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Models of Curves

Matthieu Romagny

Abstract. The main aim of these lectures is to present the stable reduction
theorem with the point of view of Deligne and Mumford. We introduce the
basic material needed to manipulate models of curves, including intersec-
tion theory on regular arithmetic surfaces, blow-ups and blow-downs, and the
structure of the jacobian of a singular curve. The proof of stable reduction in
characteristic 0 is given, while the proof in the general case is explained and
important parts are proved. We give applications to the moduli of curves and
covers of curves.
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1. Introduction

The problem of resolution of singularities over a field has a cousin of more arith-
metic flavor known as semistable reduction. Given a field 𝐾, complete with respect
to a discrete valuation 𝑣, and a proper smooth 𝐾-variety 𝑋 , its concern is to find
a regular scheme 𝒳 , proper and flat over the ring of integers of 𝑣, with generic
fibre isomorphic to 𝑋 and with special fibre a reduced normal crossings divisor
in 𝒳 . Such a scheme 𝒳 is called a semistable model. In general, one can not ex-
pect 𝐾-varieties to have smooth models, and semistable models are a very nice
substitute; they are in fact certainly the best one can hope. Their occurrence in
arithmetic geometry is ubiquitous for the study of ℓ-adic or 𝑝-adic cohomology,
and of Galois representations. They are useful for the study of general models 𝒳 ′,
but also if one is interested in 𝑋 in the first place. Let us give just one example
showing some of the geometry of 𝑋 revealed by its semistable models. If 𝑋 is a
curve, then Berkovich proved that the dual graph Γ of the special fibre of any
semistable model has a natural embedding in the analytic space 𝑋an (in the sense
of Berkovich) associated to 𝑋 and that this analytic space deformation retracts to
Γ. (See [Be], Chapter 4.) In other words, the homotopy type of the analytic space
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𝑋an, which is just a transcendental incarnation of 𝑋 , is encoded in the special
fibres of semistable models.

It is believed that semistable reduction is always possible after a finite ex-
tension of 𝐾. It is known only in the case of curves, where a refinement called
stable reduction leads to the construction of a smooth compactification of the
moduli stack of curves. The objective of the present text is to give a quick in-
troduction to the original proof of these facts, following Deligne and Mumford’s
paper [DM]. Other subsequent proofs from Artin and Winters [AW], Bosch and
Lütkebohmert [BL] or Saito [Sa] are not at all mentioned. (Note that apart from
the original papers, some nice expositions such as [Ra2], [De], [Ab] are available.)

The exposition follows quite faithfully the plan of the lectures given by the
author at the GAMSC summer school held in Istanbul in June 2008. Here is now a
more detailed description of the contents of the article. When the residue charac-
teristic is 0, the theorem is a simple computation of normalisation. Otherwise, the
proof uses more material than could reasonably be covered within the lectures. I
took for granted the semistable reduction theorem for abelian varieties proven by
Grothendieck, as well as Raynaud’s results on the Picard functor; this is consistent
with the development in [DM]. Section 2 focuses on the manipulations on models:
blow-ups and contractions, existence of (minimal) regular models. In Section 3, the
description of the Picard functor of a singular curve is explained, and it is then
used to make the link between semistable reduction of a curve and semistable
reduction of its jacobian. This is the path to the proof of Deligne and Mumford.
Finally, in Section 4, we translate these results to prove that moduli spaces (or
moduli stacks) of stable curves, or covers of stables curves, are proper.

The main references are Deligne and Mumford [DM], Lichtenbaum [Lic], Liu’s
book [Liu] together with other sources which the reader will find in the bibliography
in the end of this paper. I wish to thank the students and colleagues who attended
the Istanbul summer school for their questions and comments during, and after,
the lectures. Also, I wish to thank the referee for valuable comments leading to
several clarifications.

2. Models of curves

In all the text, a curve over a base field is a proper scheme over that field, of pure
dimension 1. Starting in Subsection 2.2, we fix a complete discrete valuation ring
𝑅 with fraction field 𝐾 and algebraically closed residue field 𝑘.

2.1. Definitions: normal, regular, semistable models

If 𝐾 is a field equipped with a discrete valuation 𝑣 and 𝐶 is a smooth curve over
𝐾, then a natural question in arithmetic is to ask about the reduction of 𝐶 modulo
𝑣. This implies looking for flat models of 𝐶 over the ring of 𝑣-integers 𝑅 ⊂ 𝐾 with
the mildest possible singularities. If there exists a model with smooth special fibre
over the residue field 𝑘 of 𝑅, we say that 𝐶 has good reduction at 𝑣 (and otherwise
we say that 𝐶 has bad reduction at 𝑣).
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It is known that there exist curves which do not have good reduction, and
there are at least two reasons for this deficiency. The first reason is arithmetic:
sometimes, the smooth special fibre (if it existed) must have rational points and
this imposes some constraints on 𝐶. For example, consider the smooth projective
conic 𝐶 over the field𝐾 = ℚ2 of 2-adic numbers given by the equation 𝑥2+𝑦2+𝑧2 =
0. If 𝐶 had a smooth model 𝑋 over 𝑅 = ℤ2, then the special fibre 𝑋𝑘 would have a
rational point by the Chevalley-Warning theorem (as in [Se], Chap. 1) and hence 𝑋
would have a ℤ2-integral point by the henselian property of ℤ2. However, it is easy
to see by looking modulo 4 that 𝐶 has no ℚ2-rational point. (One can easily cook
up similar examples with curves of higher genus over a field 𝐾 with algebraically
closed residue field.) The second reason is geometric. Assuming a little familiarity
with the moduli space of curvesℳ𝑔, it can be explained as follows: the “direction”
in the nonproper spaceℳ𝑔 determined by the path Spec(𝑅)∖{closed point} →ℳ𝑔

corresponding to the curve 𝐶 points to the boundary at infinity. For a simple
example of this, consider the field of Laurent series 𝐾 = 𝑘((𝜆)) which is complete
for the 𝜆-adic topology, and the Legendre elliptic curve 𝐸/𝐾 with equation 𝑦2 =
𝑥(𝑥− 1)(𝑥−𝜆). Its 𝑗-invariant 𝑗(𝜆) = 28(𝜆2−𝜆+1)3/(𝜆2(𝜆− 1)2) determines the
point corresponding to 𝐸 in the moduli space of elliptic curves. Since 𝑗(𝜆) ∕∈ 𝑅 =
𝑘[[𝜆]], the curve 𝐸 has bad reduction (see [Si], Chap. VII, Prop. 5.5).

The arithmetic problem is not so serious, and we usually allow a finite ex-
tension 𝐾 ′/𝐾 before testing if the curve admits good reduction. However, the
geometric problem is more considerable.

So, we have to consider other kinds of models. The mildest curve singularity
is a node, also called ordinary double point, that is to say a rational point 𝑥 ∈ 𝐶

such that the completed local ring 𝒪̂𝐶,𝑥 is isomorphic to 𝑘[[𝑢, 𝑣]]/(𝑢𝑣).

This leads to:

Definition 2.1.1. A stable (resp. semistable) curve over an algebraically closed field
𝑘 is a curve which is reduced, connected, has only nodal singularities, all of whose
irreducible components isomorphic to ℙ1𝑘 meet the other components in at least 3
points (resp. 2 points).

A proper flat morphism of schemes 𝑋 → 𝑆 is called a stable (resp. semi-
stable) curve if it has stable (resp. semi-stable) geometric fibres. In particular,
given a smooth curve 𝐶 over a discretely valued field 𝐾, a stable (resp. semi-
stable) curve 𝑋 → 𝑆 = Spec(𝑅) with a specified isomorphism 𝑋𝐾 ≃ 𝐶 is called a
stable (resp. semi-stable) model of 𝐶 over 𝑅.

One can also understand the expression the mildest possible singularities in an
absolute meaning. For example, one can look for normal or regularmodels of the𝐾-
curve 𝐶, by which we mean a curve𝑋 → 𝑆 = Spec(𝑅) whose total space is normal,
or regular. By normalization, one may always find normal models. Regular models
will be extremely important, firstly because they are somehow easier to produce
than stable models, secondly because it is possible to do intersection theory on
them, and thirdly because they are essential to the construction of stable models.
We emphasize that in contrast with the notions of stable and semistable models,
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the notions of normal and regular models are not relative over 𝑆, in particular
such models have in general singular, possibly nonreduced, special fibres.

For simplicity we shall call arithmetic surface a proper, flat scheme relatively
of pure dimension 1 over 𝑅 with smooth geometrically connected generic fibre. We
will specify each time if we speak about a normal arithmetic surface, or a regular
arithmetic surface, etc.

2.2. Existence of regular models

From this point until the end of the notes, we consider a complete discrete valuation
ring 𝑅 with fraction field 𝐾 and algebraically closed residue field 𝑘.

For two-dimensional schemes, the problem of resolution of singularities has
a satisfactory solution, with a strong form. Before we state the result, recall that
a divisor 𝐷 in a regular scheme 𝑋 has normal crossings if for every point 𝑥 ∈ 𝐷
there is an étale morphism of pointed schemes 𝑝 : (𝑈, 𝑢)→ (𝑋, 𝑥) such that 𝑝∗𝐷 is
defined by an equation 𝑎1 . . . 𝑎𝑛 = 0 where 𝑎1, . . . , 𝑎𝑛 are part of a regular system
of parameters at 𝑢.

Theorem 2.2.1. For every excellent, reduced, noetherian two-dimensional scheme
𝑋, there exists a proper birational morphism 𝑋 ′ → 𝑋 where 𝑋 ′ is a regular
scheme. Furthermore, we may choose 𝑋 ′ such that its reduced special fibre is a
normal crossings divisor.

