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Introduction

Introduction to a carrot. What makes the donkey keep going is the carrot. We are all
familiar with the picture of a donkey trotting on, with a stick tied to its back and a carrot
hanging from it, at a fixed distance from its muzzle. The donkey will doubtless never catch
up with the carrot, but still, the animal is moving on. The truth is even more difficult
to bear than that : the donkey will never catch up with the carrot, but this is the very
reason why he keeps moving, for ever and ever. What makes the mathematician move on
is the dream of new – mathematical – fronteers. Mathematicians will never catch up with
their dreams, but still, the dreams are what makes them move on. One little difference
between donkeys and mathematicians is that the latter are often aware of the fact that
their exertions are vain, but the motive power is about just as powerful. The dreams of
mathematicians are varied. The complex geometer is running after the classification of
smooth projective complex varieties up to birational equivalence. The arithmetician is
running after the intimate structure of the absolute Galois group of the field of rational
numbers. If there exists somewhere in the universe a God of mathematicians, he is
doubtless thinking: ”Keep running!”. But the mathematician will not listen.

The modest mathematician – or donkey? – author of the present report wishes to tell
you about a dream – a carrot ? – that gives motivation for his efforts. Let us choose a
natural number g, a finite group G, and a prime p. The Galois covers C → P1 of the
projective line by a projective, smooth, geometrically connected algebraic curve of genus g,
with Galois group Gal(C/P1) = G, are classified by a ”variety” that we shall denote Hg,G,
or simply H in honor of Hurwitz for his article [Hu]. It has a natural compactification
build using stable curves, and we shall denote it H̄ . If we take the word ”variety” to
mean ”algebraic stack” then H̄ is proper and smooth. This is a marvellous object, at the
crossroads of two topics that travelled down two centuries of mathematics: Galois theory
and the moduli space of curves Mg. The stack H̄ may be defined – in many ways – by
equations with rational coefficients and hence, after chasing denominators, with integral
coefficients. A question that motivates my efforts is:

What is the reduction of H̄ at p?
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This means to consider all sets of equations with integral coefficients defining H̄ , and
to look for a set of equations whose reduction modulo p gives the nicest possible variety
H̄ ⊗ Fp. The situation is totally different according to whether p divides the order of G
or not. The problems that arise are different. They are all very interesting.

Introduction to the contents of this report. The question above is quite general
and lead me to consider several subtopics. In this text, I chose to organize them into
three main themes corresponding to the three parts of the report: the general problem
of quotients in Algebraic Geometry, important for the construction of moduli spaces;
the investigation of integral models of group schemes, which is a necessary step for the
reduction of Galois coverings when p divides the order of G; the construction and study
of moduli spaces of coverings of curves. Discarding a few exceptions, what is set out here
may be found in the following six articles:

[4] Champs de Hurwitz (with J. Bertin),

[6] On the adjoint quotient of Chevalley groups over arbitrary base schemes (with P.-E. Chaput),

[7] Effective models of group schemes,

[8] Composantes connexes et irréductibles en familles,

[9] Moduli of Galois p-covers in mixed characteristics (with D. Abramovich),

[11] Models of group schemes of roots of unity (with A. Mézard and D. Tossici).

The numbers in brackets refer to the list of my articles in the end of the report. Let us
now say a word about the ”few exceptions” we discarded above. This report is a survey of
previous work and is not supposed to contain any new result, nor any proof. But it does in
fact contain two proofs. The first is about a representability result used in the article [8]
with only a very rough proof sketch; this is the opportunity to take a more general as well
as more illuminating point of view and to give a full proof. The second is about a case
of representability for the functor of connected components that complements the results
of the article [8]. This case was indicated to me by Laurent Fargues and I am happy to
thank him for that. I take the opportunity to thank Dajano Tossici for the explanation
of example 8.5. Finally, a last remark on the contents of the report is essential. The
length of the text devoted here to each of the six individual articles above is very far from
giving a faithful picture of their respective importance and interest. It is only due to the
choice of such-or-such point that I thought would be more useful to examine, or to the
prominence of my current concerns.

Notation. Throughout the text, we write R = (R,K, k, π) to denote a discrete valuation
ring R with fraction field K, residue field k, and a fixed uniformizer π.
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Part I

Quotients

In this part, we wish to present some problems of representability of covariant functors.
In practice, such problems usually come down to taking a quotient by a group action,
or by an equivalence relation, or more generally by a groupoid. For us, these questions
appear in two situations: when some group scheme is involved in a particular geometric
situation, or when we want to construct a moduli space. Here we present three problems
of quotient. The one discussed in Section 1 is quite independent from the other works in
this report, but those discussed in Sections 2 and 3 have very close relationship with the
results of the second and third parts.

The construction of quotients in Algebraic Geometry raises several questions :

(1) What is the definition of the quotient we are trying to find? In particular, what is
the category where it should be looked for?

(2) Does the quotient have nice properties?

(3) Does its formation commute with base change?

When they exist, quotients in different categories are in general different. The choice
of the category where the existence of a given quotient will be investigated has in fact
strong consequences on its properties. For example, the quotient of the affine plane minus
the origin A2

k \ {0} by the action by homotheties of the multiplicative group Gm,k is the
point Spec(k) in the category of quasi-affine k-schemes, but of course it is the projective
line P1

k in the category of all k-schemes. As it turns out, the quotient is again P1
k is

bigger ”categories” like the 2-category of algebraic stacks. What is more, the morphism
A2
k \{0} → P1

k is a torsor under the group Gm,k. These facts may be seen to mean that P1
k

is the ”good” quotient. These phenomena will be discussed in the examples of this part.

According to Grothendieck’s philosophy, although an object that represents a covariant
functor is defined in terms of morphisms of which it is the source, it should be constructed
using a description of morphisms of which it is the target, that is to say its points. We do
this with special care in Sections 2 and 3 where the quotients are somehow less concrete.
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1 Quotient of the adjoint action of reductive groups

To start with, we revisit a famous example where the choice of the category where the
quotient should live is imposed by the problem itself.

Let S be a scheme, G a split reductive S-group scheme with Lie algebra g, and T a
maximal torus with Lie algebra t. The Lie algebra g is endowed with the so-called ajoint
action of G and the algebra t is endowed with an induced action of the Weyl group W ,
defined as the quotient of the normalizer of T by its centralizer. The adjoint quotient of g
denoted g/G is the object that represents the covariant functor defined on the category
of schemes affine over S by

F (X) = HomG(g, X),

where X is seen as a G-scheme with trivial action. It is easy to see that g/G is represented
by the spectrum of the OS-algebra of G-invariant functions of g. The morphism

χ : g→ g/G

is an extremely important object playing a crucial role in the construction of the Hitchin
fibration, a starting point in B. C. Ngô’s approach to the proof of the fundamental lemma
(see [Ngô]). The quotient t/W is defined in a similar fashion and is an affine S-scheme.
The inclusion t ↪→ g induces a morphism π : t/W → g/G. The question whether π is an
isomorphism is a natural one, and a positive answer has several important consequences
for g/G : first of all it reduces its computation to a computation of a quotient by a finite
group; moreover it allows to identify it with the set of semisimple conjugation classes of g
– because the points of t/W are indeed in one-to-one correspondence with this set. When
the base is the spectrum of a field of odd characteristic, the question was studied in the
classic work of Springer and Steinberg [SpSt] and more recently by Levy [Le]. When G is
simple (a case which leads easily to a treatment in the semisimple case), we give an answer
without any assumption on the base in the article On the adjoint quotient of Chevalley
groups over arbitrary base schemes in collaboration with P.-E. Chaput.

