V-reduced Cartier module. We find r < ) dim M;;1/M; =
dim G. Now assume that r is chosen maximal. Then M;,/M; possesses no proper E,-
submodule. By assumption there exists a nonzero element m € M;,/M; such that F'm =
0. Since m is a generating element, it follows that F'(M;;1/M;) = 0. Thus M,y;/M; is
isomorphic to the Cartier module of the additive group G,. The claim follows.

In we defined the Witt vectors of length n and we determined their structure equa-
tions. The group W, is visibly unipotent.

5.38. Theorem: Let K be a perfect field of characteristic p. Then any finite-dimensional
unipotent formal group over K is isogenous to a direct product of groups W,,.

Proof: Let M be the V-divided Cartier module of such a group. For each m € M let e, be the
smallest natural integer such that F*»m = 0. We consider a generating system my, ..., m,
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of the E,-module M such that ) e;,,, is minimal. We set ¢; = ¢e,,, and we index in such a way
that e; < ... < e,. We shall show that the elements F/im;, 0 < f; < e; generate a V-reduced
E,-module M ﬁ It is clear that every element of M’ has a representation

(5.38.1) > Van ] Flim

i\n

Assume that such an expression is 0 with coefficients different from 0. Applying a suitable
power of F' to (5.38.1), we obtain an expression of the form

0o !
Z Z Vn[cn’i]Feiflmi =0,

n=0 i=1
where a certain ¢y ; does not vanish. Then ) V"[c, ;] is a unit in E,. Consequently

-1 -1

e;—1 e;—1 e;—1, F—eitl
F47 imy = E nF T Tmy = g Fe m;.
i=1 =1

Letm) = Y021 pf " Fei~etm; — my. Thenmy, ..., m), ..., m, is a generating system of M
with e,,,; < ¢;. This contradicts the minimality of > e;.
Thus M’ is a V-reduced E,-module and M is its V-divided module. It is obvious that

the formal group of M is a direct product of groups W,.

§ 9 Deformations of p-divisible groups

Let K be a Z,)-algebra. Let A = K @ .4 be a nilpotent, augmented K-algebra and
¢ : A — K the augmentation morphism. Let G be a formal group over K.

5.39. Definition: A deformation (G, 1) of G is a formal group G over A together with an
isomorphism ¢ : G — .G =G k. Two deformations G; and G'; of G are called isomorphic if
there exists an isomorphism « : G1 — G2 such that the following diagram is commutative:

/\

1 —> 6*G2

Let G be a p-divisible group. Then according to any deformation of G is again p-
divisible. From the Rigidity Theorem 5.30|follows that the unique automorphism of a defor-
mation of G is the identity.

Let .4/ € Nilg. We denote by Def(.4) the set of isomorphism classes of deformations
of G over K @ .#. This is a set-valued functor on Nilg.

5.40. Theorem: Let G be a p-divisible formal group over K. Then Def; is a smooth functor
that commutes with fibre products.

BIn the original text, throughout the proof, there is a conflict of notation since this submodule of M is denoted
also by the letter M.

NB
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Proof: From follows that Def is smooth. For the proof of the second assertion, we
consider a fibre product diagram of nilpotent augmented K-algebras

B2 4,

AZLA

By we may assume that 7; is surjective.

Let G; and G5 be deformations of G over A; and A,, and let m1,.G1 ~ m.Go be an
isomorphism of deformations. Since this isomorphism is uniquely determined, we may
identify the latter two groups. We denote them by G3. Le Gy be a deformation over B
that induces G and G by base change. For each .4 € Nilg that is projective as a B-module,
we have a fibre product diagram

N ——— N ®@p A

| |

N XB A2 — N XpB A.
We derive from this an exact sequence
0— G0(</V) — G1(</V XpB Al) D G2(</V XpB Ag) — G3(</V XpB A).

In particular, one has an exact sequence of Cartier modules:

0—>N—>M1@MQL>M3

mi @ mg —— mqp — ma.

It follows that the deformation G is uniquely determined. Its existence will follow if we
prove that N' = ker « is a reduced E,, 4-module (¢f3.27). Itis clear that N is V-reduced. It re-
mains to prove that N/V N is a projective B-module. Since we assumed that 7 is surjective,
then « is surjective also. We obtain an exact sequence

0 —>N/VN —>M1/VM1 EBMQ/VMQ —>M3/VM3 — 0.

By localization, one can reduce to the case where the modules M;/V M; are free. Let ez ; be a
basis of the As-module M, /V M. Since M3/V Mg = My /V My ® 4, A, this basis specializes
to a a basis e3; of M3/V Ms. Since A; — A is a surjection with nilpotent kernel, the e3; lift
to a basis ey ; of M;/V M;. Itis now clear that e; ; Xes,; €2,; is a basis of N/V'N.

5.41. Theorem: Let R be a perfect ring of characteristic p and a € Nilk such that a* = 0.
Let G be a p-divisible formal group over K and M its Cartier module. The deformations
of G over K/ = K & a are in bijection with the K-linear mappings

a:VM/pM — a®g M/VM.