In fact, following Lipman [Lip2], one may successively blow up the singular
locus and normalize, producing a sequence

⋅ ⋅ ⋅ → 𝑋𝑛 → ⋅ ⋅ ⋅ → 𝑋1 → 𝑋0 = 𝑋

that is eventually stationary at some regular 𝑋∗. Then one can find a composition
of a finite number of blow-ups 𝑋 ′ → 𝑋∗ so that the reduced special fibre of 𝑋 ′ is
a normal crossings divisor. For details on this point, see [Liu], Section 9.2.4 (note
that in loc. cit. the definition of a normal crossings divisor is different from ours,
since it allows the divisor to be nonreduced).

2.3. Intersection theory on regular arithmetic surfaces

The intersection theory on an arithmetic surface, provided it can be defined, is
determined by the intersection numbers of 1-cycles or Weil divisors. The prime
cycles fall into two types: horizontal divisors are finite flat over 𝑅, and vertical
divisors are curves over the residue field 𝑘 of 𝑅. Let Div(𝑋) be the free abelian
group generated by all prime divisors of𝑋 , and Div𝑘(𝑋) be the subgroup generated
by vertical divisors.

In classical intersection theory, as exposed for example in Fulton’s book [Ful],
the possibility to define an intersection product 𝐸 ⋅ 𝐹 for arbitrary cycles 𝐸,𝐹 in
a variety 𝑉 requires the assumption that 𝑉 is smooth. It would be too strong an
assumption to require our surfaces to be smooth over 𝑅, but as we saw in the
previous subsection, we can work with regular models. As it turns out, for them
one can define at least a bilinear map Div𝑘(𝑋)×Div(𝑋)→ ℤ.
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More precisely, let 𝑋 be a regular arithmetic surface over 𝑅, let 𝑖 : 𝐸 ↪→ 𝑋
be a prime vertical divisor and 𝑗 : 𝐹 ↪→ 𝑋 an arbitrary effective divisor. By
regularity, Weil divisors are the same as Cartier divisors, so the ideal sheaf ℐ of 𝐹
is invertible. Since 𝐸 is a curve over the residue field 𝑘 there is a usual notion of
degree for line bundles, and we may define an intersection number by the formula

𝐸 ⋅ 𝐹 := deg𝐸(𝑖
∗ℐ−1) .

It follows from this definition that if 𝐸 ∕= 𝐹 , then 𝐸 ⋅ 𝐹 is at least equal to the
number of points in the support of 𝐸∩𝐹 , in particular it is nonnegative. It is easy
to see also that if 𝐸 and 𝐹 intersect transversally at all points, then 𝐸 ⋅𝐹 is exactly
the number of points in the support of 𝐸∩𝐹 (the assumption that 𝑘 is algebraically
closed allows not to care about the degrees of the residue fields extensions). The
intersection product extends by bilinearity to a map Div𝑘(𝑋) × Div(𝑋) → ℤ
satisfying the following properties:

Proposition 2.3.1. Let 𝐸,𝐹 be divisors on a regular arithmetic surface 𝑋 with 𝐸
vertical. Then one has:

(1) if 𝐹 is a vertical divisor then 𝐸 ⋅ 𝐹 = 𝐹 ⋅𝐸,
(2) if 𝐸 is prime then 𝐸 ⋅ 𝐹 = deg𝐸(𝒪(𝐹 )⊗𝒪𝐸),
(3) if 𝐹 is principal then 𝐸 ⋅ 𝐹 = 0.

Proof. Cf. [Lic], Part I, Section 1. □
Here are the most important consequences concerning intersection with ver-

tical divisors.

Theorem 2.3.2. Let 𝑋 be a regular arithmetic surface and let 𝐸1, . . . , 𝐸𝑟 be the
irreducible components of 𝑋𝑘. Then:

(1) 𝑋𝑘 ⋅ 𝐹 = 0 for all vertical divisors 𝐹 ,
(2) 𝐸𝑖 ⋅𝐸𝑗 ≥ 0 if 𝑖 ∕= 𝑗 and 𝐸2

𝑖 < 0,
(3) the bilinear form given by the intersection product on Div𝑘(𝑋)⊗ℤℝ is negative

semi-definite, with isotropic cone equal to the line generated by 𝑋𝑘.

Proof. (1) The special fibre 𝑋𝑘 is the pullback of the closed point of Spec(𝑅), a
principal Cartier divisor, so it is a principal Cartier divisor in 𝑋 . Hence 𝑋𝑘 ⋅𝐹 = 0
for all vertical divisors 𝐹 , by 2.3.1(3).

(2) If 𝑖 ∕= 𝑗, we have 𝐸𝑖 ⋅𝐸𝑗 ≥ #∣𝐸𝑖 ∩𝐸𝑗 ∣ ≥ 0. From this together with point
(1) and the fact that the special fibre is connected, we deduce that

𝐸2
𝑖 = (𝐸𝑖 −𝑋𝑘) ⋅𝐸𝑖 = −

∑
𝑗 ∕=𝑖

𝐸𝑗 ⋅𝐸𝑖 < 0 .

(3) Let 𝑑𝑖 be the multiplicity of 𝐸𝑖, 𝑎𝑖𝑗 = 𝐸𝑖⋅𝐸𝑗 , 𝑏𝑖𝑗 = 𝑑𝑖𝑑𝑗𝑎𝑖𝑗 . Let 𝑣 =
∑

𝑣𝑖𝐸𝑖

be a vector in Div𝑘(𝑋) ⊗ℤ ℝ and 𝑤𝑖 = 𝑣𝑖/𝑑𝑖. We have
∑

𝑖 𝑏𝑖𝑗 = 𝑋𝑘 ⋅ (𝑑𝑗𝐹𝑗) = 0
by point (1), and

∑
𝑗 𝑏𝑖𝑗 = 0 by symmetry, so

𝑣 ⋅ 𝑣 =
∑
𝑖,𝑗

𝑎𝑖𝑗𝑣𝑖𝑣𝑗 =
∑
𝑖,𝑗

𝑏𝑖𝑗𝑤𝑖𝑤𝑗 = −1

2

∑
𝑖∕=𝑗

𝑏𝑖𝑗(𝑤𝑖 − 𝑤𝑗)
2 ≤ 0 .
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Hence the intersection product on Div𝑘(𝑋)⊗ℤℝ is negative semi-definite. Finally
if 𝑣 ⋅𝑣 = 0, then 𝑏𝑖𝑗 ∕= 0 implies 𝑤𝑖 = 𝑤𝑗 . Since 𝑋𝑘 is connected, we obtain that all
the 𝑤𝑖 are equal and hence 𝑣 = 𝑤1𝑋𝑠. Thus the isotropic cone is included in the
line generated by 𝑋𝑘, and the opposite inclusion has already been proved. □

Example 2.3.3. Let𝑋 be a regular arithmetic surface whose special fibre is reduced,
with nodal singularities. Let 𝐸1, . . . , 𝐸𝑟 be the irreducible components of𝑋𝑘. Then
𝐸𝑖 ⋅ 𝐸𝑗 is the number of intersection points of 𝐸𝑖 and 𝐸𝑗 if 𝑖 ∕= 𝑗, and (𝐸𝑖)

2 is
the opposite of the number of points where 𝐸𝑖 meets another component, by point
(1) of the theorem. Hence 𝑋𝑘 is stable (resp. semi-stable) if and only it does not
contain a projective line with self-intersection −2 (resp. with self-intersection −1).

As far as horizontal divisors are concerned, the most interesting one to inter-
sect with is the canonical divisor associated to the canonical sheaf, whose definition
we recall below. If 𝐸 is an effective vertical divisor in 𝑋 , the adjunction formula
gives a relation between the canonical sheaves of 𝑋/𝑅 and that of 𝐸/𝑘. The main
reason why the canonical divisor is interesting is that on a regular arithmetic sur-
face, the canonical sheaf is a dualizing sheaf in the sense of the Grothendieck-Serre
duality theory, therefore the adjunction formula translates, via the Riemann-Roch
theorem, into an expression of the intersection of 𝐸 with the canonical divisor of 𝑋
in terms of the Euler-Poincaré characteristic 𝜒 of 𝐸. We will now explain this.

Let us first recall briefly the definition of the canonical sheaf of a regular
arithmetic surface 𝑋 , assuming that 𝑋 is projective (it can be shown that this is
always the case, see [Lic]). We choose a projective embedding 𝑖 : 𝑋 ↪→ 𝑃 := ℙ𝑛𝑅
and note that since 𝑋 and 𝑃 are regular, then 𝑖 is a regular immersion. It follows
that the conormal sheaf 𝒞𝑋/𝑃 = 𝑖∗(ℐ/ℐ2) is locally free over 𝑋 , where ℐ denotes
the ideal sheaf of 𝑋 in 𝑃 . Also since 𝑃 is smooth over 𝑅, the sheaf of differential 1-
forms Ω1

𝑃/𝑅 is locally free over 𝑅. Thus the maximal exterior powers of the sheaves

𝒞𝑋/𝑃 and 𝑖∗Ω1
𝑃/𝑅, also called their determinant, are invertible sheaves on 𝑋 . The

canonical sheaf is defined to be the invertible sheaf

𝜔𝑋/𝑅 := det(𝒞𝑋/𝑃 )∨ ⊗ det(𝑖∗Ω1
𝑃/𝑅)

where (⋅)∨ = ℋ𝑜𝑚(⋅,𝒪𝑋) is the linear dual. It can be proved that 𝜔𝑋/𝑅 is inde-
pendent of the choice of a projective embedding for 𝑋 , and that it is a dualizing
sheaf. Any divisor 𝐾 on 𝑋 such that 𝒪𝑋(𝐾) ≃ 𝜔𝑋/𝑅 is called a canonical divisor.