Theorem. Assume that G is split simple on an arbitrary base scheme S. Then, the
morphism π : t/W → g/G is an isomorphism, except in the following case: G = Sp2n and
the structure sheaf OS of the base scheme has 2-torsion elements.

Moreover we study in full detail the exceptional case: we compute the schemes t/W ,
g/G and the morphism π. These results may be found in [6], 3.11 and 6.6.

The question whether the formation of the quotient χ : g→ g/G commutes with base
change is a matter of case-by-case considerations. We give an answer for the four classical
groups in types A, B, C, D. Denote by S[2] the closed subscheme of S defined by the ideal
of functions killed by 2. Then:

(i) if G = SLn or G = Sp2n, the formation of the quotient commutes with base change;

(ii) if G = SO2n+1 or G = SO2n, the formation of the quotient commutes with the base
change f : S ′ → S if and only if f ∗S[2] = S ′[2].

These results may be found in [6], 4.8, 4.9, 5.3, 6.6.
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2 Quotient by a groupoid in algebraic stacks

We now present a result which is used in the proof of Théorème 2.5.2 in the article
Composantes connexes et irréductibles en familles [8] to be introduced in Section 3 below.
In loc. cit. is given only a very rough sketch of proof (see [8] 2.5.1). The quotient stack
of a groupoid is described only as the stackification of a certain prestack, which makes it
somehow uneasy to show that it is algebraic. Now we take the opportunity to give a more
complete statement and to give a full proof. In particular, we give a direct description of
the sections of the quotient stack.

In contrast with the situation of Section 1, it may be said that this quotient problem
is set in a category that is chosen in such a way that the quotient exists and is as nice
as possible. To be more accurate, it is in fact a 2-category: the 2-category of algebraic
(1-)stacks. One may indeed consider that algebraic stacks were invented in order to obtain
quotients with the best possible properties.

In the sequel, we always write algebraic stack to mean an algebraic stack in the sense
of Artin. We fix an algebraic space S and all morphisms are S-morphisms.

2.1 A reminder on groupoids. We briefly recall a couple of definitions in order to
fix our notations and make the text coherent. A groupoid in S-algebraic spaces or simply
groupoid space is given by two S-algebraic spaces R, X and five morphisms s, t : R→ X,
e : X → R, c : R ×s,X,t R → R, i : R → R satisfying the well-known axioms expressing
the fact that X is the set of objects and R is the set of arrows of a small category. The
groupoid is often denoted s, t : R ⇒ X or simply R ⇒ X. We say that the groupoid is
fppf if s, or equivalently t, is an fppf morphism. We say that a morphism g : X → Z
is invariant under the groupoid if g ◦ s = g ◦ t. In this case, the groupoid may be seen
as a groupoid in Z-spaces. A quotient for R ⇒ X is a morphism f : X → Y which
is universal among all invariant morphisms. If it exists, we way that the quotient is
effective if the morphism R → X ×Y X is an isomorphism. A morphism of groupoids
(R ⇒ X) → (R′ ⇒ X ′) is a pair of morphisms R → R′, X → X ′ which are compatible
with the structure morphisms of the two groupoids in an obvious way. A groupoid such
that j = (t, s) : R → X ×S X is a monomorphism, resp. a strict epimorphism, is called
free, resp. transitive. In particular, a groupoid that has an effective quotient defines a free
and transitive groupoid in Y -spaces. A free groupoid is also called an equivalence relation.
If a groupoid is free and transitive, then j is a monomorphism and a strict epimorphism,
hence an isomorphism. The stabilizer of the groupoid is the fibred product j−1(∆X/S)
seen as an X-space defined by the diagramme :

j−1(∆X/S) //

��

X

∆X

��
R

j // X ×X.

The action is free if and only if the stabilizer is trivial, that is, j−1(∆X/S) → X is an
isomorphism. A fundamental example is given by the action of an S-group algebraic
space G over an S-algebraic space X: there is then a groupoid G×SX ⇒ X with s equal
to the second projection, t the action morphism, and e, c, i induced by the neutral section,
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the composition and the inversion of the group. This groupoid is free transitive if and
only if X is a pseudo-G-torsor (a formally principal homogeneous space).

A groupoid in S-algebraic stacks is a groupoid R ⇒ X where X and R are S-
algebraic stacks, the structure morphisms s, t, e, c, i are morphisms of S-algebraic stacks,
and all the diagrammes of the groupoid axioms are 2-commutative. The 2-isomorphisms
of commutativity are part of the structure, which makes it a little heavy. For more details
on this point in the case of groupoids defined by a group action, we refer to [2], Section 1.
The various notions defined before for groupoid spaces extend without any change. Let
us point out that in the present context, an invariant morphism is a pair composed of a
morphism g : X → Z and a 2-isomorphism β : g ◦ s ⇒ g ◦ t. Thus a quotient is a pair
f : X → Y , α : f ◦ s⇒ f ◦ t such that for all invariant morphisms (g, β) there exists a
unique pair h : Y → Z , γ : h ◦ f ⇒ g making the following diagramme commutative :

h ◦ f ◦ s γ∗s +3

h∗α
��

g ◦ s

β

��
h ◦ f ◦ t

γ∗t
+3 g ◦ t.

2.2 Statement of the theorem. The result whose proof we want to explain is the
following.

Theorem. Let S be an algebraic space.

(1) Let f : X → Y be an fppf morphism of S-algebraic stacks. Then, the groupoid

pr1, pr2 : X ×Y X ⇒X

is an fppf groupoid with representable stabilizer, with quotient f : X → Y .

(2) Let s, t : R ⇒ X be an fppf groupoid in S-algebraic stacks whose stabilizer is repre-
sentable. Then, there exists a quotient f : X → Y , α : f ◦ s ⇒ f ◦ t which is an fppf
morphism of S-algebraic stacks. This quotient is effective and its formation commutes
with base change.

In short, the theorem says that in the 2-category of S-algebraic stacks, fppf groupoids
with representable stabilizer are the same thing as groupoids defined by the fibres of an
fppf morphism. Let us make a few side comments.

(i) The first part is a descent statement: it simply means that f is a strict epimorphism.
The second part is a statement of existence of a quotient.

(ii) One can replace fppf by smooth or étale in the statement.

(iii) This theorem is a generalization of the statements of the paper Group actions on
stacks and applications [2] on the existence of quotients of stacks by algebraic group
actions.

