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Abstract

In this note we study the modular properties of a family of cyclic coveringgloéf degreen,
in all odd characteristics. We compute the moduli space of the corresponding algebraic stack over
Z[1/2], as well as the Picard groups over algebraically closed fields. We put special emphasis on the
study of the fibre of the stack at a prime of wild ramification; in particular we show that the moduli
space has good reduction at such a prime.
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We are interested here in algebraic curves caledtate Potts curvespreviously
studied here and there in the literature but not from a modular and arithmetic viewpoint.
They provide an interesting example (quite unique in fact) of a stack of Galois covers
where the study can be pursued quite far even at the primes of wild ramification. We
discover interesting phenomena, as well as explanations and commentaries concerning the
deformation theory of wild covers of curves (see [3]).

In the modular theory of covers of curves, much is known in the tame case where the
characteristipp > 0 of the base field does not divide the indices of ramification: these cov-
ers form a smooth algebraic stack, and it is known how to compactify it with stable covers.
By contrast, for example for a Galois cover of graipwwhose order is divisible by, the
(uni)versal deformation ring is very nasty (in general not even reduced), meaning that the
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corresponding classifying stack is far from being smooth. Moreover, there exist sgooth
covers in characteristic 0 that do not have good (i.e., smooth) reduction to characgeristic
and vice versa there exist smodihcovers in characteristig that do not lift to character-
istic 0. Giving a bridge between these characteristics usually means studying objects over
a valuation ring of mixed characteristi¢8, p), and how they specialize or generalize. In
the example of Potts curves everything can even be doneZy¥¢?], and we will be able
to describe quite precisely the behaviour at a prime of wild ramification.

Let us now describe in more detail the results of the article. Given an odd integes,
an N-state Potts curve (aN-Potts curve) is by definition a smooth hyperelliptic curve
of genusN — 1, which is a cyclic covering oP! of degreeN. We will simplify the
treatment of hyperellipticity by avoiding the prime= 2, and we will rather focus on
wild ramification at primes dividingv. Hence in all the article the schemes and stacks
considered are oveét[1/2]. Thus the fibered category with objectsPotts curves is an
algebraic stackPy overZ[1/2]. Among the main results of the article is the following
computation (Theorems 3.2.1 and 4.1):

-1
e If N is not prime, the coarse moduli spacef)y is the schemé.l @ Z[gN ?N 5]
N . . +¢51
e If N = pis prime, the coarse moduli spaceRj is the schemé\.! ® Z[% 3.

In this statementAl = A — {0} is the punctured line and the arithmetic rings that appear
are subextensions of degree 2 of the ring of cyclotomic integers (see 1.4). Note that when
N is a composite integer, there does not exist Potts curves in charactepi$tiés We

see that, although the stacks (and moduli spaces) are connected for arithmetic reasons,
at (geometric) primes of tame ramification they split as a sunp(@¥)/2 connected
irreducible components, wheteis the Euler function. On the contrary, whéh= p is

prime, we show that the moduli space “has good reductiop’, #iat is to say its formation
commutes with the base changgl/2] — F,:

e The coarse moduli space B,  F, is Al ® Z(Fp”,—[f)]/z, the fibre of the moduli space of
P, atp. '

The result (Theorem 5.1.2) is even more precise and shows that the map fr@rnir, to

its moduli space i€tale, and so this stack is connected but non-reduced with multiplicity
@(p)/2; its reduced part is smooth. Hence we can interpret the non-reducedness as coming
from the collision ofp(p)/2 smooth components in characteristic 0 when we reduce to
characteristig.

We also compute the Picard groups of the geometric fibr@ab k (k an algebraically
closed field of characteristie # 2). The first fact to be noted is that these groups are finite
at primes of tame ramification, but not anymore at primes of wild ramification. The second
interesting point is that the nilpotents contribute a lot to the Picard grofp &fF ,, which
would certainly not be the case for its moduli sp&because it is an affine scheme, hence
Pic( Pred) = Pic(P). The reason for this is of course the presence of automorphisms. Here
is the result (Theorems 3.3.3 and 5.2.1):
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e If (N, p) =1 then the Picard group of any connected componernPpf® k is
isomorphic to(Z/27Z) x (Z/2NZ).

e If N = p then the Picard group @®, ® k is isomorphic taZ/27Z x (14 zA), where
A= Z(I"[—Zl])/z[x 1] is the affine ring of the moduli space, and+lzA C A* is a
multiplicative subgroup.

Finally we mention that in the tame case, it is likely that a little more work would give
the expected results concerning the stacktable N-Potts curves, namely, that its moduli

space i@l®Z[§+—§4, %] We will say no more than a word about this in 3.4. Concerning
the stack of stablg-Potts curves oveZ[1/2], similar questions arise but here the problems

are of course more complicated. It is clear that the work done in the present article makes it
tempting to ask what would stabtePotts curves look like; if there is a 1-dimensional stack

of stableN-Potts curves even over characteristicsN ; what are the stable reductions of
N-Potts curves in characteristic whenp divides a non-primeV ... All this is left aside

for the time being.

Here is a short overview of the organization of the article. In the text, the order
of apparition of the results is actually rather different from the one above. The first
section contains preliminaries on finite subgroups of the projective linear group.PGL
The second section contains the computation of the automorphism groups of Potts curves.
Here we make the essential observation that the good understanding of th® gtaglkr
Z[1/2N1] is via the classical Hurwitz description of branched covers by the shape of the
ramification. This leads us to start from a different definition for Potts curves, and of
course we eventually show that the two coincide. In the third section, we treat the case
of a compositeV: we compute the moduli space Bfy and the Picard group of its fibres.

In the fourth section we extend the construction of the moduli space to the case of the stack
P, with p prime. At last the fifth section is devoted to the study of the fibr@pft p.

Conventions

We will consider that every positive integer is prime to 0, so as not to make repeated
particular cases when speaking of primality of an integer with the characteristic of a field.
The Euler function is denoted lgyas usual. The cardinality of a finite sets |S|. Finally,
in a moduleM over a commutative ringi, we will denote bym o m’ the equality up to
multiplication by an invertible element of.

1. Preliminaries on Dickson’s theorem

There is no pretense to originality in the contents of this section, but the results stated
here could not be found in the literature. Because of their simplicity, proofs are sometimes
elliptical, if not omitted. The reader may without prejudice skip this section and go straight
to Section 2, referring to the results below when necessary.

In Section 2, in the course of the computation of the automorphism group of Potts
curves over an algebraically closed figddbf characteristicp £ 2 (see 2.1.9 and 2.2.3),
we will have to handle certain finite subgroups of B@Gl). Recall from [17, Chapter 3,
Theorem 6.17] that Dickson’s theorem for P&3iakes the following shape:
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Theorem 1.1(Dickson).Letk be an algebraically closed field of characteristicZ 2. Any
finite subgroups C PGLy (k) is isomorphic to a subgroup among the following:list

e If pis prime to|G|,
(1) cyclic group, dihedral group, symmetri&,, alternating2(4 or 2s.
o If p divides|G]|,
(2) G = Q x C a semi-direct product of a normal, elementary abeliarSylowQ by
a cyclic group of order prime tp,
() AUsif p=3,
(4) PSLx(F,) or PGLy(F,) for g = p*, s > 1integer.

In this section we classifgonjugationclasses instead of merelyomorphisntlasses.
We define an equivalence relationfff by x’ ~ x < x’ € {x, x~1}. The corresponding
class is denotefk]; the mappingx] — x + x~1 is a set-theoretic injectioh™ /~ < k.
Finally let ) C k> be the set of primitiveith roots of unity (e.g.uz ={1}).

Proposition 1.2.Let A € PGL, (k) be an automorphism of finite order> 1. Then,

(i) Eithern is prime top, or equal top.
(i) As an automorphism dP, A is conjugated tax — ¢x, for somet e w,, when
(n, p) =1, and tox — x + 1, whenn = p.
(iif) The setu;/~ classifies conjugation classes of elements of omdeand more
precisely,

ordlA)=n < thereexist§s] e u);/~ such that
(¢ + ¢t +2)detA) — tr(A)? =0.

Proof. We work with a representative in Glk), whose eigenvalues are given by the
characteristic polynomial ast = (tr(A) + 8) /2 with §2 = tr(A)2 — 4 detA). In PGLy(k),
only the class (for the relatior) of the ratios := A1 /1~ is well-determined.

We have[¢] =1 if and only if, up to homothetyA is conjugated to a unipotent matrix,
i.e.n = p and, as a homography, is conjugated tor — x + 1. We have¢] # 1 if and
only if A is conjugated to the diagonal matrix diag( »~), and themA has order if and
onlyif (n, p) =1 and[¢] e u)/~. As a homographw is conjugated ta: — ¢x.

For the claim in (iii), one needs just checking that

1 A+ tr(A) =8 tr(A)? B
T tr(A)—68  tr(A)+8  dettd)

{+¢ O

Examples 1.3.As particular cases of 1.2(iii), an elemeAte PGLy(k) has order 2
(respectively order 3, 4, 6 gp) if and only if tr(A)2 = i det(A) for i = O (respectively
i=1,2,30r4).

Remark 1.4.Let ¢ be a primitiventh root of unity (say as a complex number) abglthe
nth cyclotomic polynomial (of degreg(n)). For future use, we observe thgt+ ¢ —1)/2
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is integral overZ[1/2]. Indeed its minimal polynomial ove® is 2-¢/2y,, (2r) where
Y, € Z[t] is the monic polynomial such thak, (1) = 1*"™/2y;, (+ + t~1). According to
(iii) of the proposition we define an automorphism of the projective line over the spectrum

of Z[”{l, 2], of exact order. on all the fibres, by the following matrix:

+¢b e+t -2
M§=<c LA AL >

Corollary 1.5. Letg = p® for somes > 1. Then the order of an elemedte PGLy(IF,)
dividesqg — 1, g + 1, or p.