Theorem 2.3.4. Let 𝑋 be a regular arithmetic surface over 𝑅, 𝐸 a vertical positive
Cartier divisor with 0 < 𝐸 ≤ 𝑋𝑘, and 𝐾𝑋/𝑅 a canonical divisor. Then we have
the adjunction formula

−2𝜒(𝐸) = 𝐸 ⋅ (𝐸 +𝐾𝑋/𝑅) .

Proof. In fact, the definition of 𝜔𝑋/𝑅 is valid as such for an arbitrary local complete
intersection (lci) morphism. Moreover, for a composition of two lci morphisms
𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 we have the general adjunction formula 𝜔𝑋/𝑍 ≃
𝜔𝑋/𝑌 ⊗𝒪𝑋 𝑓∗𝜔𝑌/𝑍 , see [Liu], Section 6.4.2. In particular we have 𝜔𝐸/𝑅 ≃ 𝜔𝐸/𝑘 ⊗
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𝑓∗𝜔𝑘/𝑅 ≃ 𝜔𝐸/𝑘 where 𝑓 : 𝐸 → Spec(𝑘) is the structure morphism. A useful
particular case of computation of the canonical sheaf is 𝜔𝐷/𝑋 = 𝒪𝑋(𝐷)∣𝐷 for
an effective Cartier divisor 𝐷 in a locally noetherian scheme 𝑋 (this is left as an
exercise). Using this particular case and the general adjunction formula for the
composition 𝐸 → 𝑋 → Spec(𝑅), we have

𝜔𝐸/𝑘 ≃ 𝜔𝐸/𝑅 ≃ 𝜔𝐸/𝑋 ⊗ 𝜔𝑋/𝑅∣𝐸 ≃ (𝒪𝑋(𝐸)⊗ 𝜔𝑋/𝑅)∣𝐸 .

By the Riemann-Roch theorem, we have deg(𝜔𝐸/𝑘) = −2𝜒(𝐸) and the asserted
formula follows, by taking degrees. □
2.4. Blow-up, blow-down, contraction

We assume that the reader has some familiarity with blow-ups, and we recall
only the features that will be useful to us. Let 𝑋 be a noetherian scheme and
𝑖 : 𝑍 ↪→ 𝑋 a closed subscheme with sheaf of ideals ℐ. The blow-up of 𝑋 along 𝑍

is the morphism 𝜋 : 𝑋̃ → 𝑋 with 𝑋̃ = Proj(⊕𝑑≥0ℐ𝑑). The exceptional divisor is
𝐸 := 𝑉 (ℐ𝒪𝑋); it is a Cartier divisor. If 𝑖 is a regular immersion, then the conormal

sheaf 𝒞𝑍/𝑋 = 𝑖∗(ℐ/ℐ2) is locally free and 𝐸 ≃ ℙ(𝑖∗(ℐ/ℐ2)) as a projective fibre
bundle over 𝑍; it carries a sheaf 𝒪𝐸(1). In this case, one can see that the sheaf
𝒪𝑋̃(𝐸)∣𝐸 is naturally isomorphic to 𝒪𝐸(−1), because 𝒪𝑋̃(𝐸) ≃ (ℐ𝒪𝑋)−1.

Example 2.4.1. Let 𝑋 be a regular arithmetic surface and 𝑍 = {𝑥} a regular closed

point of the special fibre. Then 𝑋̃ is again a regular arithmetic surface and the
exceptional divisor is a projective line over 𝑘, with self-intersection −1.
Example 2.4.2. Let 𝑥 be a nodal singularity in the special fibre of a normal arith-
metic surface. The completed local ring is isomorphic to 𝒪 = 𝑅[[𝑎, 𝑏]]/(𝑎𝑏 − 𝜋𝑛)
for some 𝑛 ≥ 1. We call the integer 𝑛 the thickness of the node. We blow up {𝑥}
inside 𝑋 = Spec(𝒪). If 𝑛 = 1, the point 𝑥 is regular so we are in the situation of
the preceding example. If 𝑛 ≥ 2, the point 𝑥 is a singular normal point and it is
an exercise to compute that the blow-up of 𝑋 at this point is

𝑋̃ = Proj(𝒪[[𝑢, 𝑣, 𝑤]]/(𝑢𝑣 − 𝜋𝑛−2𝑤2, 𝑎𝑣 − 𝑏𝑢, 𝑏𝑤 − 𝜋𝑣, 𝑎𝑤 − 𝜋𝑢)) .

If 𝑛 = 2, the exceptional divisor is a smooth conic over 𝑘 with self-intersection −2.
If 𝑛 ≥ 3, the exceptional divisor is composed of two projective lines intersecting
in a nodal singularity of thickness 𝑛− 2, each meeting the rest of the special fibre
in one point.

Remark 2.4.3. We saw that among the nodal singularities 𝑎𝑏 − 𝜋𝑛, the regular
one for 𝑛 = 1 shows a different behaviour. Here is one more illustration of this
fact. Let 𝑋 be a regular arithmetic surface and assume that 𝑋𝐾 has a rational
point Spec(𝐾) → 𝑋 . By the valuative criterion of properness, this point extends
to a section Spec(𝑅) → 𝑋 , and we denote by 𝑥 : Spec(𝑘) → 𝑋 the reduction.
Let 𝒪 = 𝒪𝑋,𝑥, 𝑖 : 𝑅 → 𝒪 the structure morphism, 𝑚 the maximal ideal of 𝑅,
𝑛 the maximal ideal of 𝒪. Thus we have a map 𝑠 : 𝒪 → 𝑅 such that 𝑠 ∘ 𝑖 = id,
and one checks that this forces to have an injection of cotangent 𝑘-vector spaces
𝑚/𝑚2 ⊂ 𝑛/𝑛2. Therefore we can choose a basis of 𝑛/𝑛2 containing the image of
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𝜋, in other words we can choose a system of parameters for 𝒪 containing 𝜋. This
proves that 𝒪/𝜋 = 𝒪𝑋𝑘,𝑥 is regular. To sum up, the reduction of a 𝐾-rational
point on a regular surface 𝑋 is a regular point of 𝑋𝑘. Of course, this is false as
soon as 𝑛 ≥ 2, since the point with coordinates 𝑎 = 𝜋, 𝑏 = 𝜋𝑛−1 reduces to the
node.

The process of blowing-up is a prominent tool in the birational study of regu-
lar surfaces. For obvious reasons, it is also very desirable to reverse this operation
and examine the possibility to blow down, that is to say to characterize those divi-
sors 𝐸 ⊂ 𝑋 in regular surfaces that are exceptional divisors of some blow-up of a
regular scheme. Note that if 𝑓 : 𝑋 → 𝑌 is the blow-up of a point 𝑦, then 𝜋 is also
the blow-down of 𝐸 := 𝑓−1(𝑦) and the terminology is just a way to put emphasis
on (𝑌, 𝑦) or on (𝑋,𝐸).

As a first step, it is a general fact that one can contract the component 𝐸,
and the actual difficult question is the nature of the singularity that one gets.
We choose to present contractions in their natural setting, and then we will state
without proof the classical results of Castelnuovo, Artin and Lipman on the control
of the singularities.

Definition 2.4.4. Let 𝑋 be a normal arithmetic surface. Let ℰ be a set of irreducible
components of the special fibre 𝑋𝑘. A contraction is a morphism 𝑓 : 𝑋 → 𝑌 such
that 𝑌 is a normal arithmetic surface, 𝑓(𝐸) is a point for all 𝐸 ∈ ℰ , and 𝑓 induces
an isomorphism

𝑋 ∖ ∪
𝐸∈ℰ

𝐸 −→ 𝑌 ∖ ∪
𝐸∈ℰ

𝑓(𝐸) .

Using the Stein factorization, it is relatively easy to see that 𝑓 is unique if it
exists, and that its fibres are connected. Under our assumption that 𝑅 is complete
with algebraically closed residue field, one can always construct an effective relative
(i.e., 𝑅-flat) Cartier divisor 𝐷 of 𝑋 meeting exactly the components of 𝑋𝑘 not
belonging to ℰ . Indeed, for example if 𝑋𝑘 is reduced, one can choose one smooth
point in each component not in ℰ . Since 𝑅 is henselian these points lift to sections of
𝑋 over 𝑅, and we can take 𝐷 to be the sum of these sections. If 𝑋𝑘 is not reduced,
a similar argument using Cohen-Macaulay points instead of smooth points does
the job, cf. [BLR], Proposition 6.7/4. Thus, existence of contractions follows from
the following result:

Theorem 2.4.5. Let 𝑋 be a normal arithmetic surface. Let ℰ be a strict subset of
the set of irreducible components of the special fibre 𝑋𝑘, and 𝐷 an effective relative
Cartier divisor of 𝑋 over 𝑅 meeting exactly the components of 𝑋𝑘 not belonging
to ℰ. Then the morphism

𝑓 : 𝑋 → 𝑌 := Proj
( ⊕
𝑛≥0

𝐻0(𝑋,𝒪𝑋(𝑛𝐷)
)

is a contraction of the components of ℰ.
Proof. We first explain what is 𝑓 . Let us write 𝐻0(𝑋,𝒪𝑋(𝑛𝐷))∼ for the associ-
ated constant sheaf on 𝑋 . Note that Proj(⊕𝑛≥0𝐻0(𝑋,𝒪𝑋(𝑛𝐷))∼) ≃ 𝑌 ×𝑅 𝑋 ,
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and Proj(⊕𝑛≥0𝒪𝑋(𝑛𝐷)) ≃ 𝑋 canonically (see [Ha], Chap. II, Lemma 7.9). The
restriction of sections gives a natural map of graded 𝒪𝑋 -algebras

⊕
𝑛≥0

𝐻0(𝑋,𝒪𝑋(𝑛𝐷))∼ → ⊕
𝑛≥0
𝒪𝑋(𝑛𝐷) .