“In the original text, this group over B is denoted by the same letter G as the original group over K.
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Proof: (cf [18]) Let IE, and [E;, be the Cartier rings of K and K'. Let M’ be the Cartier module
of a p-divisible formal group over K’ and M = E, ®g, M~} One has exact sequences:

0 — Ey(a) — E, —E, —0

0— Ey(a) ®g, M — M' — M — 0.

Obviously, we have E,(a)? = 0. Therefore E,(a) is an E,-module andlﬂ E, = E, ®Ep(a). We
notice that a + b = [a] + [b] for a, b € a since this equality obviously holds in E' = A(K'[[X]]).

Let V[a] M’ be the subgroup generated by all elements of the form Y_._, V'[as]ms, as €
a. One finds isomorphisms

C =Ey(a) @g, M' ~ [[V]a]M ~ [[awx M/VM.

Here, the right-hand side is an E,-module in an obvious way. It follows that one has an
exact sequence of the form

0— [Ja®x M/VM — M — M — 0.

We remark that FA is mapped isomorphically onto FM since FC = 0.
Let N C M’ be the subgroup of all elements m’ € M’ for which there exists k£ € N such
that

k—1
(5.41.1) VEm € FM'+Y Vi[a]M'.
i=0
We claim that the canonical projection N — M has a reciprocal mapping. In order to show
this, we shall prove first that V" acts as a nilpotent operator on M/F M. Actually, since K is
perfect, F'M is a V-reduced Cartier module and the inclusion FM C M corresponds to the
Verschiebung (cf' . This induces an isomorphism of V-divided Cartier modules FM ~
M.The nilpotency of V follows. Let m € M. We can find k € N such that Vkm = Fm;.
Let m’ and m) € M’ be liftings of m and m;. Then, we have:

VFm! — Fm € H ViaM'.

)

Obviously, one can change m' to ensure that m’ € N. In this way the reciprocal mapping is
defined.
The Witt ring W(K) and F act on N. Moreover, we have VN C N + [a]M’'. Indeed,

from (5.41.1) one obtains:
k=2
VAL VM —mh) e FM'+) " Vi[a]M', m] € [a]M'.
i=0
Therefore V' defines a map
a:N— a®g M/VM.

It is written “E), ®z, M'” in the original text.
The word “and” is missing in the original text.
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Since F'N lies in the kernel of this map and N = M, we obtain
a:M/FM — a®g M/VM.

Conversely, one can reconstruct the module M’ from @. Indeed, we have a decomposition
M' =M & C = N & C which is compatible with the action of W (K') and F. We define

V(m,c) = (Vm,a(m)+Ve), me M,ceC.
The operation of E,(a) on M’ is visibly:
[a](m,0) = (0,[alm), a€a, me M.

Thus the liftings M’ are in bijection with the maps @. The datum of @ is equivalent to that of
a linear map
aVv ' VM/pM — a®x M/V M.

5.42. Theorem: Let G be a p-divisible group over a perfect ring K of characteristic p. Then
Defg : Nilg — Ens is a prorepresentable functor. For each .#” € Nilg, one has a bijection
between Def(.4") and the set of K-linear mappings

VM/pM — N @k M/V M.

Proof: From the proof of the preceding theorem follows that VM /pM is killed by a power
of V. Since K is perfect, the K-module VM /Vi+1 M is finitely generated for all i. From this
follows that V M /pM is also a finitely generated K-module. If .42 = 0, then by the
following holds:

Defg(4") = Homg (VM /pM @k (M/VM)*, . A),

where (M/V M)* = Homg (M/V M, K) is the dual module.
Since Def is an exact functor on Modg C Nilg, the K-module VM /pM is finitely gen-
erated and projective. From this and follows that Def is prorepresented by

SpfS/\(VM/pM R (M/VM)¥).
The theorem follows.

Remark: the correspondence of between deformations of G' and K-linear maps is
visibly functorial. For the correspondence in this fact is in general not true.

5.43. Corollary: M /pM is a finitely generated projective K-module whose rank is equal to
the height of G.

Proof: Let m be a maximal ideal of K. Then K/m = K’ is a perfect field. Let My be the
Cartier module of Gk. Then by and we have:

Mg [pMgr = Egr p g, M/pM.
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We have an isomorphism:

Exrp @5, M/pM = K'®@x M/pM
[Kl@m+— Kk @m
SV JFT@ome—s Y P T @ VEFTm.

The last sum is finite since V' is nilpotent on M /pM. Since we already know that M /pM is
a finitely generated projective K-module, it is enough to prove the claim for a perfect field.
Using one finds V-bases my,...,m, and m/, ..., m], of M such that

pmg :Vhimi, t=1,...,n.

From we see that heightp = height G = )  h;. On the other hand, it is clear that
dimg M/pM =3 h;.