(iv) It may be worth pointing out that the proof of (2) uses (1).
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2.3 Comments on the homotopical context. Before we come to the proof, it is
useful to recast the above result in a more general framework. In [TV], Toën and Vezzosi
construct an (n + 1)-category of Artin n-stacks. Let us denote it by Cn+1. For small
values of n, this gives the set C0 = {S}, the category C1 of S-algebraic spaces, and the
2-category C2 of algebraic stacks in the sense this phrase has in this report. For all n > 0,
the Yoneda functor Cn ↪→ Cn+1 allows to speak about the n-stacks that are (representable
by) (n− 1)-stacks. Then we have the following assertions:

(1) Let f : X → Y be an fppf morphism of Artin n-stacks. Then the groupoid

pr1, pr2 : X ×Y X ⇒X

is an fppf groupoid with stabilizer an Artin (n− 1)-stack, with quotient f : X → Y .

(2) Let s, t : R ⇒ X be an fppf groupoid in Artin n-stacks whose stabilizer is an Artin
(n − 1)-stack. Then, there exists a quotient f : X → Y , α : f ◦ s ⇒ f ◦ t which is an
fppf morphism of S-stacks. This quotient is effective and its formation commutes with
base change. It is also a quotient among Artin m-stacks, for all m > n.

It may be that [TV] contains complete or partial proofs of these facts. For n = 0,
point (1) is a classical statement of fppf descent theory and point (2) is Artin’s theorem
on the existence of quotients for flat equivalence relations. For n = 1, statements (1)
and (2) make up Theorem 2.2. Of course, Toën and Vezzosi’s results are stated in the
framework of Homotopical Algebraic Geometry which, like many geometers, I am not
too familiar with. To start with, in the homotopical world it is not straightforward to
simply recognize the objects we need in (ordinary) Algebraic Geometry. This makes it
uncomfortable to understand and use the results we are concerned with: the reader may
have a look at Sections 1.3.4 and 1.3.5 in [TV] to make up her (his) own opinion. It is
therefore useful to formulate and prove these results in our own terms: this is what we
do in the following lines, for n = 1.

2.4 Proof of point (1) of the theorem. We are given an fppf morphism of S-algebraic
stacks f : X → Y . The fact that the stabilizer of the groupoid X ×Y X ⇒ X is
representable is a consequence of the fact that the diagonal ∆Y /S is representable, in
view of the 2-cartesian squares :

j−1(∆X /S) //

��

X

∆X /S

��
X ×Y X //

��

X ×S X

��
Y

∆Y /S // Y ×S Y .

Now let us show that f : X → Y is the quotient of the groupoid it gives birth to, or
in other words is a strict epimorphism. Note that by definition of the fibred product, we
have a canonical 2-isomorphism α : f ◦ pr1 ⇒ f ◦ pr2. Let Z be an S-algebraic stack,
g : X → Z a morphism and β : g ◦ pr1 ⇒ g ◦ pr2 a 2-isomorphism. Let U → Y
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and U ′ → U ×Y X be smooth presentations by algebraic spaces; let V = U ×Y U and
V ′ = U ′ ×X U ′. We have a 2-commutative diagramme:

V ′ ×V V ′ ////

y

$$

V ′

����

// V

����
U ′ ×U U ′ ////

w

��

U ′

v

��

ϕ // U

u

��

h1

!!
X ×Y X //// X

f //

g

77Y
h // Z .

By composition of the 2-isomorphism β : g ◦ pr1 ⇒ g ◦ pr2 with w and using the 2-
isomorphisms pri ◦w ⇒ v ◦ pri with i = 1, 2, we get a 2-isomorphism β ∗w : g ◦ v ◦ pr1 ⇒
g ◦ v ◦ pr2. Therefore we obtain a 2-commutative diagramme

U ′ ×U U ′ //// U ′
g◦v // Z .

Since Z is a stack, the morphism g ◦ v factors through U i.e. there is a unique pair
(h1, β1) where h1 : U → Z and β1 : h1 ◦ ϕ ⇒ g ◦ v. By the same argument applied to
the first line of the diagramme instead of the second, the assertion of unicity provides a
descent datum for h1 relative to u. It follows that h1 factors through Y i.e. there is a
unique pair (h, β2) where h : Y → Z and β2 : h ◦ u⇒ h1. By composition of β2 and β1

we get a 2-isomorphism h◦f ◦ v ⇒ g ◦ v. Finally, looking at the preimages along V ′ ⇒ U ′

and using the stack properties of X , we see that this 2-isomorphism descends to a unique
2-isomorphism β : h ◦ f ⇒ g. This finishes the proof of (1).

2.5 Proof of point (2) of the theorem. We are given an fppf groupoid s, t : R ⇒
X . We shall concentrate on the construction of the quotient stack Y which is the
main difficulty of the proof. For this, let us first assume that Y exists and draw some
conclusions. If Y has the properties required in the statement of (2), the morphism
R → X ×Y X is an isomorphism, i.e. the groupoid R ⇒ X seen as a groupoid in
algebraic stacks over Y is free and transitive. For all schemes S ′/S, by base change we
have a free and transitive fppf S ′-groupoid:

R ′
s′ //

t′
//

��

X ′

β

��

π′
// S ′

α

��
R

s //
t

// X
π // Y .

Let us write Rs, resp. Rt, for the stack R seen as an X -stack via s, resp. via t. Similarly
let us write R2

s , resp. R2
t , for the stack R ×s,X ,t R seen as an X -stack via s ◦ pr2, resp.

via t ◦ pr1. The operation of composition in the groupoid gives rise to two X -morphisms
cs = c : R2

s → Rs and ct = c : R2
t → Rt. We shall write with a ”′” the same objects

attached to the groupoid obtained by base change. By transitivity of the fibred product,
for a ∈ {s, t}, we have canonical isomorphisms ϕa : R ′a → β∗Ra and ψa : R ′2a → β∗R2

a

satisfying
ϕa ◦ c′a = β∗ca ◦ ψa.
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Since a groupoid is determined by the structure maps s, t, c, these equalities determine all
the information in R ′ coming from R by the base change β : X ′ →X . Now we change
our point of view and we define Y as the stack whose sections over S ′ are the objects T ′

composed of a diagramme

R ′
////

��

X ′

β

��

// S ′

R
//// X

and isomorphisms ϕa : R ′a → β∗Ra and ψa : R ′2a → β∗R2
a for a ∈ {s, t}, such that:

(a) X ′ is an arbitrary fppf S ′-algebraic stack,

(b) R ′ ⇒X ′ is an fppf S ′-groupoid which is free and transitive,

(c) ϕa ◦ c′a = β∗ca ◦ ψa for a ∈ {s, t}.

The morphisms between two objects T ′
1 and T ′

2 are the 2-commutative diagrammes

R ′1
// //

λ

��

X ′
1

µ

��

β1

%%KKKKKK

X

R ′2
//// X ′

2

β2

99ssssss

satisfying the obvious compatibility conditions with the structure morphisms of the groupoids
and the other data ϕa,i, ψa,i for a ∈ {s, t} and i ∈ {1, 2}.