Proof. Take A an element of ordet prime to p. By Proposition 1.2, there existse u:
algebraic oveff,, of degree at most 2, such thats conjugated ta — ¢x. If { € Fy, we
havec?—! = 1. Else, the minimal polynomial af overF, is

2 _tr(A)2>
P=X +<2 dotn) X+1

But P can also be writterP? = X2 — (¢ + ¢9)X + ¢! with the Frobenius Rr) = x4,
generating GaF 2/F,) = Z/2Z. Hencer 91 = 1 and we are done.

Corollary 1.6. There areg? — 1 elements of ordep in PGLx(F,), and they all belong to
PSLy(F,). Moreover the set of fixed points of all ordeelements oPGL, (F,), acting on
Pl(k), isPL(F,).

Proof. Simple calculations. O

In the sequel we use the concise notatiorix)) for the subgroup generated by a
homographyr € PGLy (k).

Corollary 1.7. The cyclic and dihedral subgroups BiGLy (k) are conjugated tp

) {Cn—< ¢x)  for(n, p)=1(any¢ e uy),
(x+1) forn=p.
0 {Dn—<cx,x> for (n, p) =1 (any¢ € u}).
Dp=(x+1 —x) forn=p.

Corollary 1.8. The subgroups d?GLy(k) isomorphic toS4 (p # 2, 3) are conjugated to

Sq= <ix, X 1> ~((1234, (12))
x—1

Proof. Let v:64 = G be an isomorphism with values in a subgroup of BGl;
a = v(1234 and b = v(12) generateG. Up to conjugationa(x) = ix. A priori the
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involution b can be writterb(x) = (rx +s)/(tx — r); using the fact thatb = v(134) has
order 3, we get? = st (see 1.3). Conjugation by (x) = rx/¢ leavesa invariant while

b maps to the desired— (x +1)/(x — 1). To complete the proposition, one checks that
these two elements generate a subgroup isomorpl@qto O

Corollary 1.9. The subgroups isomorphic t8GLy(F,) are all conjugated to the
“standard PGL2(IF,) corresponding to the field inclusidhn, < k; the same result holds
for PSLo(Fy).

Proof. The standard PGI(F,) is generated by the following three elements:
e(x)=x+1, f(x)=ux, gx)=1/x

whereu is any generator of the multiplicative grom‘l). Settingm = (¢ — 1)/(p — 1) then

v =u" is agenerator df’,; in particularv is an integer modulp. Then we have a relation
e’ fm = fMe, itis just the homography — vx + v. Also itis immediate that := ord(eg)

is prime top.

Now let G be a subgroup of PGl(k), andv:PGLyx(F,) — G be an isomorphism.
Denotee = v(e), f = v(f), g = v(g) sothaiG = (e, f, g). Asf, g generate a dihedral group,
by the above result 1.7, with a first conjugation we can supposé thgt andg = g. The
above relations in PGI(F,) yield:

(1) e# =1
(1) e¥§" =",
() (eg)" =1

Let us writee(x) = (ax + b)/(cx + d), then(t) reads(a + d)? = 4(ad — bc) by 1.2. By
induction,

k+1 k

k _(_era__z )x +k

e (x)= i .
kcx—— —l—%d

We then write(1T) explicitly and obtaine = d, andc = 0. At this point,e(x) = x + b/a.
Then by(111) and 1.2 there exists € )} C FZZ such that

1+ 1)%a% = b2

As n dividesq — 1 or ¢ +1 by 1.5, we have. + 171 € F, and sop := (b/a)? =
—r+ 2142 € F,. Finally we apply a conjugation by :x — bx/a, then G =

(x +b/a,ux,1/x)is mapped tax + 1, ux,1/Bx) = PGLx(F,) as announced. The case
of PSLx(FF,) is similar. O
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2. Potts curves and their automorphisms

In this section we describe Potts curves defined over an algebraically closed field, before
looking at families (hence moduli) in the rest of the article. Let us make precise definitions
before we start: in all what follows, by a curve over a scheinge will mean a proper,
flat morphismf:C — S whose fibres are projective, geometrically connected and one-
dimensional; also, exceptin 3.4, they will be assumed to be smooth. We recall that:

Definition 2.1.Let N > 3 be an odd integer. AW-Potts curve is a smooth hyperelliptic
curve of genusV — 1, which is a cyclic covering dP! of degreen .

In Section 2.1 whereV is prime to p, we have three main goals: showing the
equivalence between two different definitions of Potts curves (2.1.5), giving a modular
invariant (2.1.7), and computing automorphism groups (2.1.9 and 2.1.10). In Section 2.2
wherep dividesN, we also define an invariant and compute the automorphism groups (it
turns out to be simpler).

2.1. Tame case

In this case, the curves we are dealing with can be described like in the classical Hurwitz
setting, i.e., as maps ® with prescribed ramification. This is our starting point; it leads us
to change Definition 2.1. Recall that if a finite groGpacts faithfully on a smooth curv@
over a field of characteristig, such thatG| andp are coprime, then the stabilizer of a fixed
point is cyclic and its natural representation in the cotangent space of the point is faithful.
This gives rise to thédurwitz ramification datumi.e., the list of all the corresponding
characters at the fixed points.

Let N > 3 be an odd integer. S&& = Z/NZ, and assume that a generator oy
denotedg, has been chosen once for all. In the character gr&m G, we define
an equivalence relation by’ ~ x if and only if x’ € {x, x 1}. Denote by[x] the
corresponding class.

Definition 2.1.1.Let k be an algebraically closed field of characterigtiprime to 2V.

(i) An N-Potts curve of typdx] overk is a curveC together with a faithful action
0:G — Autg(C) such thatC/G has genus 0, with four ramification points all with
stabilizer equal taG, and Hurwitz ramification daturfy, x, x ™%, x “1}. An N-Potts
curve is anN-Potts curve of typgy] for some[x].

(i) An isomorphism between two Potts curv€s C’ is a G-equivariant isomorphism of
algebraic curveg: C = C'.

Remarks 2.1.2.

(i) The actionp being determined by = p(g), a Potts curve will be denoted’, o). If
(C,0) and(C’, ¢’) are isomorphigV-Potts curves thefy ] =[x'].
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(ii) Of course, from now up to 2.1.5 it is this definition that applies rather than
Definition 2.1.

(i) If o acts viay on the cotangent spama/m theny is determined by the root of
unity ¢ := x (o). Hence, the quantity + ¢ ~1 is attached ta”, and equivalent tdy].

Hyperellipticity

Let (C, o) be anN-Potts curve. By the Riemann—Hurwitz formula, we get the genus
g(C) = N — 1. Notice that a birational equation can easily be drawn from the definition:
by Kummer theory, the function field(C) is generated, as an extension of the rational
function fieldk(x), by a singler € k(C) such that” € k(x), i.e.,

N _ (x—a)(x—>b)

T x—o)x—d) (1)

according to the ramification. Substituting(x — ¢)(x — d) tot we get
=x—a)x—b)x - tx—a)N?t

whereo acts byr — ¢ for somes. Now in Aut, (P1) there is one and only one subgroup
isomorphic t0Z/27 x 7./27., generated by involutions that interchange the four points
a,b,c,d (see[14, 81, Lemma 2]), namely

a<d,

.Ja<b, {a<—>c
' b<c.

c<d bod T0M0=M0Toi[

In order to make the link between 2.1.1 and Definition 2.1 we must build a hyperelliptic
involution from g and for that we need to recall the following classical construction:

2.1.3.1t is known how to describe a tame cyclic covering of curves (or even, families of
curves) in terms of invertible sheaves on the base. A perfect exposition is recalled in [2],
so we just give a sketch here. Fer> 2, let S be a scheme with € O, and¢ € Og
a primitive nth root of unity. LetX — S be a smooth curve, ang an S-automorphism
of ordern. By smoothness the quotient morphisfnX — Y = X/o is f|n|te flat. By
the assumption of invertibility of, there is a decompositiof.Ox = EB -0 L: with £;
equal to thez/-eigenspace for the action of. The £; are invertible sheaves and the
multiplication in f,Ox gives injective map£; ® L; — L;+; (i + j is read moduloz).
In particular, ass” = id, we getL] ~ Oy (D) whereD is the effective Cartier branch
divisor of f.

Conversely, giverC = £, and a global sectiom whose divisor of zeroes i® (sos
is determined up to a global invertible section), we can reconstructhand endow
A=D1 1[2 with a product mapping¢, ¢') € L; x L,—; to s¢t’ € Oy, and we recover
X = Spec:A)

As a conclusion, we can consider the datum ofSacurve X with an automorphism
of ordern as being equivalent, up to isomorphism, to that of a trigiteL, s) where
L € Pic(Y) ands is a global section of£~". Furthermore there is an obvious functoriality
in (Y, L,s): foramap(Y’, L,s") — (Y, L,s) given by an affineS-morphisma : Y’ — Y
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and a magB : £ — a, L’ respecting the sections, there is an induced morphisff — X
with oh = ho'.

Back to our situation, the action ef on the Potts curv€ is described by = O(—2)
ands = (X —a)(X —b)(X — )N ~Y(X — d)N~1. Clearly g gives an automorphism of the
triple (P, £, 5), hence lifts to an automorphism C — C.

Moreover,t satisfiestor~1 = . Also we have that? = ¢/ for somej € Z/NZ,
because it induces the identity @}. But 2 being invertible moduladv, we may write
j = 2k, and then, changinginto to —* if necessary, we can assume that= 1.