5.44. Exercise: a) Let ¢ : G1 — G2 be an isogeny of formal groups over a perfect field. Show
that M¢, /Mg, is a W (K )-module of length height 1).

b) Let G be a formal group over a Z,-algebra K. Let G be a lifting of G to K[e]/%. One
has an exact sequence of Cartier modules

0—C—M— M —0.

We assume that M has a V-basis m1, ..., m,. Then one has structure equations
Fm; = Z Vierijlmj, cij € K.

We choose liftings m; € M of m;. The structure equations for M read

(5.44.1) Fmi =Y Vleijlm; + Y V'ieag Im;.

We assign to this deformation the Cartier module M’ over K with the following structure
equations:

(5.44.2) Fmj=>> Vlewiglm}+ > Vv jlu;
Fu; =0, 1=1,...,n.

These structure equations define an extension of G by the additive group G}:

(5.44.3) E: 0— Mgy — M — M — 0.
u; — 0

Show that this extension is independent of the choice of the lifings 77;. One obtains in this
way a bijection between the extension of G by G7 and the deformation of G over K|¢]/&2.

5.45. Remark: Let L be a K-module and L™ : Nilg — Ab the functor 4 — (L @k A)". We
remark that K acts on L™, giving a map K — End L™. It follows that we obtain an action
of K on the Cartier module Ny, of L™ (cf[3.29).
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Assume that p is nilpotent in K. Let G be a p-divisible group over K with Cartier mod-
ule M. The group Ext]lEp(M ,N1) is a K-module via the action of K on the second factor.

According to Messing [15]], the functor L — Ext]lEp(M , N1,) is representable by a projective
K-module V:
Homy (V, L) = Extg, (M, Np) [

The identity mapping idy corresponds to the universal extension
00— Ny —M —M-—0

or
00—V —G& —G—0.

From the result of Messing, it follows that Def; is representable. As an exercise, the reader
can prove the result of Messing over a perfect ring.

Tt is written “Hom g (V, N)” in the original text.



Chapter VI

Isogeny classes of p-divisible formal
groups over a perfect field

§1 Crystals and isocrystals

Let K be a perfect field of characteristic p. The Witt ring W = W(K) is a discrete
valuation ring with residue field K, with maximal ideal generated by p. The Frobenius
Frobz = 2P induces an endomorphism ¢ = W (Frob) : W — W that we call the Frobenius
of W.

Let G be a p-divisible formal group over K and M its Cartier module. According to
the module M/pM is a finite-dimensional K-vector space, whose dimension equals
the height of G. Since M is complete and separated in the p-adic topology, it is a finitely
generated WW-module, and since the multiplication by p is injective on M, it is free.

6.1. Definition: Let us fix an integer a # 0. A o%crystal (M, V') is a finitely generated free
W-module together with a o®-linear map

V:M— M, Vwm = w’ Vm, weW, me M.

The Cartier module M of a p-divisible, formal group G is a o~ !-crystal. Conversely, we
have:

6.2. Lemma: Let (M, V) be a o~ !-crystal such that
a) pM C VM,
b) V is nilpotent on M /pM.

Then (M, V') is the crystal of a p-divisible formal group G.

Proof: Let FF = pV~1. It is clear that the ring W[V, F] with relations FV = VF = p,
wV = Vw?, Fw = w? F acts on M. Since V' is nilpotent on M /pM, the sums of the following
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form are convergent in the p-adic topologyﬂ
Zvrwrm, w, €W, me M.
r=0
Thus M turns into a V-reduced Cartier module.
The category of p-divisible formal groups is therefore equivalent with the category of

crystals enjoying the properties a) and b). When one classifies the formal groups up to
isogeny, one is led to the notion of isocrystal. Let K be the fraction field of .

6.3. Definition: A o“isocrystal (N, V') is a finite-dimensional K-vector space N together
with a o%linear map V : N — N.

A finitely generated IW-submodule M C N is called a lattice if the elements of M generate
the K-vector space N. In other words, M has a basis as W-module that is at the same time a
basis of IV as K-vector space.

Let M’ C N be a second lattice. Then we have p* M’ C M for large enough natural
integers s. It is clear that M /p°M’ is a W-module of finite length. We define

[M : M'] = length M /p° M’ — length M’ /p° M.
If M" is a third lattice, we have:
(M :M"]=[M: M)+ M :M"].
6.4. Definition: Let (IV, V) be an isocrystal. We call the dimension of the K-vector space N

the height of N. The number [M : V M| is independent of the choice of a lattice M C N. We
call it the dimension of N.

Indeed, for a second lattice M’ we find:
(M :VM'|=[M: M)+ [M:VM]+[VM: VM.

Since obviously [VM : VM'| = [M : M'| = —[M' : M], we obtain [M' : VM'] = [M : VM].
Let G be a p-divisible formal group and M its Cartier module. Since p induces an isomor-
phism of the p-divided Cartier module M, then M is a K-vector space. From the equality

Vim=p"F'm, meM
follows that M is a lattice in M. We have
height G = dimg M /pM = ranky M = dimg M.