We have to show that Y is algebraic. By definition of a morphism of groupoids, in
the above diagramme the map µ is determined by λ. In this way we see that the fibre
of ∆Y /S at some point (T ′

1 ,T
′

2 ), i.e. the S ′-stack IsomY (T ′
1 ,T

′
2 ), is a sucategory of

the S ′-stack HomX (R ′1,R
′
2). Using the assumption that the stabilizer of the groupoid

R ⇒ X is representable, we see that HomX (R ′1,R
′
2) is represented by an S ′-algebraic

space, and the fibre of ∆Y /S at the point of interest is a subspace ; here we omit a couple
of tedious but routine details. Thus ∆Y /S is representable. Now algebraicity of of Y
will follow once the quotient f : X → Y is constructed and proven to be fppf. In order
to construct f , for all points c : S ′ → X we have to provide a point f(c) : S ′ → Y .
Let us consider the fibred product R ′ = R ×s,X ,c S

′, which is none other than the orbit
of c under the groupoid, and let us denote by w : R ′ → R the projection. The trivial
groupoid R ′ ×S′ R ′ ⇒ R ′ takes place in a diagramme

R ′ ×S′ R ′ // //

w◦pr1
��

R ′

��

// S ′

R
// // X

that defines the sought-for point f(c) ∈ Y (S ′). It is clear that the morphism f is fppf,
because its fibre at an object T ′ as above is representable by the S ′-stack X ′ which is
fppf by construction.
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It only remains to prove that f : X → Y is a quotient of R ⇒X . Let g : X → Z
be a morphism of S-algebraic stacks and β : g ◦ s⇒ g ◦ t a 2-isomorphism. Let T ′ be an
objet of Y (S ′). By definition of Y , we have a 2-commutative diagramme:

R ′
s′ //

t′
//

w

��

X ′

v

��

ϕ // S ′

u

��

h

��
R

s //
t

// X
f //

g

44Y Z .

By composition of β : g ◦ s⇒ g ◦ t with w and using the 2-isomorphisms pri ◦w ⇒ v ◦ pri
with i = 1, 2, we obtain a 2-isomorphism β ∗ w : g ◦ v ◦ s′ ⇒ g ◦ v ◦ t′. But by definition
of Y , the fppf S ′-groupoid R ′ ⇒ X ′ is free and transitive i.e. it is the groupoid defined
by the fibres of the fppf morphism X ′ → S ′. According to part (1) of the theorem, it
follows that there is a unique pair (h′, γ′) composed of a morphism h′ : S ′ → Z and a
2-isomorphism γ′ : g ◦ v ⇒ h ◦ ϕ. For variable S ′, the collection of pairs (h′, γ′) defines a
pair h : Y → Z , γ : h ◦ f ⇒ g that gives a factorisation of (g, β). This finishes the proof
of (2).

3 Étale quotients of a stack and connected compo-

nents

The end of the first part will be devoted to a couple of results dealing with a quotient
problem, or more precisely a problem of representability for covariant functor: given a
flat, finitely presented S-scheme X, we wish to investigate representability for the functor
defined on the category of étale S-schemes by F (Y ) = HomS(X, Y ). As a matter of
fact, we introduce the object that represents F rather via its functor of points describing
the connected components of X above S. There is an interesting variant with irreducible
components. Besides, since we envision applications to the connected components of some
classifying stacks of curves, we start off with an S-algebraic stack X rather than a scheme.
This being said, the interest of our results is the same for schemes and stacks. In the
main, they all belong to the article Composantes connexes et irréductibles en familles [8].

3.1 Open connected components. Let S be a scheme or an algebraic space, and let
X be a flat finitely presented S-algebraic stack. We call open connected component X /S
(o.c.c. for short) a open substack C ⊂ X , flat and finitely presented over S, such that
for all géometric points s̄ ∈ S, the fibre Cs̄ ⊂ Xs̄ is a connected component. We denote
by π0(X /S) the functor on the category of S-schemes defined by:

π0(X /S)(T ) =
{

o.c.c. de X ×S T/T
}
.

Similarly we can define the notion of open irreducible component (o.i.c. for short) and
the associated functor Irr(X /S). By their definition π0(X /S) and Irr(X /S) are fppf
sheaves over S with open quasi-compact diagonal. Moreover as functors they are formally
étale, that is to say with vanishing deformation theory. Also noteworthy is the fact that
π0(X /S) is always representable by an étale quasi-compact algebraic space provided we
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restrict to a finite stratification S∗ of S by locally closed subschemes (see [8], lemmas
2.1.2, 2.1.3).

In order to prove that π0(X /S) is representable, it is crucial to be able to construct
o.c.c.’s. The simplest case where this is possible is the case where X → S has geomet-
rically reduced fibres, for then the classical result about the open connected component
along a section generalizes (see [8] 2.2.1). Interestingly, there is a similar result for ir-
reducible components: one shows that there is a largest open substack U ⊂ X whose
geometric points belong to a single irreducible component of their fibre, called unicompo-
nent locus, and one constructs the open irreducible component along a section included
in the unicomponent locus (see [8] 2.2.4). Using Artin’s representability criteria and the
theorem on quotients in 2.2, we prove:

Theorem. Let X be a flat, finitely presented S-algebraic stack with geometrically reduced
fibres.

(1) The functors π0(X /S) and Irr(X /S) are representable by étale, quasi-compact S-
algebraic spaces.

(2) Let R ⊂X ×X be the equivalence relation defined as the subcategory such that any
two points u, v : T →X are equivalent if and only if for all geometric points t : Spec(Ω)→
T , the points u(t) and v(t) lie in the same connected component of XΩ. This relation is
representable by the o.c.c. of X ×X along the diagonal section. Moreover, there exists a
morphism X → π0(X /S) allowing an identification of X with the universal o.c.c. and
an identification of π0(X /S) with the quotient X /R.

(3) Let S ⊂ U ×U be the equivalence relation on the unicomponent locus which is the
full subcategory such that the points u, v : T → U are equivalent if and only if for all
geometric points t : Spec(Ω)→ T , the points u(t) and v(t) lie in the same open irreducible
component of UΩ. This relation is representable by the o.i.c. of U ×U along the diagonal
section. Morever, there exists a morphism U → Irr(X /S) allowing an identification of
U with the universal o.i.c. and an identification of Irr(X /S) with the quotient U /S .

This is [8] 2.5.2. The description π0(X /S) = X /R permits to prove that π0(X /S) is
functorial in a very strong sense: each S-rational (resp. S-birational) map f : X 99K Y
induces a morphism (resp. an isomorphism) π0(f) : π0(X /S)→ π0(Y /S).

3.2 Open connected components in the proper case. When X → S is proper, flat
and finitely presented, we can say a bit more about π0(X /S). For all S-algebraic stacks
X and all points s ∈ S, let us write nX (s) the number of connected components of the
geometric fibre Xs̄. Case (ii) in the statement below was indicated to me by Laurent
Fargues ; this additional case of representability complements the results of [8].

Theorem. Let S be a scheme and X a proper, flat, finitely presented S-algebraic stack.
Suppose that one of the following assumptions is satisfied: (i) X → S has reduced ge-
ometris fibres, or (ii) the function nX is upper semi-continuous. Then, we have:

(1) The functor π0(X /S) is representable by a finite étale S-scheme.

(2) The description of π0(X /S) as the quotient X /R like in theorem 3.1 is valid without
modification.
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(3) Let us denote by X → St(X /S) → S the Stein factorisation. Then we have a
factorisation St(X /S) → π0(X /S) → S, where St(X /S) → π0(X /S) is a universal
homeomorphism, and an isomorphism in case (i).