As for no, things are slightly different because it exchanges andb, d. Let s’ be
the section X — ¢)(X —d)(X —a)V1(X — b)N~1 of £ = O(-2), thenug gives a map
between(P!, £, s) and(PL, £, s"). The last triple gives rise to the same cutvef course,
but with the automorphism 1. Soug liftsto . : C — C such that 1 = uo. As above,
we may changg so as to havgl? = 1; thenu ando generate a group isomorphic to the
dihedral grou@y .

Proposition 2.1.4.C is hyperelliptic, and is the hyperelliptic involution.

Proof. Using the fact thatv and 2 are coprime, it is immediate that a pointnis fixed

by 7 if and only if its image inC/o is fixed by tg. But the supports of the ramification
loci for the quotients by ando (i.e., their fixed points) are disjoint, because their images
in C/o are already. Hence we geNZfixed points forz, namely all the preimages of the
fixed points ofrg. They form twoo -orbits. Applying the Riemann—Hurwitz formula to the
guotientC — C/t of degree 2:

2(N -=1)—2=2(28c;: —2)+ 2N
we havegc,; =0, as desired. O
Proposition 2.1.5.Definitions2.1and2.1.1are equivalent.

Proof. It only remains to prove the implication “2.%& 2.1.1". But once again, using
oddness ofV, a point inC is fixed byo if and only if its image inC/z is fixed byog

(the morphism induced from), and then the stabilizers are equal. An automorphism of
P! of orderN has two fixed points with full stabilizer, and ramification characters inverses
to each other. As the ramification loci ferandr are disjoint, the two points lifted i@

give four fixed points with stabilizer =7Z/NZ asin 2.1.1, and with the expected Hurwitz
ramification datum. O

Remark 2.1.6.By the way, in [14], the definition chosen for Potts curves is a mix between
ours: there, arN-Potts curve is a hyperelliptic curve of genis— 1, with an orderN
automorphism having exactly 4 fixed points.

Automorphisms
We will now compute the automorphisms of Potts curves (the results will be complete
after Proposition 2.2.3). It should be said that similar computations of automorphism
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groups can be found in the literature, for example for general hyperelliptic curves in
characteristic O (in [6]) or for curves that occur as cyclic coveringg'odf degree prime
to the characteristic (in [10]).

Using the quotient byt we can get another affine equation for a Potts cutveAs
a matter of factg induces onC/t ~ P! an automorphism conjugated to— ¢x. The
branch locus ot is composed of two orbits of , i.e., {¢/a} U {¢/B} for0< j < N —1,
for certaina, 8 with «, 8 and 0 all distinct. The corresponding equation is

y2= (xN—aN)(xN —,BN) =x?N + AxN + B. (2)

We can recover (1) with the choice of a rational parameter for the oénicu? + Au + B
(e.g., with the coordinates= (y + v/B)/x" andr = x/((2+/B)Y/V), the equation is" =
(z —1)/(z% — 1) with » = —A/(2+/B)). The automorphisms, 7, 1 have the following
expressions on model (2):

BYN /B
o, y)=0x,y); T, y) =X~y u(x,y)=< T {Cl_vy)

Let us define a modular invariatit= B/(A%2 — 4B) # 0 for a curve with Eq. (2). As is
expected,

Proposition 2.1.7. Two Potts curveqC, o) and (C’,o’) of invariants j and ;' are
isomorphic if and only iff = j" and[x] = [x'].

Proof. Let ¢:C — C’ be an isomorphism witlh'p = go. It induces a map:C/t —
C’/t’ on the quotients. Moreover, Proposition 1.2 says that for an automorphiBiasf
order prime top, there is a unique coordinateonP! (up to~) such that the automorphism
is a homothety. So if we consider equations of type (2)fandC’, thenG-equivariance
reads eithef (¢ x) = ¢@(x), or ¢(¢x) = ¢ ~1@(x). In the first case we fing(x) = rx for
somei, whenced’ =AM A, B’ =22V B andj = j'. In the second case we figdx) = A /x
for somex, whenceA’ =ANA/B, B’ =12 /B andj = j'.

Conversely, assume that= j" and[x] = [x'] with C andC’ given by Eg. (2). Then
x' = either x or x 1. If ¥’ = x choosex such thatA’ = A¥ A and B’ = 12V B; then
¢:(x,y) — (Ax,ANy) is a G-isomorphism fromC to C’. If x’ = x~! choosexr such
that A’ = AN A/B and B’ = 22N /B; theng: (x, y) = (A/x,~/B(1/x)"y) answers the
question. O

Remark 2.1.8.Via j, there is a 1-1 correspondence between isomorphism classés of
Potts curves and the sum @fN)/2 copies ofA® — {0}. Indeed, for fixed x] andj 0,

a curve with invariany is given by the equation? = x2¥ + (1 + 4j)xN + j(1+ 4)) if
j#—1/4,0orbyy2=x2N —1if j = —-1/4.

We are now in position to compute the automorphism groups of Potts curves, using the
results of Section 1. On the way, we provide a correction to [14, Section 2, Proposition 5]
where the case of = —1/4 was forgotten.
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Theorem 2.1.9.Let N > 3 be an odd integer, andé an algebraically closed field of
characteristicp prime to2N. Let (C, o) be anN-Potts curve. Then the automorphism
group of the curve” (along is the following

(i) If p#3,5 N=3, j=—1/54, thenAut,(C) = &4, the representation group @4
where the elements corresponding to transpositions have @dexe[17, Chapter 3,
82, (2.21)]

(i) If p>0,2N —1=gq is a power ofp, j = —1/4 (including the caseV = 3, p =5,
j=-1/54)letR C ]quz be the subgroup of square roots of elementg bfthen

AUt (C) = PGLo(Fy) xpx R

(the product is fibered with respect to the determinant and the squard?mapF;).
(iii) In all other cases, ifi # —1/4thenAuty(C) = (Z/27) x Dy, and if j = —1/4 then
Auty(C) = (Z/2Z) x Day.

Proof. From now on we will denote by - (x) the orbit of a pointx under the action of

a groupl”, and I its stabilizer. We know that has order 2 and is normal in Aut)
(because of the unigueness of the hyperelliptic involution), hence it is central. Denote
G = Aut(C)/(t) so that there is a central extension

1— ()= Aut(C)— G— 1. )

When f € Aut(C), fo denotes itsimage ir. Denote byX = O, () U Oy, (B) the set of
the 2V branch points of, then by 2.1.3G can be identified with the subgroup of ABt)
of the homographies stabilizing. What we shall do is to determir@thanks to Dickson’s
list, and then find the class of the corresponding extension.

Notice that (Z/27) x Dy =~ (r,0, u) C Aut(C) so that G contains a subgroup
isomorphic toDy. Also G acts transitively onX, becauseDy already does, and
consequently

Vse X, 2N=|0¢(s)|=IG|/I|Gsl.

Now, in four steps we read through the list in Dickson’s theorem to find all posGiisle

Before, we observe that we can allow conjugation§ af PGLy (k) since it is just a change
of variable onx in Eq. (2), so it does not chang&up to isomorphism. That is why from
Step 2 on, we shall identif¢g with the representatives given in Corollaries 1.7, 1.8, 1.9.

Step 1.The groups that can not appear.

First of all, neither the cyclic groups n@ft, possess dihedral subgroupg, so they
are ruled out. Now, let us see that the occurrencé of 2s is also impossible. The only
dihedral subgroups i areDz andDs, whenceN = 3 or 5. AssumeV = 3; then we must
haveG; ~ D5 for somes € X, because it is a subgroup 24§ with 10 elements. Denote
H := (09, no) >~ D3; then one can show thét; N H ~ Z /27, and then there must be H
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a non trivial automorphism with a fixed point iB. This is a contradiction. WheN =5,
just interchange the roles Bf; andDs (the former stands oG, the latter forH ), and the
argument carries on. Also, note that this is true for anfgcases (1) and (3) of Dickson’s
Theorem 1.1).

Finally, a group of typed x C (case (2)) can not contaiby with (N, p) = 1.

Step 2.The case o6 = PSLy(F,) or PGLx(F,), g = p°.

We proceed in three substeps.

(a) We show that’ coincides with the set of fixed points of ordeelements of5. Let
0 be ap-Sylow of the stabilizeG,, it is also ap-Sylow of G. If g € G has ordep, then
it belongs to some-Sylow Q’. All Sylow subgroups are conjugateddh soQ’ =t Q1
andg fixest(x) € X. Conversely, ifs € X, thenG; contains ap-Sylow of G, hence an
element of ordep. By Corollary 1.6, = ]P’l(IFq); in particular, v = | X| = ¢ + 1. In the
sequelp € F 2 is a 2Vth root of unity such thag = $2; observe thap + ¢~ and¢ 4 ¢ 1
both belong td,.

(b) We work out the curve and the group structure of @&yt By (a) we get the
birational equation? = x4 — x with genus(q — 1)/2= N — 1. Clearly PGL([F,) € G
since it stabilizeéP’l(IFq). A priori G could be bigger, however the only subgroups of
PGLy(k) containing PGk(F,) are isomorphic to PSI(F,) or PGLx(F,), but then
g’ =2N — 1=gq and henc& = PGLx(F,). In particular the group PSI(F,) is ruled out.
Moreover, for an element = (‘6‘2) ands such thas? = det(y), there is an automorphism

ax+b 8y
Jrate.y)= <cx +d’ (cx +d)(‘i+1)/2>'
This is the fiber product structure stated in the theorem. We can now check that this is
indeed a Potts curve by giving an element of orfein PGLx(IF,;). For this just consider
the matrixM; of 1.4.
(c) At last we compute the invariant. In order to do this the quickest way is to notice that

* =PY(F,) is mapped to the ®th roots of unity via the following transformation

—x4+14¢71t

y(x) = y—1-¢

Indeedu = oo maps to—1 and foru € IF, one has

o N e A S A e et S S
y @) =y )1 —< P - - =1

using that? = u and¢? = ¢ 1. With the new variable = y (x) we get an equation

w?=t1_1

and the invariantig = —1/4.
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Step 3.The case 066 =S4 = (ix, (x +1)/(x — 1)) (for N = 3, see Corollaryl.8).