If G has dimension d and height h, it follows that (M,V) is an isocrystal of height h and
dimension d. It determines G up to isogeny.

6.5. Exercise: Let K be a perfect field of characteristic p. Let H : Nilx — Ab be a functor
which is representable by a finite nilpotent K-algebra. It follows from that H is the
kernel of an isogeny of formal groups G — G:

(6.5.1) 0— H— Gy — Go.

"The sum below is ” 3" ” in the original text.
r=0
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Let M; and M be the Cartier modules of G; and G». One obtains an exact sequence
00— My — My — M — 0.

There is an isomorphism of functors H(.4") = TorIIE”(W(,/V ), M). The E,-module M is of
finite length and V' is nilpotent on it.
Conversely, let M be an E,-module with these properties. Then, the functor .4 —

TorIIEP(W(JV ), M) is representable by a finite nilpotent K-algebra. One obtains an equiv-
alence of categories H — M. One calls M the covariant Dieudonné module of H. The length
of M is equal to the height of H. Compute the covariant Dieudonné modules of o, and 1,

((R34).

That M is independent of the chosen representation (6.5.1) is proven in the following
way. One tensors the sequence

VN N
0—E, —E, —E,/V'E, —0
with M. Then one obtains for large N an isomorphism

M = Tor}?(E,/VVE,, M)J]

§ 2 The first Newton slope of an isocrystal
6.6. Definition: Let (/V, V) be an isocrystal, M C N a lattice and m € M. We define:

ordy V =max{k € Z, VM Cp*M},
ordyym = max {k € Z,m € pFM }.

6.7. Lemma: Let M and M’ be lattices in an isocrystal (IV, V). Let ¢ and ¢ be integers such
that p°M C M’ and p© M’ C M. Then, one has:

lordp V —ordyp V| < e+, |ordys m — ordy m| < max(c, ).
Proof: Let x = ordy; m and y = ordy; V. Then, we have m € p*M C p* “M’' and VM’ C

p*C/VM - py*C/M C py*C*C/M/. We obtain ord;s m < ordyym —cand ordyy V < ordy V —
¢ — c. The claim follows if one switches the roles of M and M’.

6.8. Lemma: Let (IV,V) be an isocrystal of dimension d and height h. Then for all lattices
M C N and all natural numbers n # 0, we have

ordys V < (1/n)ordpy V" < d/h.
If there exists n such that ordy; V' # (1/n) ordys V™, then

ordy V 4 (1/h) < (1/h) ordys V.

?But this is an expression of M in terms of itself ; why does it prove that M is independent of the representa-

tion ?

NB
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Proof: From the inclusion VM C p*M we obtain V"M C p™* M, and from V"M C pY M we
obtain
nd=n[M:VM]|=[M:V"M] > [M:p'M] =y[M : pM]| = yh.

Thus we have proved that ordy, V' < (1/n) ordy, V™ < d/h.
Let x = ordy, V and V"M C p™**1M for somen > 1. Weset M; = {m € M |Vim €
p 1M }. From VM C p®M it follows that:

pM=MyC My C---CM,=M.

One checks easily that if M; = M;; then also M; = M; for all j > i. Since dimg M /pM = h,
we get M), = M. We obtain the desired inequality.

6.9. Definition: Let (N, V') be an isocrystal. If there exists a lattice M C N such that VM C
M, we call (N, V) effective.

6.10. Lemma: Let (N, V) be anisocrystal of height h and M a lattice of N such that V**1 M ¢
p M. Then (N, V) is effective.

Proof: Consider the lattice

h
M = Z VIM.
j=0

We have: Z?i& VIiM' = nggl VIM =M+ Z?:o VI(VPHIM) € p~' M’. We consider the
increasing chain
htl
McM+VMcC--CY VIM cp'M.
§=0
Since dimg p~' M’ = h, we find an n such that
n n+1
Y VIM =) ViM =M.
j=0 j=0

Then obviously VM” c M”. QE.D.
6.11. Definition: For an isocrystal (IV, V'), we call
Newton(N, V) =sup{(1/n)ordy V" |n € N\ {0}, M C N alattice }
the first Newton slope of (N, V).
6.12. Lemma: Let (N, V') be an isocrystal and M C N a lattice. Then one has:
Newton(N,V) = nlggo (1/n)ordp V™,

Newton(N, p*V") = r Newton(N, V) + s.
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Proof: Let A be the first Newton slope of (N, V). We consider an arbitrary lattice M" C N.
Let = ordy; V" for some n € N\ {0}. We can find integers ¢ and ¢’ such that p°M C M’
and p® M’ C M. Then bywe have:

sup (1/m) ordy; V™ > sup (1/kn) ordys VE* > sup (1/kn)(ordyy VE" — ¢ — ¢)
m k k
> sup (z/n) — (c+ ) /kn = z/n.
k

From this we derive A\ = sup (1/m) ordps V™.

m
Lete > 0 and « = X\ — £/2. By definition we can find an m such that ord; V™ > ma. Let
r,s € N be such that 0 < s < m. Then we have: ordy; V""" > mrz + sordy; V. We choose
ro in such a way that for r > rgpand 0 < s < mz:

s(ordpr V. — ) /(mr + s) > —¢/2.
Then for n > mry, we have n = mr + s withr > rgand 0 < s < m. We find:

A= (I/n)ordy V™ >z + s(ordpyy V —x)/(mr+s) >x —e/2=X—¢.