Preuve : In case (i), everything is proven in [8] 2.5.2 and 3.2.5. Hence we focus on case
(ii).

(1) We repeat the proof of point (i) in Theorem 2.5.2 of [8], using Artin’s criteria. Let
us set F = π0(X /S). Like in loc. cit. we are reduced to showing that for each complete
noetherian local ring (R,m, k), the map F (R) → F (k) is bijective. Let (R′,m′, k′) be
a finite étale local extension of R such that all o.c.c.’s of Xk̄ are defined over k′. Let
Z1,k′ , . . .Zn,k′ be the o.c.c.’s de Xk′ . According to [EGA] III, prop. 5.5.1, there exist
open and closed substacks Z1, . . . ,Zn of XR′ such that Zi ⊗ k′ = Zi,k′ for all i. (The
proof of this result of [EGA] uses Grothendieck’s théorème d’existence des faisceaux, which
holds for algebraic stacks by Olsson [Ol], thm. 1.4.) As nX is upper semi-continuous,
we deduce that it is in fact constant on Spec(R′). Thus F (R′)→ F (k′) is a bijection. It
restricts to a bijection F (R) → F (k) for the o.c.c.’s defined over R. This completes the
proof that π0(X /S) is representable by an algebraic space. Furthermore we see using
Lemma 3.2.2 of [8] that the o.c.c.’s of X are proper over the base and hence closed in X .
It follows that π0(X /S) is separated, hence a scheme by [Kn] II.6.17, hence finite since
nX is locally constant.

(2) The proof of point (ii) of theorem 2.5.2 of [8] applies word for word.

(3) Since π0(X /S) is affine over S, the morphisms X → π0(X /S) factors through the
affine hull of X → S i.e. through St(X /S). It is clear that the morphism St(X /S) →
π0(X /S) is finite, surjective and radicial, and therefore a universal homeomorphism. �

3.3 Closed connected components. We continue with the flat finitely presented S-
algebraic stack X (but flatness will not be essential here). If X → S fails to fulfill one of
the conditions (i)-(ii) of 3.2, that is to say if it fails to have geometrically reduced fibres
and to be proper with constant function nX , then the sheaf π0(X /S) is not representable
in general. Still, in the proper case a relevant alternative is to consider closed connected
components (c.c.c. for short), which by definition are closed substacks C ⊂ X , flat and
finitely presented over S, such that for all geometric points s̄ ∈ S, the fibre Cs̄ ⊂ Xs̄

is supported by a connected component. We say that a c.c.c. is reduced if its fibres are
geometrically reduced. We write π0(X /S)f the functor of c.c.c.’s and π0(X /S)r the
subfunctor of reduced c.c.c.’s. We show:

Theorem. Let X be a proper finitely presented S-algebraic stack. Then, the func-
tor π0(X /S)f is representable by a formal locally finitely presented separated S-algebraic
space. The functor π0(X /S)r is representable by a formal quasi-finite separated S-scheme.

This result is [8] 3.2.1. For the proof, one relies on the ”Hilbert scheme” of X /S
– which really is a Hilbert space. Away from the proper case, representability of these
functors is probably uncommon. Here is one favourable situation: if X is a quasi-finite
S-algebraic space, there is a canonical isomorphism π0(X /S)r = X . Indeed, if C is a
reduced c.c.c. of X /S, then its geometric fibres are reduced points and it follows that
C → S is étale of degree 1, hence a section de X /S. This is used in 3.4 below.
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3.4 Application to the connected-étale sequence of group schemes. Let Et/S
be the category of étale S-group algebraic spaces. For all flat finitely presented S-group
schemes (or S-group spaces) G, we define a covariant functor F : Et/S → Ens by the
formula:

F (H) = HomS-Gr(G,H).

If this functor is representable, we denote the representing algebraic space by Gét and we
call it the biggest étale quotient of G. It is a classical fact that if S is the spectrum of a
henselian local ring and G is proper or affine, then there is a biggest étale quotient: it is
just the spectrum of the biggest étale subalgebra of the ring of global functions of G. The
kernel G0 = ker(G → Gét) is the connected component of the unit of the special fibre,
open and closed in G, and we have the connected-étale exact sequence

1 −→ G0 −→ G −→ Gét −→ 1.

Keeping in mind the example of the group scheme µp over the ring of p-adic integers Zp,
having µét

p = 1, we observe that the formation of these objects does not commute with
a change of henselian (possibly finite flat) base ring, and that G0 may differ from the
connected component along the unit section (i.e. the union of the connected components
of the units in the fibres).

Our results above allow to obtain such an exact sequence over an arbitrary base S.
For this we have to add more assumptions, but we are rewarded by better properties.
More precisely, let G be a plat finitely presented S-group scheme (or S-group space), and
assume that one of the following assumptions is satisfied:

(i) G is smooth over S,

(ii) G is proper over S and the function nG is upper semi-continuous.

Then the results above show that the connected component of G along the unit section is
a normal open subgroup space G0 ⊂ G and the functor Gét := π0(G/S) is representable.
Moreover Gét is an S-group space since π0 commutes with products. Hence we have the
connected-étale sequence 1 → G0 → G → Gét → 1 all whose terms have formation
commuting with base change on S.

Note that over the base scheme S = Spec(Zp), the group scheme G = µp,S satisfies
neither (i) nor (ii). For this group, the scheme of reduced c.c.c. is π0(G/S)r = G. This
fits into a natural exact sequence 1 → ker → G → π0(G/S)r → 1, but it is not on
the ”good” side of G in view of the connected-étale sequence defined previously over a
henselian base...

3.5 Application to moduli spaces of curves. The main motivation for my work
on families of components was to answer some questions asked by Pierre Lochak on a
concrete example. In the moduli space of curves of genus g, let Mg(G) ⊂ Mg be the
locus of curves that admit an action of the (fixed) finite group G. Now ask, how do
the irreducible components of the fibres of Mg(G) vary at the different primes? Does
their number vary? Does a given component have a sort of ”ring of definition”, a finite
extension of Z?

Over the open set S = D(30|G|) ⊂ Spec(Z), we may answer these questions quite
easily using functoriality of π0 and the stable compactification of the Hurwitz stack of

17



curves with G action, as presented in Section 7. The factor 30 owes its presence to the
existence of curves with extra automorphisms: for instance the factor 2 is related to
hyperelliptic curves (we refer to the proof of [8], prop. 3.4.1 for more details on this
point). More specifically, let us denote by Hg,G (resp. H̄g,G) the classifying stack of
smooth (resp. stable) projective genus g curves C → T with a faithful (stable) action
ρ : GT ↪→ AutT (C). The stack H̄g,G is a smooth S-compactification of Hg,G. The group
Aut(G) acts upon these stacks by precomposition on ρ, and we write

H ′
g,G = Hg,G/Aut(G), H̄ ′

g,G = H̄g,G/Aut(G)

the quotient stacks. Due to the properties of the quotient by finite étale groups, these
S-stacks are smooth (see Theorem 2.2 and Remark (ii) after it) and H̄ ′

g,G is proper. For
a generic curve C in Mg(G), we have Aut(C) = G (except for a little problem with extra
automorphisms as we said before, but this is easily fixed). It follows that two actions of G
differ by an element of Aut(G). In this way one proves that H ′

g,G →Mg(G) is birational.
Using smoothness of H ′

g,G and functoriality for the S-birational morphisms

Mg(G)
α←−H ′

g,G

β−→ H̄ ′
g,G,

we end up with

Irr(Mg(G)/S) = Irr(H ′
g,G/S) by functoriality for α,

= π0(H ′
g,G/S) by smoothness,

= π0(H̄ ′
g,G/S) by functoriality for β.