We obtain 𝑓 by taking Proj and composing with the projection 𝑌 ×𝑅 𝑋 → 𝑌 .
Since 𝐷𝐾 has positive degree on 𝑋𝐾 , it is ample and it follows that the

restriction of 𝑓 to the generic fibre is an isomorphism. Also, after some more work
this implies that 𝒪𝑋(𝑛𝐷) is generated by its global sections if 𝑛 is large enough;
we will admit this point, and refer to [BLR], p. 168 for the details. Therefore the
ring 𝐴 = ⊕𝑛≥0𝐻0(𝑋,𝒪𝑋(𝑛𝐷)) is of finite type over 𝑅 by [EGA2], 3.3.1, and so
𝑌 is a projective 𝑅-scheme. Moreover 𝑋 is covered by the open sets 𝑋ℓ where
ℓ does not vanish, for all global sections ℓ ∈ 𝐻0(𝑋,𝒪𝑋(𝑛𝐷)), and 𝑓 induces an
isomorphism

𝐴(ℓ)
∼−→ 𝐻0(𝑋ℓ,𝒪𝑋) .

If follows that 𝐴(ℓ), and hence 𝑌 , is normal and flat over 𝑅. Moreover we see that
𝑓∗𝒪𝑋 ≃ 𝒪𝑌 , so by Zariski’s connectedness principle (cf. [Liu], 5.3.15) it follows
that the fibres of 𝑓 are connected.

It remains to prove that 𝑓 is a contraction of the components of ℰ . If 𝐸 ∈ ℰ ,
then 𝒪𝑋(𝑛𝐷)∣𝐸 ≃ 𝒪𝐸 and hence any global section of 𝒪𝑋(𝑛𝐷) induces a constant
function on 𝐸, since 𝐸 is proper. It follows that the image 𝑓(𝐸) is a point. If 𝐸 ∕∈ ℰ ,
we may choose a point 𝑥 ∈ 𝐸 ∩ Supp(𝐷). Let ℓ be a global section that generates
𝒪𝑋(𝑛𝐷) on a neighbourhood 𝑈 of 𝑥, for some 𝑛 large enough. Then 1/ℓ is a
function on 𝑋ℓ that, by definition, vanishes on 𝑈 ∩ Supp(𝐷) (with order 𝑛) and
is non-zero on 𝑈 − Supp(𝐷). Thus 𝑓 ∣𝐸 is not constant, so it is quasi-finite. Since
its fibres are connected, in fact 𝑓 ∣𝐸 is birational, and since 𝑌 is normal we deduce
that 𝑓 ∣𝐸 is an isomorphism onto its image, by Zariski’s main theorem (cf. [Liu],
4.4.6). □

The numerical information that we have collected about exceptional divisors
in Subsection 2.3 is crucial to control the singularity at the image points of the
components that are contracted, as in the following two results which we will use
without proof. The first is Castelnuovo’s criterion about blow-downs.

Theorem 2.4.6. Let 𝑋 be a regular arithmetic surface and 𝐸 a vertical prime
divisor. Then there exists a blow-down of 𝐸 if and only if 𝐸 ≃ ℙ1𝑘 and 𝐸2 = −1.
Proof. See [Lic], Theorem 3.9, or [Liu], Theorem 9.3.8. □

The second result which we want to mention is an improvement by Lip-
man [Lip1] of previous results of Artin [Ar] on contractions for algebraic surfaces.
The statement uses the following fact, which we quote without proof (see [Liu],
Lemma 9.4.12): for a regular arithmetic surface 𝑋 and distinct vertical prime
divisors 𝐸1, . . . , 𝐸𝑟 such that the intersection matrix (𝐸𝑖 ⋅ 𝐸𝑗) is negative semi-
definite, there exists a smallest effective divisor 𝐶 =

∑
𝑎𝑖𝐸𝑖 such that 𝐶 ≥∑𝑖𝐸𝑖

and 𝐶 ⋅ 𝐸𝑖 ≥ 0 for all 𝑖. We call 𝐶 the fundamental divisor for {𝐸𝑖}𝑖.
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Theorem 2.4.7. Let 𝑋 be a regular arithmetic surface and let 𝐸1, . . . , 𝐸𝑟 be dis-
tinct reduced vertical prime divisors with negative semi-definite intersection ma-
trix. Assume that the Euler-Poincaré characteristic of the fundamental divisor 𝐶
associated to the 𝐸𝑖 is positive. Then the contraction of 𝐸1, . . . , 𝐸𝑟 is a normal
arithmetic surface, and the resulting singularity is a regular point if and only if
−𝐶2 = 𝐻0(𝐶,𝒪𝐶).
Proof. See [Lip1], Theorem 27.1, or [Liu], Theorem 9.4.15. Note that in the ter-
minology of [Lip1], a rational double point, (i.e., a rational singularity with mul-
tiplicity 2) is none other than a node of the special fibre. □

2.5. Minimal regular models

We can now state the main results of the birational theory of arithmetic surfaces:

Theorem 2.5.1. Let 𝐶 be a smooth geometrically connected curve over 𝐾, of genus
𝑔 ≥ 1. Then 𝐶 has a minimal regular model over 𝑅, unique up to a unique iso-
morphism.

Proof. By Theorem 2.2.1, there exists a regular model for 𝐶. By successive blow-
downs of exceptional divisors, we construct a regular model 𝑋 that is relatively
minimal. Let 𝑋 ′ be another such model. Since any two regular models are domi-
nated by a third ([Lic], Proposition 4.2) and any morphism between two models
factors into a sequence of blow-ups ([Lic], Theorem 1.15), there exist sequences of
blow-ups

𝑌 = 𝑋𝑚 → 𝑋𝑚−1 → ⋅ ⋅ ⋅ → 𝑋1 → 𝑋0 = 𝑋

and

𝑌 = 𝑋 ′
𝑛 → 𝑋 ′

𝑛−1 → ⋅ ⋅ ⋅ → 𝑋 ′
1 → 𝑋 ′

0 = 𝑋 ′

terminating at the same 𝑌 . We may choose 𝑌 such that𝑚+𝑛 is minimal. If 𝑚 > 0,
there is an exceptional curve 𝐸 for the morphism 𝑌 → 𝑋𝑚−1. Since 𝑋 ′ has no
exceptional curve, the image of 𝐸 in 𝑋 ′ is not an exceptional curve, hence there
is an 𝑟 such that the image of 𝐸 in 𝑋 ′

𝑟 is the exceptional divisor of 𝑋 ′
𝑟 → 𝑋 ′

𝑟−1.
Also, for all 𝑖 ∈ {𝑟, . . . , 𝑛 − 1} the image of 𝐸 in the surface 𝑋 ′

𝑖 does not contain
the center of the blow-up 𝑋 ′

𝑖+1 → 𝑋 ′
𝑖. Thus, we can rearrange the blow-ups so

that 𝐸 is the exceptional curve of 𝑌 → 𝑋 ′
𝑛−1. Therefore 𝑋𝑚−1 ≃ 𝑋 ′

𝑛−1 and this
contradicts the minimality of 𝑚+𝑛. It follows that 𝑚 = 0, so there is a morphism
𝑋 → 𝑋 ′, and since 𝑋 is relatively minimal we obtain 𝑋 ≃ 𝑋 ′. □

Theorem 2.5.2. Let 𝐶 be a smooth geometrically connected curve over 𝐾, of genus
𝑔 ≥ 1. Then 𝐶 has a minimal regular model with normal crossings over 𝑅. It is
unique up to a unique isomorphism.

Proof. In fact Theorem 2.2.1 asserts the existence of a regular model with normal
crossings. Proceeding along the same lines as in the proof of the above theorem,
one produces a minimal regular model with normal crossings. □
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3. Stable reduction

In this section, 𝐶 is a smooth geometrically connected curve over 𝐾, of genus
𝑔 ≥ 2.

3.1. Stable reduction is equivalent to semistable reduction

Proposition 3.1.1. Let 𝐶 be a smooth geometrically connected curve over 𝐾, of
genus 𝑔 ≥ 2. Then the following conditions are equivalent:

(1) 𝐶 has stable reduction,
(2) 𝐶 has semistable reduction,
(3) the minimal regular model of 𝐶 is semistable.

Proof. (1) ⇒ (2) is clear.

(2) ⇒ (3): let 𝑋 be a semistable model of 𝐶 over 𝑅. Replacing 𝑋 by the
repeated blow-down of all exceptional divisors in the regular locus of 𝑋 , we may
assume that it has no exceptional divisor. Then, by the deformation theory of the
node (cf. [Liu], 10.3.22), the completed local ring of a singular point 𝑥 ∈ 𝑋𝑘 is

𝒪𝑋,𝑥 ≃ 𝑅[[𝑎, 𝑏]]/(𝑎𝑏 − 𝜋𝑛) for some 𝑛 ≥ 2. By Example 2.4.2, blowing-up [𝑛/2]
times the singularity leads to a regular scheme 𝑋 ′ whose special fibre has 𝑛 − 1
new projective lines of self-intersection −2. This is the minimal regular model of
𝐶, which is therefore semistable.