This case can happen onlyjif= 3, cf. Theorem 1.1. Fix/i a 8th root of unity and its
square. With the notations of Proposition 1Ix8;> ix is v(1234 andx — ﬁ—ﬂ isv(12).
Applying a permutation offl, 2, 3, 4} if necessary, we identifyg anduw with v(123) and
v(12), respectively. Fos € X, its stabilizerG, has cardinal 4, hence it is cyclic because
two commuting involutions oP! never have a common fixed point. We can chaose
thatGy is generated byg(x) =ix.

Now ag can not have a single fixed point lying i, because else it would act freely on
X — {s}, and hence its order would divid&v2— 1 = 5. So the two fixed point§0, co} are
in X. TheG-orbit of {0, oo} is {0, oo, £1, +i} = X. We can now give an equation

yzzx(x4— 1)

with the automorphisms

-1 2J2i
a(x,y):(ix,«/l—'y), U(X’Y)Z(_ii_i_l’%)’
“(’“’y"(m’m>’ “’”‘(‘Hl’m)'

After after a conjugation changing into x — jx (j € u3) we obtain the “Potts” equation
y2=(x3— 2+ /3)3)(x3 + 1). It allows to compute the invariant= —1/54 but is less
workable for the determination of the class of the extension (3). It can happet thal
only if G is PSL(F,) or PGLyx(FF,), and we know that this implieg = 2N —1=5.
When p = ¢ = 5, we have—1/54 = —1/4, and according to what was done before,
G = PGLy(F5).

Now let us check, referring to the definition in [17, Chapter 2, 89, Definition 9.10], that
Aut(C) is a representation group 4. This is the last step to prove (i) in the theorem;
as it is quite technical and not needed in the sequel we remain sketchy. We adopt the
notations of [17]. Denotéd = Aut(C) and Z = (). AssumeL is a proper subgroup of
H suchthatd = ZL,then[H : L1=2,LNZ =1, henceH = Z x L does not contain
any element of order 8, contradicting the existence.ofurthermore, denote by (G)
the Schur multiplier, thenZ| = |H' N Z| = 2= |M(G)| by checking that = [u, A] is a
commutator. Third, obviouslyH| = |G|.|M (G)|. Then the result follows by [17, Chap-
ter 3, 82, (2.21)].

Step 4.The dihedral cas& =Dy = (ex, 1/x), ¢ € uj,, for N | M, see Corollaryl.7.
It is the last possibility. Fow € P! its Dy;-orbit is
{w.ew, ..., eMtw 1w, ..., (8M*l)/w}.

This has cardinal 2 ifv = 0 or oo, 2M if w is in general position, an8f if w is one of
++/e/. We conclude that, in generalf = N; M = 2N occurs when the points of the orbit
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are vertices of a regulam2-gon, yielding the equation? = x2¥ — 1. The invariant is then
Jj =—1/4, andog has a “root”,/og(x) = {,yx. O

Corollary 2.1.10.For all N, p, the group of automorphisms @f, o) is:

j#—1/4: Auk(C,o)=(Z/2Z) x (Z/NZ),
j=—1/4: AuL(C,o)=(Z/2Z) x (Z/2NZ).

Proof. The only non-obvious case is (ii) of the theorem. We keep the notations of Step 2
in the proof of the theorem. It suffices to check that the centralizef og in PGLx(F,)

is cyclic of order 2V. It is cyclic because, after a conjugation changipgnto x — ¢x, Z

maps to a finite subgroup @,,. It has order< 2N = ¢ + 1 by Corollary 1.5, observing
thatog is a power of a generator of. Finally it has order exactly® because there is in
PGLx(FF,) an explicit square root fasg. Indeed, ifog is given as above by the matrif,

of 1.4, whose Cayley—Hamilton polynomial ¥% — (¢ + ¢ 1) X + (¢ + ¢ 1), one finds
thatM; + (¢ + ¢~ 1 id has a square equal M, in PGLx(F,). O

2.2. Wild case

Now we studyN-Potts curves whemp | N. The ground fielck is still assumed to be
algebraically closed, of characteristic> 0. Here it is Definition 2.1 that applies: the
ramification data of Definition 2.1.1 do not make sense any more. As usstnds for
the given automorphism of ordér andz is the hyperelliptic involution. Observe that if we
have an isomorphism: C — C’ between two Potts curves witho = ¢’¢, then it follows
from unicity of the hyperelliptic involution that we also haye = t/¢.

As a matter of fact it is not so clear that such curves exist(Ceb, t) be anN-Potts
curve with arbitraryN multiple of p. Theno induces an automorphism of ord®ron the
quotientC/t ~ PL. By Proposition 1.2, the only possible case is

N =p,
and the induced automorphismis x — x + 1 up to conjugation. As in Proposition 2.1.4,
it is easy to count 2 fixed points for the hyperelliptic involution, they form two orbits
of o (just lift the 2 fixed points of the involution induced ar/o). The corresponding
affine model is
=" —x)°+A("—x)+B (A, Bek). (4)
Hence, there exisV-Potts curves witlp | N exactly whenN = p. In that case we define

a modular invariant by

T A2-4B°
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Proposition 2.2.1.Two p-Potts curvegC, o, t) and(C’, o/, ') of invariants; and j’ are
isomorphic if and only iff = j'.

Proof. Let ¢:C — C’ be an isomorphism witlh'p = go. It induces a map:C/t —
C’/7’ on the quotients. Moreover, again by 1.2 we can assume thatobaihd o’ are
x — x + 1. So if we consider equations of type (4) férand C’, then G-equivariance
readsg(x + 1) = ¢(x) + 1. It follows thatp(x) = x + ¢ and from this we deduce that
A'=A+21tP —1)andB’ = B + (t? —1)A + (t? —1)?, and thenj’ = ;.

Conversely ifj/ = j then the choice of a roate k of t» —r = (A’ — A)/2 satisfies
alsoB’ = B + (t? —1)A + (t? — ). This ensures thap(x, y) = (x + ¢, y) defines an
equivariant isomorphism betweéhandC’ with Egs. (4). O

Remark 2.2.2.Here, contrary to the tame case (compare with 2.1.7) there is no numerical
invariant such agy] but only a continuous one. The computation of the moduli space in
both cases will enlighten this in the next sections.

At last we compute the automorphism grouppePotts curves. LetC, o, t) be given
by Eq. (4). Let, s be the roots of >+ AT + B, andx (respectivelyd) aroot of 77 —T —r
(respectivelyT'? — T — s), so that (4) reads

p—1 p—1
y2=(x”—x—r)(x”—x—s)= l_[(x—a+i)l_[(x—,8+i).
i=0 i=0

We have the following automorphisms:

ox,y)=x+1y); T(x,y)=(x,—y); ux,y)=(@+p8—x,y).

Proposition 2.2.3.Let (C, 0, ) be a p-Potts curve, thedut, (C) ~ (Z/2Z) x D, and
Auty(C, 0,1) ~ (Z/27) x (Z]pZ).

Proof. Itis still true (cf. Theorem 2.1.9) that

() T isof order 2, normal and central,
(i) G = Aut(C)/(z) is the subgroup of AWP!) of homographies stabilizingt =
Ooy (@) U Ogo(B),
(i) D,cGand 2 =[G :G,],Vx € X.

Let Q be ap-Sylow of G containingop; by Dickson’s theorenp is elementary abelian.
Assume thaD has order more thap, then there exist8 € Q commuting withog, hence
0(x) =x+u,withu ¢ F,. Moreover stabilizesX, and exchanges the orbitk,, («) and
O, (B) sinceu ¢ IF,. Therefore

a+u=p+Ii,

3, jeF .
@7k {,3+u=oz+]
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which impliesu = (i + j)/2 € F;,, a contradiction. Consequenty = (oo); we can now
read through the list in Dickson’s theorem.

If G =PSL(F,) or PGLo(F)), thenG, has ordel(p2 —1)/d withd =2 or 4. This is
prime to p, henceG,, est cyclic, but this contradicts Corollary 1.5.

The only remaining possibility i€ = Q x C = {o0) % (), becauséls is ruled out
by the same arguments as in the ca8e p) = 1. The order ofp, denoted @, is prime
to p; changing the point in the orbit if necessary, we can assume that its stabilizer is

Go = (p?). As Q is normal,p~toop = o for somer € F%, from which we deduce that

@(x) = ¢~ 1x 4+ b for someb € k. As ¢? fixes o, we derive(¢2 — Ly = £(£ + 1)b. If
¢+1#0itimpliesp(@) =¢la+b=a;s0l=-1,9°=1landn=1. O

We see that the remarkable symmetry previously obtained when—1/4 does
not occur here in characteristje. In particular, this implies that the-Potts curve in
characteristic 0 with invariant = —1/4 can not have good reduction in characterigtic
i.e., that any model of over a discrete valuation ring of residue characteristidll have
a singular special fibre.