Theorem 3.2 shows that the latter functor is a finite étale S-scheme.
If CΩ is an irreducible component of Mg(G)Ω over an algebraically closed field Ω, it

determines a geometric point Spec(Ω) → Irr(Mg(G)/S). The connected component of
this point is a finite étale connected S-scheme, which is the spectrum of a finite extension
of Z[1/(30|G|)]. This ring deserves the name of a ”ring of definition” for CΩ.
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Part II

Models of group schemes

In this part, we present some results on integral models of finite group schemes defined over
the fraction field of a discrete valuation ring R = (R,K, k, π). The situation of interest is
when the order of the group is a multiple of the residue characteristic p = char(k). When
such a group is given together with an action on the generic fibre of an R-scheme X, we
look for models acting on X.

For example, if R contains a primitive p-th root of unity ζ, let us consider the action
of the group GK = (Z/pZ)K on the generic fibre of the affine line X = A1

R given by the
homotheties ζ i. This action extends to X in two natural ways: the first is an action of
G = (Z/pZ)R and the second is an action of G′ = µp,R. On the special fibre, the action
of Gk is trivial whereas the action of G′k is faithful. These two group actions show the
typical choice that we have to make. Here, it is of course the model G′ that we shall
prefer.

In order to treat situations where no properness assumption is available, we introduced
the use of the notion of purity. It seems to be the optimal condition to put on schemes
that are acted upon in order to obtain the existence of finite flat models acting faithfully,
like the group G′ above. This is discussed in Section 5. As a preliminary, we give in
Section 4 some definitions and elementary properties of pure schemes. Finally in Section 6
we investigate the models of the group scheme of pn-th roots of unity, one of the most
important groups in Arithmetic and Geometry.

4 Pure schemes

The notion of purity of morphisms of schemes was introduced in his doctoral thesis by
M. Raynaud in the search for criteria of cohomological flatness under weaker assumptions
than properness (see [R], e.g. II.2.11 and III.1.4). By definition, a morphism locally of
finite type f : X → S is pure if and only if it is so after restriction to the henselisations
of all points s ∈ S, so it is enough to set:

Definition. Let S be a local henselian scheme. We say that a morphism locally of finite
type f : X → S is pure if the closure of any point x ∈ X which is an associated point in
its fibre Xs (s = f(x)) meets the closed fibre.

The definition extends to algebraic stacks ([8], Annexe B). A morphism which is
proper, or fppf with geometrically irreducible fibres without embedded components, is
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pure. Purity was also used by Raynaud and Gruson as a key ingredient to describe
in geometric terms the relations between flatness and projectivity: a finitely presented
algebra which is flat and pure is a projective module (see [RG], 3.3.5). This fact is crucial
to prove the existence of certain scheme-theoretic closures over a discrete valuation ring
in the work Effective models of group schemes [7] which is further described in Section 5.

In several occasions, I have had to prove that such-and-such classical property of
proper morphisms extends to pure morphisms. Here are three examples. The first one is
the property of faithfulness of the formal completion functor.

Proposition. Let A be a noetherian adic ring, I an ideal of definition, S = Spec(A),
S0 = Spec(A/I). Let X → S, Y → S be morphisms of finite type with X pure and

Y separated, and let Ŝ, X̂, Ŷ be the completions of S,X, Y along S0, X0 = X ×S S0,
Y0 = Y ×S S0 respectively. Then the formal completion map

HomS(X, Y ) −→ HomŜ(X̂, Ŷ ) , f 7→ f̂

is injective.

In the proper case this is proven in [EGA], III1, 5.4.1. In the pure case, this is proven
in [7], 2.1.9 (the result is stated there in the case where A is discrete valuation ring but
this assumption is not used in the proof). Of course, in the proper case the difficult
point is the surjection: it requires to use Grothendieck’s existence theorem. There is no
analogue in the pure case. The second example concerns some properties of the fibres of
morphisms:

Theorem. Let X → S be a finitely presented, flat and pure morphism of algebraic
stacks. Let n > 1 be an integer. Then the following sets are open in |S |:

(i) the set of those s ∈ |S | such that Xs is geometrically reduced,

(ii) the set of those s ∈ |S | such that the geometric fibre Xs̄ is reduced with at most n
connected components,

(iii) the set of those s ∈ |S | such that the geometric fibre Xs̄ is reduced with at most n
irreducible components.

The reader will find some conventions about the fibres of morphisms of algebraic stacks
in [8], annexe A.1. In the proper case this statement is in [EGA] IV3 12.2 and in the pure
case this is in [7], th. 2.2.1 and [8], th. B.4. The third example is about the representability
of the Weil restriction functor of closed subschemes:

Theorem. Let h : X → S be a finitely presented, flat and pure morphism of schemes and
Z ↪→ X a closed immersion. Then the Weil restriction h∗Z is representable by a closed
subscheme of S.

In the proper case, this is a consequence of Grothendieck’s and Artin’s theorems on
representability of the Hilbert functor (see for example [Ar], § 6). In the pure case, this is
proven in Appendix B.3 of the article Moduli of Galois p-covers in mixed characteristics [9].
This result has a big number of classical corollaries to representability of various equalizers,
kernels, centralizers, normalizers, etc.
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5 Effective models of finite flat group schemes

Let R = (R,K, k, π) be a discrete valuation ring with residue characteristic p. It is known
that each covering fK : YK → XK between projective, smooth, geometrically connected
K-curves extends after a finite extension of K to to a morphism between semi-stable
curves f : X → Y . If fK is Galois with group G, we can choose X stable, endowed with
an action of G, and Y = X/G. When p divides the order of G, we can not avoid the
apparition of inseparability in some components of the special fibre. One of our aims is
to understand this inseparability. When G is cyclic of order p, an easy local computation
shows that on the components where it is inseparable, the morphism fk is generically a
torsor under one of the group schemes µp or αp. In his thesis [He], Henrio characterized
the special fibres fk : Xk → Yk in terms of the combinatorial data given by these torsors
(encoded by logarithmic or exact differential forms on the components), called a Hurwitz
tree.

When the p-adic valuation of |G| is at least 2, the situation is far more complicated.
Let us consider the generic point ξ of an irreducible component of Xk. It is not clear a
priori that there should exist a natural group scheme G′ acting on a neighbourhood of ξ
(we shall show that this is true), and that the morphism fk is locally a torsor under this
group (this however is not always true). If we remove from X the irreducible components
of Xk whose generic points are not in the G-orbit of ξ, we get an open X ′ that although
not proper is pure over R. In order to show that there exists a group G′ acting faithfully
on X ′, called the effective model, we established the following general result (see the article
Effective models of group schemes [7], th. A or th. 4.3.5).