[y
[
N

From this follows that A = li_>m (1/n)ordps V™. The last claim of the lemma is obvious.

[y
g
w

6.13. Lemma: Let (N, V) be an isocrystal. Let r, s € Z, r > 0, be such that Newton(N, V) >
s/r. Then there exists a lattice M C N such that V"M C p*M.

Proof: Let h be the height of (N, V). Let V' = p!=s(h+1)yr(*+1) Then (N, V') is an isocrystal
with Newton(N, V') > 1. We can find a lattice M C N such that V"M C M for some n > 1.
Let M/ = M +---+ V™ 'M. Then V'M' C M’ and consequently (p~*V")h+D A" c p=tM.
Using[6.10} we find a lattice M” with p=*V"M" c M". QE.D.

6.14. Lemma: Letx € Rand R > 2 an integer. Then there exist r,s € Zwith1 <r < R—-1
such that |z — (s/7)| < 1/(Rr).

Proof: For each r € Z, there exists ¢, € R such that ro — ¢, € Zand —1/R < t, < 1 —
(1/R). We must prove that t, < 1/R for some r = 1,...,R — 1. Assume thatt, > 1/R
forr = 1,...,R — 1. Then one finds 1 > rg such that |t,, — t,,| < 1/R. It follows that
(ri —ra)z — (tr, —tr,) € Zand —1/R < t,, — ty, < 1/R. This contradiction shows the claim.

6.15. Theorem: Let (IV, V') be anisocrystal of height » and dimension d. Let A = Newton(N, V).
Then there exist integers r, s and a lattice M C N such that A = s/r, 0 < r < h, s < d,
ordy V" = s.

Proof: According to we can find integers s, 7, 1 < r < h, such that
A= (s/r)] <1/(r(h +1)).

Let V! = p75V" and X = Newton(N,V’). Then we have |N| = |rA —s| < 1/(h + 1).
Using we find a lattice M’ C N such that V/**'M’ ¢ p~tM’. By we obtain that
(N, V") is effective. We now consider a lattice M C N such that V'M C M. We get:

ordyy V! > 0> N —1/h > (1/h)ordy V" — 1/h.
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Using we obtain ordy, V' = (1/n)ordpy V'™ forn > 1. Also N = ordy V' € Z and
therefore A = 0. We find A = s/r and ordy; V" = s. Since according to[6.8]and we have
A < d/h, then s < dr/h < d.

§ 3 Decomposition of isocrystals over perfect fields

6.16. Lemma: Let (A/,V) be a crystal. Then, there is a decomposition
(M, V) = (Me, V) @ (M, V)

such that V' : Mg, — My, is bijective and V" M; C pM, for large enough n.

Proof: The map V induces amap V' : M/p"M — M /p" M. Since M /p™M is a W-module of
finite length, then

M= Jker Vo =ker V", My :=()ImV*=ImV"

for large enough r. Obviously V' is nilpotent on M,, ; and surjective on M,, ¢. Since M,, ¢ has
finite length, one sees easily that V' : M, «s — M,, ¢ is bijective. Therefore M,, ¢; N M,,; = 0.
Let m € M/p"M. Then V"'m = V?"m/ for some m and thus m — V'm’ € M, ;. In this way
we have a direct sum decomposition M /p"M = M,, ¢ ® M, ;. The claim follows by taking
projective limits.

6.17. Definition: An isocrystal (IV, V') is called isoclinic (one finds also the terms isocline and
pureﬂ if

dim(N, V)
IV’QVVJEOH(]V7 V) = W

6.18. Lemma: For anisocrystal (IV, V') of height h and dimension d, the following conditions
are equivalent:
(i) (NV,V)isisoclinic.
(ii) There exists a lattice M C N such that V*M = p?M.
(iii) There exist integers r, s with r > 0 and a lattice M C NN such that V"M = p°M.

(iv) Let M C N be alattice. Then Newton(N, V) = lim (1/n)ordy; V™m forallm € N\{0}.

n—00

Proof: The implication (ii) = (iii) is trivial. We show that (i) = (ii). In fact, by we can
find a lattice M such that V*M < p?M. Then:

[peM VM) = [M : VM) — [M : p?M] = h[M : VM] — dh = 0.

3Translator’s addition.
“Translator’s addition.
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We obtain V*M = p?M.

(iii) = (i): We have 0 = [p°M : V"M] = rd — sh. Therefore we find d/h = s/r =
(1/r)ordy V" < A < d/h and thereby A = Newton(N, V). The claim follows. At this stage,
the first three conditions are equivalent.