This can be seen also directly as follows. LRtbe a discrete valuation ringf its
fraction field, k its residue field¢ € R a pth root of unity. Assume that ch@’) =0
and cha¢k) = p > 0. Let C be the K-curve with invariantj = —1/4, with equation
y?=x°" —1.Let f:C — P! be the hyperelliptic map and B Bry UBr, c P! its branch
locus, i.e., Bt = {1,¢,...,cP~1} and Bp = — Br1. Consider the minimal modet of
(P, Br) as a marked curve, possibly after a finite extensio® oThe special fibref;, is
a chain of three projective lines, with the two tails marked by &nd Bp respectively.
Let C be the normalization of in the function field ofC. On the special fibr€ has,
over each tail off,, a component which is a hyperelliptic curve of gerips— 1)/2. As
(p—1/24+(p—-1)/2=p —1=g(C), the curveC is semistable and the stable model of
C is obtained by blowing-downs i@i. ThusC has bad reduction.

3. The stackPy when N is composite

Let N > 3 be a non-prime integer fixed in the whole section. Lée an algebraically
closed field of characteristig # 2. We established in the previous section that whenever
p is prime toN, there is a bijection between isomorphism classed d¢¥otts curves and
a sum ofg(N)/2 copies of the affine punctured ling! := A — {0} overk (see 2.1.8).
Furthermore whep dividesN we saw in 2.2 that there are no Potts curves at all. We now

show (Theorem 3.2.1) that the coarse moduli space of the Radk Al ® Z[ “gl, 5]
(which indeed splits as a disjoint sum over any field containingNlie roots of unity).
Here a couple of remarks are in order:

(i) To be more precise, in all what follows, whenever we wfitg /2, ] we mean the

. .. -1 . .
ring of cyclotomic integers, and whenever we wmﬁl/z, ”5 ] we mean its ring

of invariants undet — ;‘1. In other words, the former ring i8[1/2][X]/(®y) and
the latter isZ[1/2][ X]/(¥n) Whered®y andyry are the cyclotomic polynomials of 1.4.
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(ii) It will become clear while reading that everything in this section applies equally well
to the tame stac®, ® Z[1/2p] whenN = p is prime.

As an immediate consequence we have a result of good reduction (3.2.2). In 3.3, we
compute the modular Picard group of the fibres of the sfagk At last we determine
topologically the stable curves that are involved as stable limits in the process of
compactification of the moduli space Bfy, in 3.4.

3.1. Preliminaries

Definition 3.1.1.Let S be a scheme ove£[1/2]. An N-Potts curve oves is a triple

(C, 0, t) composed of a smooth projectiecurve, and two automorphisms,C — C

of orderN andzt : C — C of order 2, such that the geometric fibers are Potts curves in the
sense of Definition 2.1.

It follows from standard arguments that the stk of N-Potts curves is a separated
Deligne—Mumford stack ove¥[1/2]. Also, asN is non-prime, for anyN-Potts curve
over S, the bases factors through Sp&Z[1/2N]) (as we saw in 2.2). Then it seems that
we might as well use:

Definition 3.1.2.Let S be a scheme ove£[1/2N]. An N-Potts curve is a proper smooth
morphism of schemeg: C — S, together with ar§-automorphisna : C — C of orderN,
such that the geometric fibef€, o) are Potts curves in the sense of Definition 2.1.1.

This gives a much better understanding of the stack, so we will work with this definition.
However, it raises the ambiguity of the existencerofwhich we now wipe out. Let
f:C — S be a Potts curve ovet in the sense of Definition 3.1.2 (remark: the tyjp@ is
locally constant oves).

Lemma 3.1.3.There exists an involution: C — C such thatf : C — S becomes a family
of hyperelliptic curvegin the sense 0f9, Definition 5.4 and Theorem 5.5])

Proof. Let G = (o). As C is projective overS, the quotientD = C/G exists; by
smoothness the quotientmapC — D is finite flat of degre&v. As N € O its formation
commutes with base change (see [8, A7.1.3.4]), as is also the case for the branch locus
B = 7,(CY). In particularD is aP*-bundle overS and B is étale and finite of degree 4
overS. We may localize (in thétale topology) as much as desired, because by unicity the
hyperelliptic involution will exist globally.

Hence we may assume thfit= SpecR) is affine, thatD = P, andB is a sum of four
disjoint sections, 8, v, §. Write the sections as = (a, : a,), ..., = (d, : d,). We define
a linear transformation ab by the matrix

0= [ a,bycydy, —cidiayb, a,c,d b, +byc,dya, —abycid, —a,bydc, :|
(ayby +ayby)cydy — (cydy + cpdy)ayb, —(aybycydy — cydyayby)
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(we mimic the expression in the case where the base is a field). Its determinan} det
—(a,c, — a,cy)(a,d, — a,d))(b,c, — b,c,)(b,d, — b,d,) is indeed invertible, as is clear
fibrewise, andy is involutive because of the vanishing of the trace (cf. 1.3). We must now
liftitto C. By 2.1.3 the cyclic covering :C — D = ]P’}Q is described by ~ O(—2) and

a global section of £V, with £V ~ O(—D) whereD =ao + 4+ (N — 1)y + (N — 1)8.

By constructionrg respects the date’, s), hence it lifts to an automorphismof C with

to =ot. As in the case of a single Potts curve, we can asstireid. This completes

the proof. O

3.2. The moduli space

We now compute the moduli space &fy. The proof below will in fact give a
concrete expression @y as a quotient stack of an open subset in the affine 3-space
of homogeneous polynomials of the for(X, Z) = UX?N + AXN zN + BZ?N by the
action of the grougG,,)2. The firstG,, factor acts simply (and freely) by multiplication,
and the second factor acts byH (X, Z) := H(AX, Z) (this is just the isomorphism
relation between Potts curves, see Proposition 2.1.7). This description is at least totally
correct over an algebraically closed field. Being rather interested in the arithmetic and
reduction of the moduli space, we will not insist on this aspect. Hence we will show:

Theorem 3.2.1The moduli space ?Py is Al ® Z[Lg_1 =]

To avoid heavy notations we will writ® for Al ® Z[”{l, 5] We split the proof

into two steps:

Step 1.We build the morphism to the moduli space.

Here again we will worlétale locally onS, and take care that the construction of the
morphism is canonical enough so that it descends. Notations are as above. By 3.1.3 there is
an involutiont € Autg(C). ThenE = C/t is aP!-bundle overs, we denote by : C — E
the natural projection and hy: E — S the structure morphism. As commutes withe it
induces an automorphism of ord®ron E. The divisor of fixed point§” = E? is anétale
cover of degree 2 of, étale locally it is a sum of two disjoint sectioas+ A’. Choosing
one of the two (sayl) defines an invertible sheé¥(A) of degree 1. We may call ©(1)
and thenE ~ P(V) with V = ¢,O(1). By disjointness, ifL and M are the restrictions
of O(1) to A and A’ respectively (viewed as sheaves $ thenV splits asL & M. By
construction the action of is now diagonal, given by multiplication by two invertible
global sections, r € I' (S, Os)*. We can normalize by changifiginto V ® L~1, so that
L = Og ands = 1. Then asr has ordewV, ¢ is a primitive Nth root of unity.

Now let us consider the double coverC — E. It is described by the decomposition
r«Oc = O @ L and by a “Weierstrass” sectighe I'(E, £2), well determined up to
an element of "(E, OF) (see 2.1.3). Sinc&~! has degreeV on the fibres, we have
L1~ O(N) ® g*K for somek e Pic(S). Also asé| 4 is everywhere nonzero (the fixed
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loci for the actions of5 andr are disjoint fibrewise), by restriction ta we getk 2 ~ O,
henceL =2 ~ O (2N). Consequently we can identiywith a o -invariant section of

2N
r(E.0p@2N))=I(S.Synt™(v)) =P I'(s. M?).
j=0

The most convenient writing is to use global coordinakesZ on P(V), with say X
corresponding ta/. Thend € I' (S, Os ® MN @ M?N),s00 «x H = UX?N + AXNZN 4
BZ?N for some section#/, A, B of Os, MV and M2 respectively (recall thak means
equality up to an invertible element). Looking locally on the fibers, one seedthsat
invertible. Finally note that the smoothness of the fibre€ 0§ requires that the sectigh
has no multiple zero (on all fibres). This means that neithaor A2 — 4U B vanish, hence
there is a well-defined sectiop = UB/(A% —4UB) € I'(S, Os)*. The assignments
F(¢) =t andF(X) = j give amapF : Z[¢, 5 1[X, X 1] — I'(S, O5)*.

Now we proceed to check the independence of this map with respect to the choices
made. In fact the only place where there is a different possibility is the choicgé of
rather thana’. ChoosingA’ is equivalent to exchanging the coordina’esZ on P(V),
so clearly j is unchanged. However is changed inta—1; so in any case if we set
F( 4+t Y =r+t"1thenthe map

r+¢t 1 4 «
Z[ : ,ﬁ}[x,x ] I'(5. 0)

is independent of the choice. Eventually we have a iap Al ® Z[Gg_l, ]=P.lt

is clear that the construction is functorial, providing a morph&mPy — P.

Step 2.We check the properties of the moduli space.

Recall that we must check two things: first, that for any geometric point(&pee
SpecZ[1/2]), the morphisn® induces a bijection between isomorphism classéick)
and P (k). If the characteristic ot dividesN then it is clear because both are empty, and
else this is exactly 2.1.8 (observe ta® k splits asp(N)/2 copies ofAl(k)). The second
thing is to see that every map frgR) to an algebraic space factors throughThis can be
done as in [12], using a family whose classifying morph&m P is finite surjective (such
a family is sometimes calle@dutologica). For this we consider the one-parameter family
Co with equationy? = x?V 4+ Ax" + 1, over the baseo = SpedZ[¢, x |[*. 75])-
(This is of course only an affine smooth curve; to make the definition rigorous we
actually glueCp with another copy of itself, compatibly with the mapsSg, along the
open setx # 0, via the isomorphism’ = 1/x, y’ = y/x"). The data of; and of the
invariant jo = 1/(12 — 4) determine a morphisrig — P which we denote bypg. Now
let ¥ : Py — QO be a morphism of stacks to an algebraic space, anédef; — Q be
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the morphism corresponding (Cp); let I' C P x Q be the scheme-theoretic image of
h = (Po, ¥0).