Theorem. Let X be an R-scheme which is finitely presented, separated, flat and pure.
Let G be a finite flat group scheme acting on X, faithfully on the generic fibre. Then, the
scheme-theoretic image of G in AutR(X) is representable by a finite flat group scheme G′.

The strength of this result lies in the fact that when X is not proper, the sheaf
AutR(X) is not representable by a scheme or an algebraic space a priori. However there is
a well-defined notion of scheme-theoretic closure, which gives meaning to the statement.
We also point out that in [7] we establish generalisations (e.g. to more general finite type
group schemes G, when X is affine) and variants (for formal schemes) that will not be
mentioned here.

One of the main arguments of the proof is an amalgame property of finite flat sub-
schemes of a pure scheme (see [7], 3.2.5 and 3.2.6).

Theorem. Let R be a henselian discrete valuation ring. Let X be an R-scheme locally of
finite type, flat and pure. Then, the family of closed subschemes Zλ ⊂ X finite flat over
R is R-universally schematically dense. Moreover, for all diagrammes in solid arrows

qZλ,K //

��

XK

��

��1
11

11
11

11
11

11
11

qZλ //

))RRRRRRRRRRRRRRRRR X

!!
Y

21



with Y separated over R, there exists a unique morphism X → Y making the full dia-
gramme commutative.

Once we have this amalgame theorem, we can give an idea of the proof of existence
of the effective model in the previous theorem. For each closed subscheme Zλ ⊂ X which
is G-stable and finite flat over R, the existence of an effective model G′λ for the action on
Zλ is easy. By a noetherian argument, one proves that the G′λ are dominated by one of
them, that we shall denote G′. The only thing left to prove is that G′ acts on X, and this
is a consequence of the amalgame property with X, Y and Zλ equal to G × X, X and
G′ × Zλ respectively.

Let us come back to the original problem of describing the reduction of a Galois cover
f : X → Y in the neighbourhood of a generic point ξ of the special fibre. Once we
have the existence of a model G → G′ acting faithfully in a neighbourhood of the orbit
of ξ, we want to describe this action: is it free at the point ξ? Does it have a relation
with some sort of ”ramification” of the morphism fk? Can one construct Hurwitz trees
analogue to Henrio’s? The first bits of information available are given by examples for
the cyclic group of order p2. Let us mention three points.

(1) In the case of equal characteristic, one finds in [7], 5.2.4 an example of a Galois étale
cover with group Z/p2Z of the affine line A1

K , over a valued field of characteristic p, whose
reduction is finite flat of degree p2 above the affine line A1

k, endowed with a faithful action
of the group G′k = (αp)

2. On the special fibre, each point has a stabilizer of order p, which
shows that there is no torsor structure even at the generic point.

(2) In the case of unequal characteristics, D. Tossici goes much further in his thesis.
First of all, he classifies the models of the group scheme µp2,K ([To2]). Then, over a
base ring R containing a primitive p2-th root of unity, he considers extensions of a torsor
YK → XK under the group G = Z/p2Z into a finite G-invariant morphism h : Y → X.
Assuming X, Y affine normal flat with integral fibres over R and Pic(XK)[p2] = 0, for each
h : Y → X he defines four integral invariants j, γ1, γ2, κ ∈ Z that determine explicitly
the effective model G′ of the reduction of the action: γ1 and γ2 give the effective models
of the intermediary quotients of degree p; the pair (κ, γ2) describes G′; finally j is related
to the particular cover YK (see [To1], 6.2.1 for a more precise statement). Then he goes
on to characterize the case where the reduction is a torsor by the equality κ = γ1, and
provides examples where this is not the case ([To1], 6.2.11).

(3) A construction of Hurwitz trees of an arbitrary finite groupG was given by L. H. Brewis
and S. Wewers in the paper [BW]. This allows them to find new obstructions the problem
of lifting actions from characteristic p to characteristic 0. However, these trees contain
no differential data analogous to Henrio’s logarithmic or exact forms, that is to say no
information on the degeneration of the group. It would be interesting to add to these
trees some information on the local effective models of the group, and to use them in
order to study the lifting problem.
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6 Models and Kummer-type exact sequences

The study of degenerations of Galois coverings, like in the previous section, puts in the
forefront the integral models of the Galois group. In the present section, our main aim is
to explain our approach to study the finite flat models of the group scheme µpn of pn-th
roots of unity over a complete discrete valuation ring of unequal characteristics (0, p).

First and foremost, let us insist on our point of view. Our interest for a given finite flat
group scheme G → S comes to a large extent on the interest for the coverings of which
it is the structure group. Thus when it is possible, we wish to have a good knowledge
of the group together with an ”explicit” description of the coverings, typical inspiration
being given by Kummer theory for the group µn and by Artin-Schreier-Witt theory for
the group Z/pnZ in characteristic p. So given a finite flat group scheme G→ S, we wish
to see it as the kernel of an isogeny between smooth affine groups. In this connection, we
emphasize that in the commutative case, the resolution of a finite flat group scheme by
abelian schemes given by Raynaud’s embedding theorem [BBM] 3.1.1, or the ”standard
smooth resolution” by affine smooth groups of Bégueri [Be] 2.2.1, do not seem to be
well-suited to the computations we contemplate doing.

6.1 Kummer-type sequences for group schemes of order p. Let S be a scheme
and G→ S a finite locally free group scheme of order p. Under a fairly weak assumption,
we can put G inside an exact sequence alike to the ones described before. In order to
give a precise statement of this result, we use the notion of full set of sections taken from
Katz-Mazur [KM] 1.8 or to [9] 1.1 to which we refer. Let us say that a morphism of
group schemes γ : (Z/pZ)S → G is a generator if the γ(i), 0 6 i 6 p − 1, form a full set
of sections. For example, the trivial morphism (Z/pZ)S → µp,S is a generator if S has
characteristic p. Let us say that a morphism κ : G→ µp,S is a cogenerator if the Cartier
dual (Z/pZ)S → G∨ is a generator.

Theorem. Let S be a scheme and G → S a finite locally free group scheme of order p.
Let κ : G→ µp,S be a cogenerator. Then κ can be canonically inserted into a commutative
diagramme with exact rows

0 // G //

κ

��

G
ϕκ //

��

G ′

��

// 0

0 // µp,S // Gm,S
p // Gm,S

// 0

where ϕκ : G → G ′ is an isogeny between affine smooth one-dimensional S-group schemes
with geometrically connected fibres.

This result is the topic of Appendix A in the article Moduli of Galois p-covers in mixed
characteristics [9]. The proof proceeds by constructing a family of group schemes of order p
denoted HM

λ,µ defined as kernels of certain isogenies, and giving a correspondence between
the triples of parameters (M,λ, µ) and the triples (L, a, b) of the Tate-Oort classification,
where G = GL

a,b. The groups G and G ′ are in fact very explicit: they are global variants of

the groups G (λ) of Sekiguchi, Oort and Suwa [SOS]. Finally, we notice that the condition
of existence of a cogenerator is weak (it is always fulfilled after a finite locally free extension
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of the base of degree p− 1) but necessary: for example, if p > 3 and S is the spectrum of
the field Q(ζp−1) of (p− 1)-th roots of unity, then the group Z/pZ can not be embedded
into an affine smooth 1-dimensional group scheme. (Note that Q(ζp−1) is nothing but the
ring Λ⊗Z Q where Λ is the Tate-Oort ring, see [TO].)