(3) ⇒ (1): let 𝑋 be the minimal regular model of 𝐶. Consider the family
of all components of the special fibre that are projective lines of self-intersection
−2. A connected configuration of such lines is either topologically a circle, or a
segment. Since 𝑔 ≥ 2, the first possibility can not occur. It follows that such a
configuration has positive Euler-Poincaré characteristic, so by Theorem 2.4.7, the
contraction of these lines is a normal surface with nodal singularities. □
3.2. Proof of semistable reduction in characteristic 0

Theorem 3.2.1. Assume that the residue field 𝑘 has characteristic 0. Let 𝑋 be
the minimal regular model with normal crossings of 𝐶 and let 𝑛1, . . . , 𝑛𝑟 be the
multiplicities of the irreducible components of 𝑋𝑘. Let 𝑛 be a common multiple
of 𝑛1, . . . , 𝑛𝑟 and 𝑅′ = 𝑅[𝜌]/(𝜌𝑛 − 𝜋). Then the normalization of 𝑋 ×𝑅 𝑅′ is
semistable.

The key fact is that in residue characteristic 0, divisors with normal crossings
have a particularly simple local shape. This is due to the possibility to extract 𝑛th
roots.

Proof. Let 𝑥 ∈ 𝑋 be a closed point of 𝑋𝑘 and let 𝐴 be the completion of its local
ring in 𝑋 . We will use two facts about 𝐴: firstly, since 𝑘 is algebraically closed of
characteristic 0 and 𝐴 is complete, it follows from Hensel’s lemma that one can
extract 𝑛th roots in 𝐴 for all integers 𝑛 ≥ 1. Note that by the same argument 𝑅
contains all roots of unity. Secondly, since 𝐴 is a regular noetherian local ring, it
is a unique factorization domain, and each regular system of parameters (𝑓, 𝑔) is
composed of prime elements.
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Since (𝑋𝑘)red is a normal crossings divisor, we have two possibilities. The
first possibility is that

√
𝜋𝐴 = (𝑓) for some regular system of parameters (𝑓, 𝑔).

In this case 𝑓 is the only prime factor of 𝜋, so 𝜋 = 𝑢𝑓𝑎 for some unit 𝑢 ∈ 𝐴.
Since 𝑘 is algebraically closed of characteristic 0 and 𝐴 is complete, one sees that
𝑢 is an 𝑎th power in 𝐴 so that changing 𝑓 if necessary we have 𝜋 = 𝑓𝑎. Then one
checks that the natural map 𝑅[[𝑢, 𝑣]]/(𝑢𝑎− 𝜋)→ 𝐴 taking 𝑢 to 𝑓 and 𝑣 to 𝑔 is an
isomorphism. Here 𝑎 is the multiplicity of the component of 𝑋𝑘 containing 𝑥, so
by assumption 𝑛 = 𝑎𝑚 for some integer 𝑚. Then

𝐴⊗𝑅 𝑅′ ≃ 𝑅′[[𝑢, 𝑣]]/(𝑢𝑎 − 𝜌𝑎𝑚) ≃ 𝑅′[[𝑢, 𝑣]]/(Π(𝑢 − 𝜁𝜌𝑚))

with the product ranging over the 𝑎th roots of unity 𝜁. The normalization of
this ring is the product of the normal rings 𝑅′[[𝑢, 𝑣]]/(𝑢 − 𝜁𝜌𝑚) ≃ 𝑅′[[𝑣]] so the
normalization of 𝑋 ×𝑅 𝑅′ is smooth at all points lying over 𝑥.

The second possibility is that
√
𝜋𝐴 = (𝑓𝑔) for some regular system of param-

eters (𝑓, 𝑔). In this case 𝑓 and 𝑔 are the only prime factors of 𝜋, so 𝜋 = 𝑢𝑓𝑎𝑔𝑏 for
some unit 𝑢 ∈ 𝐴 which as above may be chosen to be 1. Thus 𝜋 = 𝑓𝑎𝑔𝑏 and one
checks that the natural map 𝑅[[𝑢, 𝑣]]/(𝑢𝑎𝑣𝑏 − 𝜋)→ 𝐴 taking 𝑢 to 𝑓 and 𝑣 to 𝑔 is
an isomorphism. Again 𝑎 and 𝑏 are the multiplicities of the two components at 𝑥.
Let 𝑑 = gcd(𝑎, 𝑏), 𝑎 = 𝑑𝛼, 𝑏 = 𝑑𝛽, 𝑛 = 𝑑𝛼𝛽𝑚. Then as above the normalization of
𝐴⊗𝑅𝑅′ is the product of the normalizations of the rings 𝑅′[[𝑢, 𝑣]]/(𝑢𝛼𝑣𝛽−𝜁𝜌𝛼𝛽𝑚)
for all 𝑑th roots of unity 𝜁. If we introduce 𝜉 ∈ 𝑅 such that 𝜉𝛼𝛽 = 𝜁 then the nor-
malization is the morphism

𝐴 = 𝑅′[[𝑢, 𝑣]]/(𝑢𝛼𝑣𝛽 − 𝜁𝜌𝛼𝛽𝑚)→ 𝐵 = 𝑅′[[𝑥, 𝑦]]/(𝑥𝑦 − 𝜉𝜌𝑚)

given by 𝑢 �→ 𝑥𝛽 and 𝑣 �→ 𝑦𝛼. Indeed, the ring 𝐵 is normal and one may realize it
in the fraction field of 𝐴 by choosing 𝑖, 𝑗 such that 𝑖𝛼+ 𝑗𝛽 = 1 and setting

𝑥 = 𝑢𝑗(𝜉𝛼𝜌𝛼𝑚/𝑣)𝑖 and 𝑦 = 𝑣𝑖(𝜉𝛽𝜌𝛽𝑚/𝑢)𝑗 . □

3.3. Generalized jacobians

Let 𝑋 be an arbitrary connected projective curve over an algebraically closed field
𝑘. It can be shown that the identity component Pic0(𝑋) of the Picard functor is
representable by a smooth connected algebraic group called the generalized jaco-
bian of 𝑋 and denoted Pic0(𝑋). In this subsection, which serves as a preparation
for the next subsection, we will give a description of Pic0(𝑋). The first feature of
Pic0(𝑋) which is readily accessible is its tangent space at the identity:

Lemma 3.3.1. The tangent space of Pic0(𝑋) at the identity is canonically isomor-
phic to 𝐻1(𝑋,𝒪𝑋).

Proof. Let 𝑘[𝜖], with 𝜖2 = 0, be the ring of dual numbers and let 𝑋 [𝜖] := 𝑋×𝑘 𝑘[𝜖].
Consider the exact sequence

0 −→ 𝒪𝑋 𝑥 &→1+𝜖𝑥−→ 𝒪×𝑋[𝜖] −→ 𝒪×𝑋 −→ 0 .

In the associated long exact sequence, the map 𝐻0(𝒪×𝑋[𝜖])→ 𝐻0(𝒪×𝑋) is surjective

since the second group contains nothing else but the invertible constant functions.
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It follows that the kernel of the morphism 𝐻1(𝒪×𝑋[𝜖])→ 𝐻1(𝒪×𝑋) is isomorphic to

𝐻1(𝑋,𝒪𝑋). Since 𝐻1(𝒪×𝑋) = Pic(𝑋) and 𝐻1(𝒪×𝑋[𝜖]) = Pic(𝑋 [𝜖]), the kernel is by

definition the tangent space at the identity. □

In order to go further into the structure of Pic0(𝑋), we introduce an interme-
diary curve 𝑋 ′ sandwiched between the reduced curve 𝑋red and its normalization

𝑋̃ . This curve is obtained topologically as follows. Look at all points 𝑥 ∈ 𝑋red

with 𝑟 ≥ 2 preimages 𝑥1, . . . , 𝑥𝑟 in 𝑋̃ , and glue these preimages transversally. The
curve 𝑋 ′ may be better described by its structure sheaf as a subsheaf of 𝒪𝑋̃ : its

functions are the functions on 𝑋̃ taking the same value on 𝑥1, . . . , 𝑥𝑟 for all points
𝑥 as above. Thus 𝑋 ′ has only ordinary singularities, that is to say singularities
that locally look like the union of the coordinate axes in some affine space 𝔸𝑟.
Note that the integer 𝑟, called the multiplicity, may be recovered as the dimension
of the tangent space at the ordinary singularity. The curve 𝑋 ′ is called the curve
with ordinary singularities associated to 𝑋 . It is also the largest curve between

𝑋red and 𝑋̃ which is universally homeomorphic to 𝑋red. To sum up we have the
picture:

𝑋̃ → 𝑋 ′ → 𝑋red → 𝑋 .

By pullback, we have morphisms Pic0(𝑋)→ Pic0(𝑋red)→ Pic0(𝑋 ′)→ Pic0(𝑋̃).

Lemma 3.3.2. The morphism Pic0(𝑋) → Pic0(𝑋red) is surjective with unipotent
kernel of dimension dim𝐻1(𝑋,𝒪𝑋)− dim𝐻1(𝑋red,𝒪𝑋red

).

Proof. Let ℐ be the ideal sheaf of 𝑋red in 𝑋 , i.e., the sheaf of nilpotent functions
on 𝑋 . Let 𝑋𝑛 ⊂ 𝑋 be the closed subscheme defined by the sheaf of ideals ℐ𝑛+1.
We use the filtration ℐ ⊃ ℐ2 ⊃ ⋅ ⋅ ⋅ . For each 𝑛 ≥ 1 we have an exact sequence

0→ ℐ𝑛 → (𝒪𝑋/ℐ𝑛+1)× → (𝒪𝑋/ℐ𝑛)× → 0

where the map ℐ𝑛 → (𝒪𝑋/ℐ𝑛+1)× takes 𝑥 to 1 + 𝑥. Since 𝑋 is complete and
connected the map 𝐻0(𝑋, (𝒪𝑋/ℐ𝑛+1)×)→ 𝐻0(𝑋, (𝒪𝑋/ℐ𝑛)×) = 𝑘× is surjective.
Consequently the long exact sequence of cohomology gives a short exact sequence

0→ 𝐻1(𝑋, ℐ𝑛)→ 𝐻1(𝑋𝑛,𝒪×𝑋𝑛
)→ 𝐻1(𝑋𝑛−1,𝒪×𝑋𝑛−1

)→ 0 .