So
g
[oh) r "2}
VAN
P e

We observe thatpg being finite andp1 separatedk is finite. In particular is closed,
hencel” = h(Sp) as sets. Second notice thAtis integral becausdp is. Third p; is
closed and bijective: it is closed and surjective becabigés, and injective because for
5,5 € So, Po(s) = Po(s’) = Cos ~ Coy = Yols) = Po(s') (Q being a space). Thys;
is dominant, bijective and separable (siggis), hence it is a birational map. At last, Bs
is normal, Zariski's Main Theorem states thatis an isomorphism. Then the composition
p20 pyti P — Q gives a morphism which factos.

Of course it must be said th&tis not a fine moduli space. This is due to the presence of
automorphisms; actually, in view of 2.1.10 we could get rid of the gi@inNR7Z) x (Z/NZ)
by a process to be explained in 5.1.1, but the extra automorphism yhken1/4 still
causes ramification of above—1/4:

,+1_ A2
I T 4T aa2 4By’

A consequence of the explicit construction of the classifying morphism is that obviously
reduction modulg can be done at any prinpe> 2. The result is straightforward:

Theorem 3.2.2 Assume that > 3is a composite integer and that> 2 is a prime. Then
the moduli space dPy has good reduction &, i.e., the moduli space ¢y ® I, is the
(possibly empiyfibre atlF, of the moduli space @Py.

3.3. The Picard group

Let k be an algebraically closed field of characterigtiprime to 2v. We are now
going to compute the Picard group of the geometric fipgex k. This will, in some sense,
reveal that thgeometryof the stack carries the dependenceNdofwhereas the subring of
cyclotomic integers involved in the moduli space is ofaithmeticnature). Actually, as
Py @k splits as a sum of isomorphic stadiBy ® k)[,] = P, [,] according to the classes
of character$y ], we will compute the Picard group of one of them.

We first briefly recall the definitions. Thetale siteof Py has as open sets tletale
morphismsu : U — Py from an algebraic space, denotdd, «) or U. A map between
two open setéd/, V is a couple( f, o) with a morphism of algebraic spac¢gsU — V and
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a 2-isomorphisnx : v o f = u. Equivalently, it is a 2-commutative triangle with vertices
U, V, Py. Briefly said, the coverings @t/, ) are thettale, surjective familieg] U; — U,
and the topology generated by all these isétade site(Py)e. Finally aninvertible sheaf

L on (Py)g is given by a collection of invertible sheavés$y on U for every open set
U — Py, and isomorphismé;, : f*L|y — L|y for all maps as above between open
sets, such that any composition

U (fi2) 1% (.8 1%

gives rise to an equalityes raorg = £fa o [y p. The Picard group is the set of
isomorphism classes of invertible sheaves, endowed with the obvious tensor product.

Lemma 3.3.1.There is a morphism of grougs: Pic(Py 1) = Z/2Z x Z/2NZ.

Proof. We define it as Mumford does in [13]. L&t be an invertible sheaf oRy ,; and

U — Py, an open set, corresponding to ahPotts curve(C, o, r) overU (we use
Definition 2.1). In terms of the topology 0Py (], o gives an automorphism of the open
setU, so that there is an isomorphigia» : L|y = L|y . Itis given by an invertible global
section ofOy, and actually by the compatibility af w.r.t composition this section is an
Nth root of unity. Finally we get a morphisti — ux to the scheme y of Nth roots of
unity.

It is clear that for a connectdd the image inu y is constant; it is even independent of
the chosen open sét, because the stadRy [, is irreducible, so two nonempty open sets
(U, u) and(V, v) have images that intersecty j,. In particular, if we choosé to be
an atlas, oné-pointx € U will give the curveC, with the extra automorphisey whose
square iss (for the value—1/4 of the invariant). As above, we then get a pointigy,
and obviously its square is the pointiry computed before.

Now recall that a primitiveNth (respectively 2/th) root of unity ¢ (respectively
¢ = —¢) is determined up to inversion byy]. This yields an isomorphisnuoy =~
Z/2NZ mapping¢ to 1, hence for given. there is a well-defined elememb(L) €
Z,/2NZ computed with any nonempty open $&t The same works with the hyperelliptic
involution z; in order to keep additive notation we define= 1(L) € Z/27Z to be such
that{iq ; is the multiplication by(—1)¢. This completes the definition gf= (81, 2). O

As noticed in the proofg is determined up to inversion of the generatdZjf2NZ. The
following should now be quite close to intuition:

Lemma 3.3.2.8 is surjective.

Proof. Let U — Py, [, be an atlas, andf : C — U, 7, o) be the corresponding curve. It
is tempting, as in [13], to evaluafeon the Hodge bundlé = /\N‘1 f«$2¢c where2¢ is
the sheaf of differential 1-forms. Clearly we can compgiten the fibre ofL over a single
point of U, and of course we choose a paing U whose fibre is the curv€, with an extra
automorphisnayg (for j = —1/4). Up to isomorphisn€, has equation? = x?N — 1. The
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basis ofI"(C, £2¢) given by the formsy; = x'~1dx/y for 1 <i < N — 1, has the virtue of
diagonalizing the action of the group~ 7Z /27 x Z/2NZ generated by andop. Indeed

(o) =—wi,  oolw)=¢ w.

Unfortunately we see that mapswi A - -- Awy_1 to (—1)V~D/2 times itself (as does)
SO we can not conclude. Thus taking maximal exterior power was too crude, but instead
we can use the fact thgl £2¢ is aG-sheaf, so

N-1
f¥Q2c = @ L;
i=1

whereL; = ker(o* — ¢'id) is an invertible sheaf. We obtap(L1) = (1, 1) andB(L2) =
(1, 2), that generate the imageo

The end result is very similar to the one in the elliptic case (see [13]):
Theorem 3.3.3 8 is injective, i.e. Pic((Py ® k)[y1) = (Z/2Z) x (Z/2NZ).

Proof. Given an invertible shedf such tha{3(L) = 0, we show thaL|y is trivial for any
u:U — Py. Let f:C — U be the corresponding curve, and let us simplify the notations
to P :=Pp ) andL := L|y. As in [13] we will show thatL “descends” to the moduli
spaceP, but we will write down carefully the argument (only allusive in [13]) since it
involves nonflat descent. Consider the diagram

b 14
UxpU 2= UxpUl=UxsU =22 1.
P2

Let g; := p;i o b o a, then by definition of an invertible sheaf we have an isomorphism
L:qfL = gL between sheaves ol xp U. But the latter space is jusl :=
Isom(p;C, p5C), finite and unramified ovel/ x s U. By definition of the coarse moduli
spacell x p U istheimage of in U xs U. So actuallyl is a “torsor” overU x p U, with
structure grous = Aut((p10b)*C). We must be careful that is not flat, so the meaning
of a torsor here is just thdt x I ~ G x I. We have as usual an invariant pushforwafd
(pushing forward and then taking invariant sections) and it satisffes F ~ F for any
locally free sheafr of finite rank onU x p U. Here flatness of; is indeed unnecessary,
if F is locally free: using that botli and G are affine ovetU xp U, we may locally
reduce to the following situation of commutative algebra. We Haévep U = SpecA),
I = SpecB), G = Spe€A[G)) with a coactionB — A[G]® B such thatA = BY; finally
F is given by a free moduld/. It remains to check that¥ ® 4 B)® = M which is clear
sinceM is free.

The initial assumption tha(L) = 0 says exactly that:g;L — ¢5L is a G-equi-
variant isomorphism, so applying® we obtain an isomorphisny : (p1 o b)*L =>
(p20b)*L. Fortunately, the stacR as well as its moduli space are smooth, therefore the
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mapP — P is flat. Thus the may — P is flat, andy is a descent datum fdt. Finally
L descends t@, so it is trivial since PicP) = Pic(Al ® k) =0. O

3.4. Compactification by stable curves

It is known by the general theory of tame Hurwitz spaces that there exists a
compactificatiorP y for Py, classifying stable curves with action 6f= Z/NZ. Letk an
algebraically closed field of characterispicprime to 2V like in the previous subsection;
here we will just briefly find out the “cusps” of the geometric fil& [} = (Pn ® k)[x],

i.e., the points of the boundary.

We refer to [5] for a precise definition @@y ; we will only need to know that there is a

so-called “discriminant” morphism

8 Zf/_)N,[X] — -/WO,(Z,Z)

with values in the stack of curves of genus 0 with four marked points gathered by pairs.

This morphism maps a Potts curgeto the quotientC/G marked by the branch points.
Recall the dataG = Z/NZ, g = N — 1 andé = {x, x, x L, x 1} of Definition 2.1.1.

In order to determine combinatorially the stable curves lying on the bourddy; ,; we

use the combinatorial description of stable curves via their dual gFas in [5,7]. For

a stable curve®, the graph/c has the irreducible components Gfas vertices, and the

double points as edges.

Proposition 3.4.1.The coarse moduli space &y ] is P = P ® k, and the two cusps
are topologically the following two curves. The first hasranches isomorphic t&!
intersectingN times, and the second h@sbranches of genugV — 1)/2 intersecting in
only one point.

s e,

Proof. First, P is a normal proper curve of genus zero, henceRtlisin dual graphs, we
shall indicate marked points by wavy edges. HencédetG) be a stable Potts curve. We
havel's = I'c/G, whereX = C/G has genus 0. We recall thet=73", gx, + W (Is),
so that the irreducible components of X are all rational, and thaf’y is a (connected)
tree. Taking into account the four marked points and the stability conditignsnust be
one of the two graphs:

LA
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But, G being cyclic, a double point i@ maps to a double point i&r. Hence the first
graph can not occur. So 1€}, i = 1, 2, be irreducible components 6fabove each of the
componentsy; of ¥, and intersecting at a point The stabilizer ofx is H = G, and
h =[G : H]is its index. Take: € C1 a (smooth) ramification point; the stabilizer @f is
G1 = G because by assumpti@dh = G, C G1. Similarly G2 = G, thusC has only two
irreducible components.