(il) = (iv): by the limit is independent of the choice of the lattice /. Let VM = piM.
Then, for all m € N\ {0} we have:

ordy; V"m = nd + ordy m.
Now we choose ¢ such that |ordy; V*m| < ¢ for 0 < a < h. We derive:
|(1/(hn + a)) ordps VP — nd/(hn + a)| < ¢/(hn + a).

The claim follows by taking limits when n — oo.

(iv) = (iii): Let A = s/r, s,r € Z be the first Newton slope of N. By|[6.13} we can find a
lattice M C N with V"M C p°M. Let V! = p=*V". Then (M, V') is a crystal. We consider
the decomposition of [6.16}

(M, V') = (Mg, V") @ (M, V).

By the definition of M;, there exists k£ > 0 such that V’ kM, c pM,;. Assume that there exists
a nonzero element m € M;. Then ordy; V'"m > n holds for all n € N. We have:

(1/rkn)ordy V7™ m > (n/rkn) + (skn/rkn) = 1/(rk) + \.

By taking limits when n — oo we obtain a contradiction. Thus M = My is an isoclinic
isocrystal.

The isocrystals constitute a category in an obvious way. A morphism f : (N, V) —
(N2, V3) is a K-linear mapping f : N1 — N3 such that the following diagram is commutative:

N1L>N2

u| f i

N1 E— N2.

6.19. Lemma: Let (/V,V) be an isocrystal. Let 0 # (Ny,Vi) C (N, V) be a subobject and
(N,V) — (N3, V3) a quotient object. Then, the following holds:

Newton(N, V) < Newton(N;, V;), i=1,2.
If (N, V) is isoclinic, then equality holds.

Proof: Let s/r = Newton(N,V). We can find a lattice M C N with V"M C p°M. Let
M, = Ni N M and M, the image of M by the map N — N,. Then we have V;"M; C p°M;,
i=1,2.If V"M = p°M, one has V" M; = p°M;. Q.E.D.

6.20. Corollary: Let (N, V') be an isoclinic isocrystal and (N1, V) an isocrystal with
Newton(Ny, V1) > Newton(N, V).

°The sign ”C” is missing in the original text.
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Then:
HOHI((N, V), (Nl, Vl)) = Hom((Nl, VI), (N, V)) =0.

Proof: Let (N, V) — (Ni, Vi) be a nonzero homomorphism and (N’, V') its image. Then we
have, in contradiction with the assumption:

Newton(N, V) = Newton(N’, V') > Newton(Ny, V7).
The second claim of the corollary follows similarly.

6.21. Lemma: Let (N, V) be an isocrystal with first Newton slope A. Then (/V,V) has a
unique decompostion
(N, V) = (N1, V1) @ (N2, Va),

where (N1, V1) is isoclinic with first Newton slope A and Newton(Na, V) > A.

Proof: We consider a lattice M C N with V"M C p*M, where A = s/r. Let V/ = p~*V". One
has a decomposition as in (M, V') = (Mg, V") @® (M, V"). Tensoring with K, we obtain
a decomposition of the isocrystal

(N> V,) = (Néta Vl) @ (va V/)a

where (Ng, V') is isoclinic with slope 0 and Newton (N, V') > 0. It follows from that a
decomposition with these properties is unique if it exists. Therefore the above decomposi-
tion coincides with (N, V') = (V Ng, V') @& (VN;, V'), thatis, VNg = Ng, VN, = N,;. The
decomposition

(N, V) = (Net, V) & (N1, V)

is the desired one, and is obviously unique.

6.22. Theorem: Let (N,V) be an isocrystal with first Newton slope A. Then, there exist
uniquely determined subcrystals (V;, V;) with Newton(N;, V;) = A; such that

(N,V) = @ (Ni, Vi) and

=1
(6.22.1) A=A < Ay < < A

This follows by successive applications of We call \; the Newton slopes of (N, V).
Let d; be the dimension of (N;, V;) and h; its height. The height of (N,V)is h = ., h;,
and its dimension is d = 25:1 d;. According to we have \; = d;/h;. One obtains the
sequence of Newton slopes, in which each )\; from the sequence (6.22.1) is repeated h; times:

(,ul,...,,uh) = ()\1,...,Al,)\g,...,)\r,...,)\r).
———— ———
h1 times h, times

Let Newton v (i) = E;Zl pj, 1 < i < h. Then, we have:
Newton(N, V) = Newton y (1), d= Newton y y)(h).

The graph of the function i — Newton y (i) is called the Newton polygon of the isocrystal
(N, V). It looks like this:
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dimension d

h
di+ height

6.23. Theorem: Let (N, V) be a o~ !-isocrystal (cf , and let \; < --- < )\, be its Newton
slopes. Then (N, V) is the isocrystal of a formal group if and only if 0 < A\; < --- < A, < 1.