Since the base is a field, all schemes are flat and hence this description is valid after
any base change 𝑆 → Spec(𝑘). So there is an induced exact sequence of algebraic
groups

0→ 𝑉𝑛 → Pic0(𝑋𝑛)→ Pic0(𝑋𝑛−1)→ 0

where 𝑉𝑛 is the algebraic group which is the vector bundle over Spec(𝑘) determined
by the vector space 𝐻1(𝑋, ℐ𝑛). Thus 𝑉𝑛 is unipotent; note that the fact that 𝑉𝑛
factors through the identity component of the Picard functor comes from the fact
that it is connected. Finally Pic0(𝑋) → Pic0(𝑋red) is surjective and the kernel
is a successive extension of unipotent groups, so it is a unipotent group. The
dimension count for the dimension of the kernel is immediate by inspection of the
exact sequences. □
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Remark 3.3.3. It is not true that Pic0(𝑋)→ Pic0(𝑋red) is an isomorphism if and
only if 𝑋red ↪→ 𝑋 is. For example if 𝑋 is generically reduced, i.e., the sheaf of
nilpotent functions has finite support, then Pic0(𝑋) ≃ Pic0(𝑋red).

Recall that the arithmetic genus of a projective curve over a field 𝑘 is defined
by the equality 𝑝𝑎(𝑋) = 1− 𝜒(𝒪𝑋) where 𝜒 is the Euler-Poincaré characteristic.

Lemma 3.3.4. The morphism Pic0(𝑋red) → Pic0(𝑋 ′) is surjective with unipotent
kernel of dimension 𝑝𝑎(𝑋red)− 𝑝𝑎(𝑋

′). Moreover, 𝑝𝑎(𝑋red) = 𝑝𝑎(𝑋
′) if and only

if 𝑋 ′ → 𝑋red is an isomorphism.

Proof. Recall that the morphism ℎ : 𝑋 ′ → 𝑋red is a homeomorphism. We have an
exact sequence

0→ (𝒪𝑋red
)× → (ℎ∗𝒪𝑋′)× → ℱ → 0

where the cokernel ℱ has finite support, hence no higher cohomology. Since ℎ is
bijective and the curves 𝑋red, 𝑋

′ are complete and connected we have

𝐻0(𝑋red, (𝒪𝑋red
)×) = 𝐻0(𝑋 ′, (𝒪𝑋′)×) = 𝑘×

so the long exact sequence of cohomology gives

0→ 𝐻0(𝑋red,ℱ)→ 𝐻1(𝑋red, (𝒪𝑋red
)×)→ 𝐻1(𝑋 ′, (𝒪𝑋′)×)→ 0 .

Moreover 𝐻0(𝑋red,ℱ) = ⊕𝒪𝑋′,𝑥′/𝒪𝑋,𝑥 where the direct sum runs over the non-
ordinary singular points 𝑥 of 𝑋red, and 𝑥′ is the unique point above 𝑥. Denoting by
𝑚𝑥 the maximal ideal of the local ring of 𝑥, it is immediate to see that the inclusion
1 +𝑚𝑥′ → 𝒪𝑋′,𝑥′ induces an isomorphism 𝒪𝑋′,𝑥′/𝒪𝑋red,𝑥 ≃ (1 +𝑚𝑥′)/(1 +𝑚𝑥).
Using the fact that 𝒪𝑋′,𝑥′/𝑚𝑥 is an artinian ring, one may see that there is an
integer 𝑟 ≥ 1 such that (𝑚𝑥′)𝑟 ⊂ 𝑚𝑟. Then one introduces a filtration of (1 +
𝑚𝑥′)/(1+𝑚𝑥) and proves as in the proof of Lemma 3.3.2 that the algebraic group
𝑈 that represents 𝐻0(𝑋red,ℱ) is unipotent. We refer to [Liu], Lemmas 7.5.11 and
7.5.12 for the details of these assertions. Finally the exact sequence above induces
an exact sequence of algebraic groups

0→ 𝑈 → Pic0(𝑋red)→ Pic0(𝑋 ′)→ 0

with 𝑈 unipotent. The proof of the final statement about the dimension of the
kernel can be found in [Liu], Lemma 7.5.18. □

Lemma 3.3.5. The morphism Pic0(𝑋 ′) → Pic0(𝑋̃) is surjective with toric kernel
of dimension 𝜇− 𝑐+ 1, where 𝜇 is the sum of the excess multiplicities 𝑚𝑥 − 1 for
all ordinary multiple points 𝑥 ∈ 𝑋 ′ and 𝑐 is the number of connected components

of 𝑋̃.

Proof. Write 𝜋 : 𝑋̃ → 𝑋 ′ for the normalization map. We have an exact sequence

0→ (𝒪𝑋′)× → (𝜋∗𝒪𝑋̃)× → ℱ → 0
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where the cokernel ℱ has finite support, hence no higher cohomology. Let 𝑐 be the

number of connected components of 𝑋̃. The long exact sequence of cohomology
gives

0→ 𝑘× → (𝑘×)𝑐 → 𝐻0(𝑋,ℱ)→ 𝐻1(𝑋 ′, (𝒪𝑋′)×)→ 𝐻1(𝑋 ′, (𝜋∗𝒪𝑋̃)×)→ 0 .

One has the following supplementary information: the map 𝑘× → (𝑘×)𝑐 is the
diagonal inclusion, the sheaf ℱ is supported at all ordinary multiple points and
𝐻0(𝑋,ℱ) is the sum ⊕𝑥∈𝑋′ (𝑘×)𝑚𝑥−1 over all these points, and

𝐻1(𝑋 ′, (𝜋∗𝒪𝑋̃)×) = 𝐻1(𝑋̃, (𝒪𝑋̃)×)

since 𝜋 is affine. As above, these statements are valid after any base change 𝑆 →
Spec(𝑘), so we obtain an induced exact sequence of algebraic groups

0→ 𝔾𝑚 → (𝔾𝑚)𝑐 → Π(𝔾𝑚)𝑚𝑥−1 → Pic0(𝑋 ′)→ Pic0(𝑋̃)→ 0

and this proves the lemma. □

3.4. Relation with semistable reduction of abelian varieties

Let 𝐶 be a smooth geometrically connected curve over 𝐾, of genus 𝑔 ≥ 2. Let 𝑋
be the minimal regular model of 𝐶. Its special fibre 𝑋𝑘 may be singular, possi-
bly nonreduced and we have seen the structure of its generalized jacobian in the
previous subsection. This algebraic group turns out to be tightly linked to the re-
duction type of 𝐶. In fact, quite generally, classical results of Chevalley imply that
any smooth connected commutative algebraic group over an algebraically closed
field is an extension of an abelian variety by a product of a torus and a connected
smooth unipotent group. In this section, following Deligne and Mumford, we will
prove the following theorem:

Theorem 3.4.1. Let 𝐶 be a smooth geometrically connected curve over 𝐾, of genus
𝑔 ≥ 2, with a 𝐾-rational point. Let 𝑋 be the minimal regular model of 𝐶. Then 𝐶
has stable reduction over 𝑅 if and only if Pic0(𝑋𝑘) has no unipotent subgroup.

Proof. Assume that 𝐶 has stable reduction. Then 𝑋𝑘 is reduced and has only
nodal singularities, by Proposition 3.1.1, so it is equal to its associated curve
with ordinary singularities. Since the normalization of 𝑋𝑘 is a smooth curve, its
generalized jacobian is an abelian variety. Hence it follows from Lemma 3.3.5 that
Pic0(𝑋𝑘) is an extension of an abelian variety by a torus, so it has no unipotent
subgroup.

Conversely, assume that Pic0(𝑋𝑘) has no unipotent subgroup.

By Lemma 3.3.2 the morphism Pic0(𝑋𝑘) → Pic0((𝑋𝑘)red) is an isomor-
phism. Thus by Lemma 3.3.1 we have 𝐻1(𝑋𝑘,𝒪𝑋𝑘

) = 𝐻1((𝑋𝑘)red,𝒪(𝑋𝑘)red).
But since 𝑋𝑘 has at least one reduced component (the given 𝐾-rational point
of 𝐶 reduces by 2.4.3 to a regular point of 𝑋𝑘), we have also 𝐻0(𝑋𝑘,𝒪𝑋𝑘

) =
𝐻0((𝑋𝑘)red,𝒪(𝑋𝑘)red) = 𝑘. In other words 𝑋𝑘 and its reduced subscheme have
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equal Euler-Poincaré characteristics. Let 𝐸1, . . . , 𝐸𝑟 be the irreducible compo-
nents of 𝑋𝑘 and 𝑑1, . . . , 𝑑𝑟 their multiplicities. By the adjunction formula of The-
orem 2.3.4 we get

Σ 𝑑𝑖𝐸𝑖 ⋅ (Σ 𝑑𝑖𝐸𝑖 +𝐾) = Σ𝐸𝑖 ⋅ (Σ𝐸𝑖 +𝐾)

where 𝐾 is a canonical divisor of 𝑋/𝑅. Since
∑

𝑑𝑖𝐸𝑖 = 𝑋𝑘 is in the radical of the
intersection form, we obtain

Σ (𝑑𝑖 − 1)𝐸𝑖 ⋅𝐾 = Σ𝐸𝑖 ⋅ Σ𝐸𝑖 .