Now let us write the Riemann—Hurwitz formula for the quotient mags, : C; —
Ci/G; ~ X; ~ P There is only one orbit of double points, therefore their number is
[G:Gxl=h:

29 —2=N(=2)+2(N -1 +h(N—h)=h(N—h)—2, Vi=12,
—_— — —
) ()

where (r) is the contribution of the ramification points, aid) the contribution of the
double points. In particulag; = g2, and we also know thag(C) =N —1=g1 + g2 +
hW(Ire)y=g1+g2+h—1.S0,h(N —h) =2g1=N — h, whenceh = N or 1.

Letting the familyy2 = x2V + 2xV 4 ¢ degenerate when— 1, we gety? = (xV + 1)2.
In this way we see that the first cusp described above is the Potts curve of invariant
j = oco. Moreover, it is obvious that there is only one (isomorphism class of) Potts curve
with this combinatorial aspect. A similar description with equations for the other cusp
would be more tricky. However, since we know that the other cusp can not have the same
combinatorics, we necessarily get the second picturg 0. O

4. Moduli space ofPp,

Theorem 4.1.The moduli space @, is AL ® Z[ £, 1].

The rest of this section is devoted to the proof of the theorem. We keep the former
scheme of proof in two steps, but the complication coming from wild ramification implies
that we won't be able to “normalize” the construction as well as before. Because of this
we will need two additional lemmas. In the first, which we now state, it is only for later
convenience that a primitive root of unity is denotedrbgstead of; .

Lemma 4.2.Lets, ¢ be elements of aring, noter'® =0and¢ ! =1+7+---+ 1 for

i > 1. Leto be the endomorphism of the graded polynomigdlgebraA[ X, Z] given by
o(X)=tX+v¥Z ando (Z) = Z. Theno has exact ordep after any base changé — A’
ifand only if1+¢+---+ "1 =0and(r — 1, ¥) = A. If this is so then the algebra of
invariantsA[X, Z1° is generated by and the norm

p-1 p-1
N(X,Z)= ]_[ ol (X) = H(X — iy 7).
i=0

i=0
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Proof. Itis clear thatZ plays no role, so we can dehomogenize and niakel. Clearly,
oP =id<? =1and(l+1+---+t"~1y = 0. Now letA’ run through all residue fields
x of A. Whenever =1 in «, the fact that has exact ordep on the corresponding fibre
implies ¢ # 0. This means that — 1, ) = A, hence 1= u(t — 1) + vy for someu, v.
From this we deduce that4r + --- +t”~1 = 0. Conversely this is easily seen to imply
thato has exact ordep “universally”.

As for the invariants we always havd N (X)] C A[X]°. Itis clear that we have equality
when A is a field. In the general case, [&t be the cokernel of the inclusion, it is a finite
A-module. The crucial point is that, as the action is faithful fibrewise, the formation of
A[X]° commutes with base change (this is a special case of results concerning actions on
smooth curves, see [4, Proposition 3.7]). So for every residue field weMige = 0. By
Nakayama's lemma, it follows that =0. O

Remark 4.3.We recall that for g-Potts curvgC, o, 7) over an algebraically closed field,
there are 2 fixed points i@ for the action obr, and each has conductar= 1. This follows
from the description made in 2.2.

Step 1.We build the morphism to the moduli space.

Here we keep the notations of the proof of 3.2.1. LgtC — S, 0, 1) be ap-Potts
curve oversS in characteristip. Let C &> E 4> § be the factorization off through the
guotient byz. Theno induces an automorphism of ordgrof E, still denoteds. By the
remarks above, the divisor of fixed poiffis= E?, finite of degree 2, is no longétale but
nevertheless fppf oves. In fact, locally for the fppf topology it is a sum of two disjoint
sectionsA + A’, and aboveS ® IF, these sections have the same support but infinitesimally
they might be distinct (see below).

From now on we work with the sectiod. ChoosingO(1) := O(A), we setV =
g+:O(1) so E = P(V). The section corresponding t¢ gives a surjective map:V —
M = O(1)4, and unfortunately here we can not go further to split the bundle. Bigt ker
is known to beV{ ® M, with N} the conormal sheaf of in E: to see this, remember the
fundamental exact sequence

0— 25y)5(D) = ¢*V > O(1) >0

and restrict tad. Now N >~ O(—A)|a4 =2 O(—1))4, so that kefh) ~ Os. Hence we have
an extension

0—-0g—>V—->M-—0.
Let us see now how acts on this. As an automorphism Bf it pulls backO(1) to an
invertible sheaf of degree 1, i.e., there is an isomorphismo*O(1) >~ ¢*K ® O(1) for

somekK e Pic(S). Moreovero is the identity onA, so that restricting, to A shows that
K is trivial. Now o is given by a surjective morphism of sheaves

7"V = a*0) 2 O().
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Taking direct images by, we obtain an automorphisgy : V — V. This map induces an
automorphism oM and of keth) >~ Og, and is well determined up to an invertible global
section ofOy, but requiringp, |0, = id makesp, canonical. Now the action oi is given
by multiplication by a global sectione I"(S, Og), this means that if we choose locally a
coordinateX for M as in the proof of 3.2.1, the action is

9o (X)=1X+yZ (forsomey € I'(M,Oy)),
0o (Z)="Z2.

As o has ordelp on the fibres, we have& ¢ +--- +17~1 =0, andr — 1 andy, generate
Os, by Lemma 4.2. In particular, denoting by= 1! . . .¢/[?=1 we havep = w(r — )71
(notations of Lemma 4.2).

The double cover is described by the decompositiafO¢c = O @ L and by a section
0 € I'(E, £~2), well determined up to an element HYE, Oy) (see the first step in the
proof of 3.2.1). Also,L ™2 ~ O (2p), so we can identify with a o -invariant section of
I'(E,0p(2p)) = @Y, I'(S, M7). By Lemma 4.2 we get

0 xH=UNX,Z)?+AN(X,Z)Z" + BZ?"

for some section#/, A, B of Og, M?, M?P. As in the proof of 3.2.1 we see that is
invertible. Now we must express that the fibres@fS are smooth, i.e., that has no
multiple zero. To this aim we compute its discriminant, it turns out that

Re{H, H') = —UPo? 8P 1 (A% - 4BU)"

wheres := H(—y,t — 1) = Uy?? — AyP(t — 1)? + B(r — 1)2? and we recall that
o =t [AP=1 In this expression bot/ and» are invertible. So the smoothness
condition is that Reg4, H'), or equivalentlys(A2 — 4U B), is invertible (remark: this
contains the condition that— 1 andy, generat&)y). We are led to define

. UUYH — AyP(t — 1P + B1 — 1)
/= A2 _4UB ’

It lies in I"(S, Og') because numerator and denominator are invertible sectioms2bf

Also it is independent of the leading coefficient &f. If our invariant were merely the
discriminant of H then, being intrinsic, it would be obviously invariant under changes of
variables. Here this is not the case, so we will proceed to check this in the form of a lemma.

Lemma 4.4.The definition ofj is independent of the choice of coordinateZ and of the
choice of sectio.

Proof. From now on we always normalize the expressions by setting 1. First, in
the choice of the coordinate system the only loose variabk $® we can assume that
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Z'=7Z andX'=aX + BZ. Theno (X') =tX' + ¢’ wherey’ =ayy — (t — 1)B. The
normN’(X’, Z") with ¢/ = r andvy/’ is

p—1 p—1
N'(X',2') = l_[(X/ —dlily'7') = H(O‘X + Bz — iy’ 7).
i=0 i=0

Being ¢, -invariant, this is a polynomial inv and Z”, hence there exists such that
N'(X',Z)=aPN(X,Z)+£ZP. The polynomialH’ = N'(X’, Z')2 + A'N' (X', Z)Z'? +
B'7'% associated t@ can be expressed in terms M{ X, Z) and Z? (hereH’ is not the
derivative of H!). As the change of variable@V, Z?) <~ (N’, Z’P) has determinant?”,
the discriminant ofd’ viewed as a polynomial of degree 2(N, Z”) is a?? (A’”> — 4B’).
Of course sinceéd o« H' we haveH' = «?” H. Computing discriminants giveg’” (A2 —
4B’) = a*? (A% — 4B). Then substitutingX, Z) = (—y, t — 1), firstin N’ = «? N + £ Z?,
second inH' = o?? H, givess’ = «?P$. Finally j' =8'/(A? — 4B’) = §/(A%? — 4B) = j.

Now, assume that we choose the sectidrinstead ofA. It is not as obvious as in 3.2.1
that formally this has the effect of changingo 1, and not even that the invariant will
not change; so we sketch the details. The equatian’aé given by the new coordinate
Z =, (X)—X=(@—-1X+Z. As we saw just above, we can chodseas we like;
to simplify matters we recall that there exist sectians such that«(r — 1) + vy = 1 and
we chooseX’ = vX — uZ so as to have a unimodular change of variables

X' =vX —uZ X=vyX+uz
{Z’:(t—l)X+1ﬁZ} < {Z:—(t—l)X’+vZ’}

Then we havey, (X') = X' + vZ’ andg, (Z") =tZ’. The condition thap, acts trivially
on Z' leads to considep, =t1¢,, and we obtain

oL (X)) =1HX +0Z), AVAEYA

With ¢/ =~ andy’ = r~1v, the normisN/(X’, Z') = ]_[f’;ol(x’ — ¢~ Hli=1yZ"). Using
that—(r~Hlr=1 = ¢IP=i] we compute

p—1
N/(X/, Z’) = l_[(vX —uZ — t[i]Z)
i=0
which is ¢, -invariant, so there exist§ such thatN'(X’,Z') = vw"N(X,Z) + £ZP.