Proof: Let (IV, V') be the isocrystal of a formal group. Then there exists a lattice M such that
VM C M, pV 'M C M (cf comment preceding|[6.2).

Therefore \; = Newton(N,V) > 0,1 — A, = Newton(N,pV 1) > 0. Since V is nilpotent on
M /pM, it follows that A\; > 0.

Conversely, let (IV, V) be an isocrystal whose slopes lie between 0 and 1. Then there
exists a lattice M C N with pV M C Mﬂ Since lim,, o0 (1/n) ordpys V™ > 0, there exists r
such that V"M C pM. Obviously the lattice M + - - - + V"~ M fulfills the assumptions of

We call a formal p-divisible group isoclinic when its isocrystal is isoclinic.
6.24. Corollary: Each p-divisible formal group is isogenous to a direct product of isoclinic
formal groups.
§ 4 Classification of isocystals over an algebraically closed field

6.25. Lemma: Let K be an algebraically closed field of characteristic p and ¢ = p%, a > 0.
Let V be a nonzer K-vector space and ¢ : V' — V a Z-linear isomorphism such that
p(kv) = klp(v), k € K,v € V. Then there exists a basis ey, . . ., e, of V such that p(e;) = e;.

Proof: We show that V' contains a nonzero yp-invariant vector. Let v € V, v # 0. Let r be the
greatest integer such that the vectors

v,0(v), ..., " (v)

are linearly independent. Then one has a relation
r—1
O (v) = kip'(v), ki€ K.
i=0

We look for a vector w = Z;:(} z;¢"(v) such that ¢(w) = w. The latter equation gives:

r—2 r—1 r—1
o) = S e ) S ki) = S Wm
1=0 =0 1=0

The ”C” sign is missing in the original text.
"We added the assumption that V' # 0, because the proof assumes the existence of a v # 0in V.

®Here and after, one reads "z _,” instead of “z?_,” in the original text.

[y
[
=]

[y
[y
~
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We obtain a system of equations for the z;:

— q
Trog — kowT_l
xr1 = l‘g + klxﬁl

Tpr_1 = $Z_2 + kr_lxg_l.
By successive substitutions, we find
r—1 i
Tr_1 = kg .Z‘g_l + e+ kr—lxg_l-

Since not all the k; vanish, this equation has a nonzero solution. This proves the existence of
an invariant vector.

Let ey, ..., e, be a maximal system of linearly independent y-invariant vectors. Let W
be the subspace generated by ey, ...,e,. Assume that W # V. We have proved that there
exists a vector €,4; € V/W such that ¢(€,4+1) = €41 and €41 # 0. Let e,1; € V be a lifting
of €.41. We have:

.
plert1) = €1+ Y ciei, ¢ € K.
i=1

We look forane;. | = e,41 + > i, yie; such that (e, ) = e/, that is to say,

T T
pler) = e+ Y (a+yDe=c 1+ (ci—yi+y)e
=1 i=1

Obviously, one can choose the y; so that the brackets vanish.

6.26. Theorem: Let (M, V') be a crystal over an algebraically closed field K such that VM =
M. Then there exists a basis eq, ..., e, of M such that Ve; = e;.

Proof: We can assume that V' is o%linear for some a > 0. Otherwise, we replace (M, V') be
(M, V1.
We construct by induction on n a basis egn), ..., et such that

Vegn) = egn) mod p", el(") = egnfl) mod p" .

The claim will follow by taking limits when n — oo.

The initial step of the induction is obtained by Let egn) = f; be previously con-
structed. Then, we have:

Vii—fi=p"Y  aijfj, aij €W
7=1

(nt1)

Let us look for e; = h; in the form h; = f; + p" 377, %;;f;. Then, we have:

r
Vh; —h; =p" Z (ai,j + ZE?’j — l’i’j)fj.
7=1
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Let@; ; and 7; ; € K be the residue classes mod p. Obviously, one can choose z; ; in such a
way that
Q; j +fﬁj —Xjj = 0
and therefore
a;j + a:f] —2;; =0 mod p.

Then Vh; — h; =0 mod p"™!. Q.E.D.

Let r,s € Z with r > 0 and (r,s) = 1. We consider a K-vector space Ny, with a basis
et,...,er. We define on N, a structure of o%-isocrystal by

€11, 1<r
V@Z‘: ls+7 - )
p’er, t=r.

6.27. Lemma: N, is an isoclinic isocrystal of slope s/r that contains no proper subcrystal.

Proof: It is clear that N;, is isoclinic of slope s/r. Let (IV,V') be a subcrystal of N, of
dimension d and height h < r. By and we get that (IV, V) is isoclinic of the same
slope as N, i.e. d/h = s/r. Since s and r are coprime, we obtain that r divides h. Thus
h=0and N = 0.

6.28. Theorem: Let (N, V') be an isoclinic isocrystal of slope s/r where r,s € Z, r > 0 and
(s,r) = 1. Then (N, V) is a direct sum of copies of Nj ,.