Now assume that 𝑑𝑖 > 1 for some 𝑖. Then
∑

𝐸𝑖 ∕= 𝑋𝑘 and hence
∑

𝐸𝑖 ⋅
∑

𝐸𝑖 < 0,
because the intersection form is negative semi-definite with isotropic cone gener-
ated by 𝑋𝑘. Therefore by the above equality, we must have 𝐸𝑖0 ⋅𝐾 < 0 for some
𝑖0. Since also 𝐸𝑖0 ⋅𝐸𝑖0 < 0, we have

−2 ≥ 𝐸𝑖0 ⋅ 𝐸𝑖0 + 𝐸𝑖0 ⋅𝐾 = 𝐸𝑖0 ⋅ (𝐸𝑖0 +𝐾) = −2𝜒(𝐸𝑖0) ≥ −2 .

Finally 𝜒(𝐸𝑖0 ) = −1, so 𝐸𝑖0 is a projective line with self-intersection −1. This
is impossible since 𝑋 is the minimal regular model. It follows that 𝑑𝑖 = 1 for
all 𝑖, hence 𝑋𝑘 is reduced. Again since Pic0(𝑋𝑘) has no unipotent subgroup, by
Lemma 3.3.4 the curve 𝑋𝑘 has ordinary multiple singularities. Since 𝑋𝑘 lies on
a regular surface, the dimension of the tangent space at all points is less than 2,
hence the singular points are ordinary double points. This proves that 𝐶 has stable
reduction over 𝑅. □

We can now state the stable reduction theorem in full generality, and we will
indicate how Deligne and Mumford deduce it from the above theorem (see [DM],
Corollary 2.7).

Theorem 3.4.2. Let 𝐶 be a smooth geometrically connected curve over 𝐾, of genus
𝑔 ≥ 2. Then there exists a finite field extension 𝐿/𝐾 such that the curve 𝐶𝐿 has
a stable model. Furthermore, this stable model is unique.

The unicity statement means that if 𝐶𝐿 and 𝐶𝑀 have stable models for some
finite field extensions 𝐿,𝑀 then these models become isomorphic in the ring of
integers of 𝑁 , for all fields 𝑁 containing 𝐿 and 𝑀 . This fact follows directly from
the proof of the implication (3)⇒ (1) of Proposition 3.1.1. Indeed, if 𝐶 has stable
reduction, the stable model is determined uniquely as the blow-down of all chains
of projective lines with self-intersection −2 in the special fibre of the minimal
regular model of 𝐶.

The proof of the existence part given in the article [DM] requires much more
material from algebraic geometry, in particular it uses results on Néron mod-
els of abelian varieties. We give the sketch of the argument, for the readers ac-
quainted with these notions. To prove the theorem, we may pass to a finite field
extension and hence assume that 𝐶 has a 𝐾-rational point. Moreover, a result
of Grothendieck [SGA7] asserts that after a further finite field extension (again
omitted from the notations), the Néron model 𝒥 of the jacobian 𝐽 = Pic0(𝐶/𝐾)
has a special fibre 𝒥𝑘 without unipotent subgroup. Now, let 𝑋 be the minimal
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regular model of 𝐶 over the ring of integers 𝑅 of 𝐾. By properness there is a
section Spec(𝑅) → 𝑋 that extends the rational point of 𝐶, and the correspond-
ing 𝑘-point is regular (Remark 2.4.3). In particular, this section hits the special
fibre in a component of multiplicity 1. Under these assumptions, by a theorem of
Raynaud [Ra1], the Picard functor Pic0(𝑋/𝑅) is isomorphic to 𝒥 (in particular,
it is representable). It follows that the special fibre of Pic0(𝑋/𝑅), in other words
Pic0(𝑋𝑘), has no unipotent subgroup. By Theorem 3.4.1, 𝐶 has stable reduction.

4. Application to moduli of curves and covers

4.1. Valuative criterion for the stack of stable curves

Let 𝑔 ≥ 2 be a fixed integer and let ℳ𝑔 be the moduli stack of stable curves of
genus 𝑔.

Once it is known thatℳ𝑔 is separated (cf. the next subsection), the valuative

criterion of properness forℳ𝑔 is the following statement: for all discrete valuation

rings 𝑅 with fraction field 𝐾, and all 𝐾-points Spec(𝐾) → ℳ𝑔, there exists a

finite field extension 𝐾 ′/𝐾 such that Spec(𝐾 ′) → Spec(𝐾) → ℳ𝑔 extends to a

point Spec(𝑅′)→ℳ𝑔 where 𝑅′ is the integral closure of 𝑅 in 𝐾 ′.
Once it is known thatℳ𝑔 is of finite type, it is enough to verify the valuative

criterion for complete valuation rings 𝑅 with algebraically closed residue field.
Finally, by the well-known Lemma 4.1.1 below, it is enough to test the crite-

rion for points Spec(𝐾)→ℳ𝑔 that map into some open dense substack 𝑈 ⊂ℳ𝑔.
The deformation theory of stable curves proves that smooth curves are dense in
ℳ𝑔, hence we may take 𝑈 to be the open substack of smooth curves. Then, the
valuative criterion is just Theorem 3.4.2.

Lemma 4.1.1. Let 𝑆 be a noetherian scheme and let 𝒳 be an algebraic stack of finite
type and separated over 𝑆. Let 𝒰 be a dense open substack. Then 𝒳 is proper over
𝑆 if and only if for all discrete valuation rings 𝑅 with fraction field 𝐾 and all
𝑆-morphisms Spec(𝐾)→ 𝒰 , there exists a finite extension 𝐾 ′/𝐾 and a morphism
Spec(𝑅′)→ 𝒳 , where 𝑅′ is the integral closure of 𝑅 in 𝐾 ′, such that the following
diagram is commutative:

Spec(𝐾 ′) ��

��

Spec(𝐾) �� 𝒰 �� 𝒳

��
Spec(𝑅′)

��

�� 𝑆.

Proof. For simplicity, we will prove the lemma in the case where 𝒳 is a scheme 𝑋 .
The proof for an algebraic stack is exactly the same, but we want to avoid giving
references to the literature on algebraic stacks for the necessary ingredients. It is
enough to prove the if part. Since the notion of properness is local on the target,
we may assume that 𝑆 is affine. Then by [EGA2], 5.4.5, we may replace 𝑆 by
one of its reduced irreducible components 𝑍 and then 𝑋 by one of the reduced
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irreducible components of the preimage of 𝑍 in 𝑋 . Thus we may assume that 𝑋
and 𝑆 are integral. By Chow’s lemma [EGA2], 5.6.1, there exists a scheme 𝑋 ′

quasi-projective over 𝑆 and a projective, surjective, birational morphism 𝑋 ′ → 𝑋 .
It is easy to see that 𝑋 → 𝑆 is proper if and only if 𝑋 ′ → 𝑆 is proper, thus we
may replace 𝑋 by 𝑋 ′ and assume 𝑋 quasiprojective. Let 𝑗 : 𝑋 → 𝑃 be an open
dense immersion into a projective 𝑆-scheme. Then 𝑋 → 𝑆 is proper if and only
if 𝑗 is surjective. Let 𝑥 be a point in 𝑃 . Since 𝑈 is dense in 𝑋 hence also in 𝑃 ,
there exists a point 𝑦 ∈ 𝑈 and a morphism Spec(𝑅) → 𝑃 where 𝑅 is a discrete
valuation ring with fraction field 𝐾, mapping the open point to 𝑦 and the closed
point to 𝑥 (see [EGA2], 7.1.9). By the valuative criterion which is the assumption
of the lemma, the map Spec(𝐾)→ 𝑋 extends (maybe after a finite extension) to
Spec(𝑅) → 𝑋 . Since 𝑋 is separated, such an extension is unique and this means
that 𝑥 ∈ 𝑋 . So 𝑗 is surjective and the lemma is proved. □

4.2. Automorphisms of stable curves

As a preparation for the next subsection, we need some preliminaries concerning
automorphisms of stable curves. Not just the automorphism groups, but also the
automorphism functors, are interesting. Even more generally, if 𝑋,𝑌 are stable
curves over a scheme 𝑆, then by Grothendieck’s theory of the Hilbert scheme and
related functors, the functor of isomorphisms between 𝑋 and 𝑌 is representable
by a quasi-projective 𝑆-scheme denoted Isom𝑆(𝑋,𝑌 ). It is really this scheme that
we want to describe.

Lemma 4.2.1. Let 𝑋 be a stable curve over a field 𝑘. Then, the group of auto-
morphisms of 𝑋/𝑘 is finite and the group of global vector fields Ext0(Ω𝑋/𝑘,𝒪𝑋)
is zero.

Proof. Let 𝑆 be the set of singular points of 𝑋 and let 𝜋 : 𝑋̃ → 𝑋 be the
normalization morphism. Let 𝐴 be the group of automorphisms of 𝑋 and let 𝐴0

be the subgroup of those automorphisms 𝜑 such that for all 𝑥 ∈ 𝑆, we have
𝜑(𝑥) = 𝑥 and 𝜑 preserves the branches at 𝑥. Since 𝑆 is finite, 𝐴0 has finite index
in 𝐴 and hence it is enough to prove that 𝐴0 is finite. Then elements of 𝐴0 are

the same as automorphisms of 𝑋̃ acting trivially on 𝜋−1(𝑆). Let us call the points
of 𝜋−1(𝑆) marked points. Since 𝑋 is connected, the components of 𝑋̃ are either
smooth curves of genus 𝑔 ≥ 2 with maybe some marked points, or elliptic curves
with at least one marked point, or rational curves with at least three marked
points. Each of these has finitely many automorphisms, hence 𝐴0 is finite.