Substituting(X, Z) = (=, t — 1) yields immediately-1 = —vPy? + (t — 1)P&, so the
change of variables between the invariants of degrieseunimodular:

Z'P =yPZP + (t —1)PN(X, Z),
N'(X',Z)=EZP + v’ N(X, Z).

ThusforH' = N'(X', Z")2+ A'N'(X', Z')Z'P + B’ Z'?", its discriminant as a polynomial
of degree 2 in(N, Z?) is still A2 — 4B’. Now, when expressed in terms @Y, Z?) the
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polynomialH’ has leading coefficie®f = H'(—t~1v,r~1 — 1), soH’ = 8’ H. Computing
discriminants gives\’2 — 4B’ = §'2(A%— 4B), and substitutingX, Z) = (—y, t — 1) gives
1=4'8,sohereagai’=j. O

Therefore the only change is that having chogéinstead ofA, we recover ! instead
of ¢ as apth root of unity. So we have a well-defined map

-1
Z[%, %}[x, X - (s, 05"

if we set F(¢ +¢™1) =t ++1 and F(X) = j. Eventually we have a ma§ — Al ®

Z[Hg_l, 3] = P. In fact we completed the construction after base chan@etoE?, but
the construction being canonical, by fppf descent we obtain a morphism defirfedtas

clear that the construction is functorial i providing a morphisn® : P, — P.

Step 2.We check the properties of a moduli space.

Here, provided we give a family of Potts curves with a finite, surjective associated
morphism to the moduli space, the arguments of the proof of 3.2.1 carry on. We consider

the norm fory =1, N(x) = ]'[?”ol(x — ¢ly and the curve with equatiop? = N (x)? +

=

AN (x) + 1, with invariantjo(A) = (1 — A(¢ — 1)? + (¢ — 1)2P) /(A% — 4), over the base

1 , 1
sl 55

As in the proof of 3.2.1, to be rigorous we can easily give another smooth affine part for
this curve, but we omit this detail. Then the proof of 3.2.1 works similarly, ending the proof
of Theorem 4.1.

5. The fibre of P, at the prime p

At last we study the stack gf-Potts curves in characteristjg that is to sayP, ® IF,.
First we compute its moduli space, along the same lines as above; the main difficulty here
is that this space is not normal anymore, so we need the help of deformation theory as well
as the operation of “2-quotient” of an algebraic stack (see [1,15]). The result shows that
the moduli space of thE[1/2]-stackP, has good reduction at. Then, we compute the
Picard group o, ® FF,.

5.1. Moduli space in characteristie

We still assume thap > 3. Before we state the theorem, let us consider the problem
of constructing the moduli space of the stak ® I, along the same lines as above
(Section 4). In the first step of the proof of 4.1 nothing needs any change (except perhaps
the fact that) can be chosen to be equal to 1; this makes the computations slightly simpler
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-1

butis anecdotical). We obtain a classifying morphigrfrom P, to P = A1 F, [ <55—].
Here, throughout the constructiafg, + ¢ ~1)/2 is still a root of the polynomia}, of 1.4,
which is none other than the polynomiglof [3, 4.2.5 and 4.2.6]. In characteristicwe
simply havey (X) = XP~D/2 sop = Al ® Ep[f)/z

The difference comes W|th the 2nd step ‘Where we must check the properties of a moduli
space. The problem is thdt is not a nhormal scheme anymore, so we will have to use
a different strategy. One ingredient will be the “2-quotient” of an algebraic stack whose
objects all possess a fixed finite group inside their automorphism group. Here is a brief
summary of its properties ([15, Chapter I, Proposition 3.0.2] or [1, Proposition 3.5.1]):

Proposition 5.1.1.Let S be a scheme and1 an algebraic stack ove§. Let G be a finite
group, assume that for every objece M (T) there is an injection, : Gy < Autr(x),
whose formation is compatible with cartesian diagrafese[15]). Then there exists an
algebraic stackM / G and a mapf : M — M J/ G, such thatf maps the elements 6f
to the identity, and is universal with respect to this property. The geometric poins /o6
are the same as those 6, but forx such a point we havAut, /g (x) = Autay(x)/G.
The formation ofM / G commutes with base change ®nMoreover,f is anétale gerbe.
The stackM / G has a coarse moduli space if and onlyNd has one, and if this is the
case the moduli spaces are the same. Finallyyifis separated or proper, them / G
has the same properties.

A basic example of this is given by the classifying stai of a finite abelian group
G over a schemd. Its objects are5-torsors, ands lies in all automorphism groups. In
this caseM = BG, andM / G = S. Now let us come back to the stagk, ® IF,. We are
going to show:

Theorem 5.1.2If G =7Z/27 x Z/ pZ, then we have an isomorphism

plzl
(Pp@Fp)//G ®(l773f)/2

Fplz]

In particular, A} ® 25

—=577 is the coarse moduli space 8, Q F),.

From Proposition 2.2.3 we know thagtPotts curves (over any basg k) have the
constant group schemé& = Z/27 x 7Z/pZ as their automorphism group (use non-
ramification of Aug(C, o, t)). Hence by definition of the 2-quotient the morphign
factors through

Fplzl

. 1 4
with the stack@ :=P, ® F, / G representable by an algebraic space [11, 8.1.1]. Thanks
to deformation theory, known from [3], we shall show tlais étale:
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Proposition 5.1.3Let(C, o, t) be ap-Potts curve ovek. Then the ring that prorepresents
the functor of deformations @f to local, artinianF ,-algebras is—;"5/» (p 1)/2 [

Proof. This is an example of the computation of deformation®& gp7Z-actions on smooth
curves by Bertin and ®zard [3]. In their work everything is done over an algebraically
closed field, as is usual in arithmetic geometry in mixed characteristic, but one can check
that this assumption is not necessary in their article. Indeed the results they use are
Schlessinger’s criteria that need no assumption on the base field, and Serpesd_ocaux
that uses perfect fields. So their results are valid Gyer

Now, ast has order 2 which is assumed to be primeptothe deformation ring of
(C, o, 1) is the deformation ring of D = C/t, o) (we still denotes the automorphism
induced onC/t). We first look at deformations ofD, o) to algebras over the ring of
Witt vectors W(IF,), like in [3]. In the article, Corollary 3.3.5 shows that the universal
deformation ring of D, o) is

Ry = (Rl®...®Rr)[[Ul,..., Un]

with N = dimy HY(D/o, g (Ip)). Here there is only = 1 orbit of fixed points, with
conductorn = 1 (see Remark 4.3). Als@ly = W(F,)[X]/v¥(X) by [3, Theorem 4.2.8].
Finally, the computation oW is done in the course of the proof of Theorem 4.2.8, namely

N = 1. Reducing module, we haveR;/pR1 = (Ip[f)/z We obtain the universal ring for

deformations td ,-algebras as-27 > p" f)]/z[[ ]. O

Proof of Theorem 5.1.2(end). As the 2-quotienP, ® F, — Q is étale, it follows from
the proposition that the extensions of complete local rings correspondificate trivial,
meaning that botkb and¥ areétale. A first consequence is thatis not only an algebraic
space, but in fact a scheme. Also, considering the sch@ndefined by the fibre square:

Q —— Al®F,

I

Q Al ® p [z]

z(p=D/2

we have that’ is étale, henc&’ reduced. Moreovet’ is bijective, so by Zariski’'s Main
Theorem for schemas is an isomorphism. S@,eq = Q' is affine, which implies tha@
itself is. Now using [16, Expdsl, Theoeme 6.1] we get that is an isomorphism. O

5.2. The Picard group oP, ® F,

Let k be an algebraically closed field of characterigtie: 2 (actually the assumption
of algebraic closure will not be necessary). LRtbe the moduli space dP, ® k and
A= (lf[zl])/z [X, +] its ring of functions. The adaptation of the arguments of 3.3 gives the
followmg result
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Theorem 5.2.1.There is an isomorphisfic(P, ® k) >~ Z/27Z x (1+ zA) wherel + zA
is a subgroup of the multiplicative group of invertible elementd in

Proof. PutP :=P,®k. LetU — P an open set of thetale site ofP,, corresponding to a
p-Potts curveC, o, ) overU. We know that Aug (C, o, ) is the constant group scheme
G =17/27 x Z/pZ. Then, as in 3.3.1, for any invertible shdafand anyg € G we have

an automorphisniig , : L|y = L|y given by a global section aP;;. This gives a majs
from PigP) to the abelian group of homomorphisms of abelian sheaves/¥esm G

to (’)7@. Letq:P — P be the map to the moduli space, then we have an exact sequence:

0— Pic(P) L Pic(P) £ Homp,, (G, 03) — 0.

Indeed, exactness in the middle is proved exactly by the proof of 3.3.3. The puljsack
is injective because Ri@) = 0. The fact thap is surjective is also clear because, given a
characterf : G — (97@, we can twist the structure she@f> so as to define a sheafby
Lly = Oy forall U, andtig ; : Oy = Oy equal to multiplication byf (U)(g). This sheaf
satisfies8(L) = f.

It remains to compute Ho(w, (97@), which is just the character group 6f. Using
adjunction and the property of the moduli space thd@?p = Op, we have

Homp (G, OF) =Homp (G, OF) = na(A) x pp(A) = Z/2Z x (14 zA)

and this is the result. O
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