Proof: We choose a lattice M in N such that V"M = p°M. By we can find a basis
mi,...,my of M such that V'm; = p*m; fori = 1,...,h. Let N; = Y"_1 Vim;. The

surjection Ns, — Nj, e; — VIm; is a homomorphism of isocrystals. From follows that
this is an isomorphism. Therefore,

h
(N,V) =D (N, V), (N;,V) ~ N,
j=1

Leaving aside some summands, one can work it so that

(N,V) = Z(NZ{,V),

j=1
where N/ ¢ -, Nj and (N}, V) =~ N,,. From[6.27/we obtain N; N 3", ; Nj = 0. Thus the
sum is direct.
6.29. Theorem: Let (V,V) be an isocrystal over K. Then there exists a direct sum decom-
position

84,747

(N.V) =@ N
i=1

where u, s;,ri,t; € Z, u,ty,;r; > 0, (s;,7) = 1 and s1/r < -+ < 8u/ry. The numbers
u, 84, i, t; are uniquely determined by (N, V).
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Proof: This follows immediately from and The theorem says that over an alge-
braically closed field, an isocrystal is determined up to isomorphism by its Newton polygon.

Let us consider the case of o~ !-crystals. Let G be a p-divisible formal group over K and
(N, V) its isocrystal. By the Newton polygon of G we mean that of (IV, V). It determines G up

to isogeny by
By we know that for 0 < s/r < 1, Ny, is the isocrystal of a p-divisible formal group
G. The structure equations of such a group take the form:
Fmi=m;y1,i=1,...,s—1, Fms=V"""my.

We denote these groups by G ;.. One sees easily that there is an exact sequence of functors

Oﬁww}W*}Gs,rHO

We can formulate for formal groups in the following way.

6.30. Theorem: Every p-divisible formal group over K is isogenous to a direct product of
groups G .
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Index of symbols 123

NB
Let C be an object in an additive category. Let I be an index set. We denote the direct
sum of I copies of C by C'/) and the direct product by C’. The invariants under the action
of a group G are denoted C”. If y is the image of = under a map, we write z + y. For a
K-module P, we write P* the dual module P* = Homg (P, K).
AT, augmentation ideal of an augmented Mg, Cartier module of a formal group
K-algebra 34 [M : M'|[110
Ab, category of abelian groups A/, nilpotent, commutative K-algebra
Comply [35] y(n)
E NP o3
E,, B9 N, set of natural integers
E,[7T] Newton(N, V)|[112
203 Nily B3]
BT) @ ord I11]
P Q, set of rational numbers
Ens, category of sets (R, a,)
F, = Z/pZ, field with p elements p
pa S(M)B7
= S (M)
Frob[79] P3| St (M)PBS
" O3 Spec K, set of prime ideals of K
24 Spf[36
Ga EL @ ta I@
GmBIB3 Tor
GmS B4 Vb7
G (™) @ VIl
He P2 Vg
hA|B7] W I76) NB
Hom - A15[35] W74
En @ Wm, @
K W, |81}
A W,
Mod, category of K-modules X[P

“Most page numbers for the symbols and terms indexed below are incorrect (quite often shifted by 3) in the
original text.
0This is h,, in the original text.
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Xt Cn, n-th root of unity 60|
X5 B2

Z, set of integers _
Zy, set of p-adic integers ®

Z(ﬁ)@ H@



Index of terms

Augmentation [10]
Base change
Bigebra
Cartier duality 29} 0]
Cartier module (i.e. E- or E,-module)

_, V-divided

—, reduced

—, V-reduced

—, V-flat
Cartier ring E[57} E, [71]
Comorphism
Crystal
Curve

—, p-typical
Curvilinear coordinates [66]
Deformation 103
Derivation, invariant[14]
Dieudonné module [I11]
Differential form [15
Differential operator

—, invariant 2]

-, invariant, algebra of
Dimension 9} [45]
Fibre product

—, diagram [40|
Flat[64]
Formal group

—, additive

—, multiplicative

—, of Witt vectors

—, p-divisible

—, isoclinic p-divisible

—, unipotent[102]
Formal group law [
Formal spectrum
Frobenius
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Functor
—, half-exact
—, left-exact
—, prorepresentable
—, representable 36|
—, smooth [46]
Height
—, of finite group
—, of isogeny
—, of p-divisible group
Integral curve

Isogeny [36]
Isocrystal

—, effective (112

—, isoclinic|114
Jacobi identity
K-algebra, augmented

—, complete

—, nilpotent
Lattice
Lie algebra
Lifting
Lubin-Tate group [30]
Newton slope (112
Perfect ring[79
Preparation theorem
p-typical

—, curvel[7]]

—, element
Reduced tensor product
Rigidity
Small surjection
Smooth 46
Structure equations @
Tangent functor

Tangent space [16] [44]
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Typical elements
Universal extension

Universal enveloping algebra
V-basis

Verschiebung

Weight of a monomial

Witt polynomials
Witt ring|[76]
Witt vector [74]

-, of length n
Yoneda lemma 36
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