A global vector field 𝐷 on 𝑋 is the same as a global vector field 𝐷̃ on 𝑋̃
which vanishes at all marked points. We proceed again by inspection of the three

different types of components of 𝑋̃ . It is known that smooth curves of genus 𝑔 ≥ 2
have no vector field, elliptic curves have no vector field vanishing in one point, and
smooth rational curves ones have no vector field vanishing in three points. Hence

𝐷̃ = 0 and 𝐷 = 0. □
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Lemma 4.2.2. Let 𝑋,𝑌 be a stable curves over a scheme 𝑆. Then, the isomorphism
scheme Isom𝑆(𝑋,𝑌 ) is finite and unramified over 𝑆.

Proof. The scheme Isom𝑆(𝑋,𝑌 ) is of finite type as an open subscheme of a Hilbert
scheme. It is also proper, since the valuative criterion is exactly the unicity state-
ment in Theorem 3.4.2. Hence in order to prove the lemma we may assume that
𝑆 is the spectrum of an algebraically closed field 𝑘. Then, either Isom𝑆(𝑋,𝑌 ) is
empty or it is isomorphic to Aut𝑘(𝑋). Hence, it is finite by Lemma 4.2.1. Let
𝑘[𝜖] with 𝜖2 = 0 be the ring of dual numbers. In order to prove that Aut𝑘(𝑋) is
unramified, it is enough to prove that an automorphism 𝜑 of 𝑋×𝑘 𝑘[𝜖] which is the
identity modulo 𝜖 is the identity. Such a 𝜑 stabilizes each affine open subscheme
Spec(𝐴) ⊂ 𝑋 and acts there via a ring homomorphism 𝜑♯(𝑎) = 𝑎+𝜆(𝑎)𝜖. Since 𝜑♯

is multiplicative we get that 𝜆 is in fact a derivation. By gluing on all open affine,
the various 𝜆’s define a global vector field, which is zero by Lemma 4.2.1 again.
Hence 𝜑 is the identity. □

The stable reduction theorem for Galois covers which we will prove below is
valid when the order of the Galois group is prime to all residue characteristics. In
the proof, we will use the following lemma:

Lemma 4.2.3. Let 𝑋 be a reduced, irreducible curve over a field 𝑘 and let 𝑥 be a
smooth closed point. Let 𝜑 be an automorphism of 𝑋 of finite order 𝑛 prime to the
characteristic of 𝑘, belonging to the inertia group at 𝑥. Then the action of 𝜑 on
the tangent space to 𝑋 at 𝑥 is via a primitive 𝑛th root of unity, i.e., it is faithful.

Proof. We can assume that 𝑛 ≥ 2 and that 𝑥 is a rational point, passing to a finite
extension of 𝑘 if necessary. Then the completed local ring of 𝑥 is isomorphic to
the ring of power series 𝑘[[𝑡]]. The action of 𝜑 on the tangent space to 𝐶 at 𝑥 is
done via multiplication by some 𝑚th root of unity 𝜁, with 𝑚∣𝑛. If 𝑚 ∕= 𝑛, then
replacing 𝜑 by 𝜑𝑚 we reduce to the case where 𝜁 = 1. Since 𝜑 is not the trivial
automorphism of 𝐶, there is an integer 𝑖 and a nonzero scalar 𝑎 ∈ 𝑘 such that
𝜑(𝑡) = 𝑡 + 𝑎𝑡𝑖 modulo 𝑡𝑖+1. Then 𝜑𝑛(𝑡) = 𝑡 + 𝑛𝑎𝑡𝑖 modulo 𝑡𝑖+1. Since 𝜑𝑛(𝑡) = 𝑡
and 𝑛 is not zero in 𝑘, this is impossible. Therefore, 𝑚 = 𝑛. □
4.3. Reduction of Galois covers at good characteristics

We now give the applications to stable reduction of Galois covers of curves (by
cover we mean a finite surjective morphism). To do this, we fix a finite group
𝐺 of order 𝑛 and we consider a cover of smooth, geometrically connected curves
𝑓 : 𝐶 → 𝐷 which is Galois with group 𝐺. We assume as usual that the genus of 𝐶
is 𝑔 ≥ 2. The case where the order 𝑛 is divisible by the residue characteristic 𝑝 of
𝑘 brings some more complicated pathologies, and here we will rather have a look
at the case where 𝑛 is prime to 𝑝. We make the following definition.

Definition 4.3.1. Let 𝑘 be a field of characteristic 𝑝, and 𝐺 a finite group of order
𝑛 prime to 𝑝. Let 𝑋 be a stable curve over 𝑘 endowed with an action of 𝐺, and
for all nodes 𝑥 ∈ 𝑋 , let 𝐻𝑥 ⊂ 𝐺 denote the subgroup of the inertia group of 𝑥
composed of elements that preserve the branches at 𝑥. We say that the action is
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stable, or that the Galois cover 𝑋 → 𝑌 := 𝑋/𝐺 is stable, if the action of 𝐺 on 𝑋
is faithful and for all nodes 𝑥 ∈ 𝑋 , the action of 𝐻𝑥 on the tangent space of 𝑋
at 𝑥 is faithful with characters on the two branches 𝜒1, 𝜒2 satisfying the relation
𝜒1𝜒2 = 1.

Note that the stabilizer is cyclic when it preserves the branches at 𝑥, and
dihedral when some elements of 𝐻 permute the branches at 𝑥.

An extremely important consequence of the assumption (𝑛, 𝑝) = 1 is that the
formation of the quotient 𝑋 → 𝑋/𝐺 commutes with base change. Consequently,
the definition of a stable cover above makes sense in families, i.e., if 𝑋 → 𝑆 is a
stable curve over a scheme 𝑆 endowed with an action of 𝐺 by 𝑆-automorphisms
and 𝑌 = 𝑋/𝐺, then we say that the cover 𝑋 → 𝑌 is a stable Galois cover if and
only if it is stable the fibre over each point 𝑠 ∈ 𝑆. Then we arrive at the following
stable reduction theorem for covers:

Theorem 4.3.2. Let 𝐺 be a finite group of order 𝑛 prime to the characteristic of 𝑘,
the residue field of 𝑅. Let 𝐶 → 𝐷 be a cover of smooth, geometrically connected
curves which is Galois with group 𝐺, and assume that the genus of 𝐶 is 𝑔 ≥ 2.
Then after a finite extension of 𝐾, the cover 𝐶 → 𝐷 has a stable model 𝑋 → 𝑌
over 𝑅. Furthermore, this model is unique.

Proof. By the stable reduction theorem, there exists a finite field extension 𝐿/𝐾
such that 𝐶𝐿 has a stable model 𝑋 . Replacing 𝐾 by 𝐿 for notational simplicity,
we reduce to the case 𝐿 = 𝐾. Then by unicity of the stable model and by abstract
nonsense, the group action extends to an action of 𝐺 on 𝑋 by 𝑅-automorphisms.
By Lemma 4.2.2, the induced action of 𝐺 on the special fibre 𝑋𝑘 is faithful: indeed,
if 𝜑 ∈ 𝐺 has trivial image in Aut𝑘(𝑋), then by the property of unramification of
the automorphism functor, it has trivial image in Aut𝑅/𝑚𝑛(𝑋 ⊗𝑅 𝑅/𝑚𝑛) for all
𝑛 ≥ 1, so since𝑅 is complete, it has trivial image in Aut𝑅(𝑋). We define 𝑌 = 𝑋/𝐺.

We now prove that the action is stable. Let 𝑥 ∈ 𝑋𝑘 be a nodal point and
let 𝐻𝑥 ⊂ 𝐺 be the subgroup of the stabilizer of 𝑥 composed of elements that
preserve the branches at 𝑥. The completion of the local ring 𝒪𝑋,𝑥 is isomorphic
to 𝑅[[𝑎, 𝑏]]/(𝑎𝑏− 𝜋𝑛) for some 𝑛 ≥ 1. Then the tangent action on the branches is
obviously via multiplication by inverse roots of unity of order ∣𝐻𝑥∣. It remains to
see that the kernel 𝑁 of the action of 𝐻𝑥 on the tangent space 𝑇𝑋𝑘,𝑥 is trivial.
In fact 𝑁 acts trivially on the whole irreducible components containing 𝑥, as one
sees by applying Lemma 4.2.3 to the normalization of 𝑋𝑘. Since 𝑋𝑘 is connected,
it follows at once that 𝑁 acts trivially on 𝑋𝑘, hence 𝑁 = 1. □

Moreover, one can prove, using deformation theory, that a stable Galois cover
of curves over 𝑘 can be deformed into a smooth curve over 𝑅 with faithful 𝐺-action.
For details about this point, we refer for example to [BR].

In the case where the order of 𝐺 is divisible by the residue characteristic 𝑝,
things are much more complicated. We will conclude by a simple example, which
gives an idea of the local situation around a node of the special fibre. Assume
that 𝑅 contains a primitive 𝑝th root of unity 𝜁. We look at the affine 𝑅-curve
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𝑋 with function ring 𝑅[𝑥, 𝑦]/(𝑥𝑦 − 𝑎), for some fixed 𝑎 in the maximal ideal of
𝑅. We consider the group 𝐺 = ℤ/𝑝ℤ, with generator 𝜎, and the action on a
neighbourhood of the node of 𝑋𝑘 given by

𝜎(𝑥) = 𝜁𝑥+ 𝑎 and 𝜎(𝑦) =
𝑦

𝜁 + 𝑦
.

Then the reduced action is given by 𝜎(𝑥) = 𝑥 and 𝜎(𝑦) = 𝑦/(1 + 𝑦), hence it is
faithful on one branch but not on the other. Apparently some information on the
group action is lost in reduction, but it is not clear what to do in order to recover
it. At the moment, no “reasonable” stable reduction theorem for covers at “bad”
characteristics is known.

References
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