6.2 Kummer-type sequences for the models of µpn. Let R be a discrete valuation
ring of unequal characteristics (0, p) and fraction field K. In the article Models of group
schemes of roots of unity [11] in collaboration with A. Mézard and D. Tossici, for all
integers n > 1 we construct a family of R-models of the group scheme µpn,K of pn-th roots
of unity, called Kumer group schemes. These are defined as kernels of some isogenies
between affine smooth n-dimensional group schemes. We believe that all models of µpn,K
are Kummer, at least when R is complete with perfect residue field. It is not easy to
extract a single statement that would give a fair summary of this work; we prefer to
describe briefly the three main steps of our work.

First step. First of all, we translate in concrete terms, in the case of models of µpn,K ,
the Breuil-Kisin classification (stemming from [Br] and [Ki]) of finite flat commutative
p-groups over R in terms of semilinear modules. This classification holds for a perfect
residue field k and a complete totally ramified extension of the ring of Witt vectors
R/W (k). The result is a classification of models in terms of certain matrices with entries
in the polynomial ring k[u], which is this context must be seen as a subring of the discrete
valuation ring k[[u]]. This is Theorem 4.2.2 in [11].

Second step. Then, we construct the Kummer group schemes. For this we recall the
construction due to Sekiguchi and Suwa of filtered groups, that are affine smooth iterated
extensions of the groups

Gλ = Spec(R[x, (1 + λx)−1]) = ker(Gm,R → i∗Gm,R/λ),

where i stands for the closed immersion Spec(R/λ) ↪→ Spec(R) and the kernel is taken
in the category of fppf sheaves on the small fppf site of Spec(R). (The groups Gλ are
natural because they are exactly the smooth models with connected fibres of Gm,K .)
After a description of the construction of these extensions in terms of certain generalized
Artin-Hasse exponentials in sections 4 and 5 of [SeSu], Sekiguchi and Suwa specialize the
parameters of their construction in sections 8 and 9 of [SeSu] in order to reach their goal:
the unification of the Kummer and Artin-Schreier-Witt exact sequences. In contrast, for
the construction of Kummer groups we do not specialize the parameters; thus we have
to give the congruence conditions on these parameters that ensure that the morphisms
produced in this way are isogenies, i.e. have finite flat kernel.

We obtain some finite flat models of µpn,K , that we call Kummer groups, parameterized
by matrices with entries in the ring W (R) of Witt vectors with coefficients in R. This
is Theorem 7.2.1 in [11]. We remark that the construction of Kummer groups does not
require the discrete valuation ring R to be complete with perfect residue field; in fact
the process may be carried on over an almost general base, as we explain in the article
Sekiguchi-Suwa Theory revisited [10] (see notably Th. 5.2.7).
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Third step. Finally, we compare Breuil-Kisin modules and Kummer models. The compar-
ison is done through the corresponding matrices on either side. The main difficulty comes
from the fact that the matrices on the Breuil-Kisin module side have entries in a ring of
characteristic p whereas the matrices on the Kummer group side have entries in a ring of
characteristic 0. One further difficulty is that the matrices on the Breuil-Kisin side are
in bijection with the models of µpn,K whereas the matrices on the other side only surject
to the Kummer groups. Put differently, we do not know how to construct a convenient
”distinguished” matrix defining a Kummer group. However, we propose a map that is a
candidate to settle a correspondence between the sets of matrices on either side. More
precisely, we exhibit a mapping k[[u]] → R, c 7→ c∗ (non-additive, non-multiplicative)
and to each matrix A = (aij) with entries in k[[u]], we attach the matrix A∗ = ([a∗ij])
with entries in W (R) obtained by taking the Teichmüller representatives of the a∗ij. Our
desired goal is to see that A is the matrice of a Breuil-Kisin module if and only if A∗ is
the matrix of a Kummer group. We check this for n = 2 (see [11] 8.2.6), and also for
n = 3 (see [11] 8.3.5) under a supplementary assumption on the valuations of certains
differents, which amounts to restricting to some components of the k-variety that plays
the role of a moduli space for the models of µpn,K .

We conjecture that each model of µpn,K is a Kummer group. Our initial hope was to
use Breuil-Kisin modules so as to obtain this result. At present, we rather believe that
our ideas may allow us to prove this conjecture independently and a posteriori to compute
the Breuil-Kisin module of a model of µpn,K given as a Kummer group. That would be
one of the first non-trivial examples of computation of a Breuil-Kisin module.
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Part III

Moduli spaces of coverings

Let us recall from the introduction that the donkey has its motivation: the carrot, and
we have ours: the wish to understand the reduction at p of the proper moduli spaces
H̄ = H̄g,G of Galois covers of curves. It is interesting also to widen our horizons and
recall why it is desirable in general to have a proper moduli space, that is, to have a
compactification for the algebraic stack Hg,G classifying covers between smooth curves.
Over a base field, having a proper variety (or a proper stack) allows to do intersection
theory. Over the ring of integers of a local field, it allows to study the question of a
(smooth) variety: indeed, if the situation has no other particularity like a group law, the
constraint of properness ensures that a model is unique, hence meaningful and useful.
Finally, over a more general base, compactifying allows to study some global or local
invariants of the fibres, like in the proof of the irreducibility of the moduli space of curves
by Deligne and Mumford. In this part of the report, these three occurrences of properness
will be considered – and in fact have already been considered in 3.5.

It is essential to remark that in the course of the study of coverings and their moduli
spaces, the representations of the group G are ubiquitous:

- via differential geometry objects like tangent spaces, spaces of differential forms,
spaces of jets and ramification theory,

- via algebraic topology objects coming in particular from sheaf cohomology, since the
cohomology of the cotangent complex controls the local structure of moduli spaces.

This explains the importance of the representation theory of G. At all characteristics
prime to its order, the group G is semisimple and its representation theory is essentially
the same (see Serre [Se], 15.5). It follows that over the ring Z[1/|G|], the geometry of
Hurwitz spaces is essentially the same at all residue characteristics, which by the way does
not mean that this is always easy to verify. In this case, we have a nice compactification
using covers of stable curves. Our results in this case are summarized in Section 7.
In contrast, at all characteristics p > 0 that divide the order of G, the existence of
good compactifications remains open; if one manages to construct one, its geometry and
arithmetic will necessarily be very different from what happens in characteristic 0. Our
results concerning this case are presented in Section 8.
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7 Galois group whose order is invertible on the base

In the text Champs de Hurwitz [4] in collaboration with J. Bertin, we present a complete
study of Hurwitz spaces classifying covers of algebraic curves under the following assump-
tion: the order of the Galois groups of all coverings or of their Galois closures is invertible
in the base fields. This topic was taken up by other authors including Ekedahl [Ek] or
Abramovich, Corti and Vistoli [ACV] who see it as a particular case of moduli spaces
of stable maps. Our work includes the construction of these stacks, their compactifica-
tion, the combinatorial description of their boundary, some significant examples including
curves with level structure, and some intersection computations. Here we can hardly give
more than a broad overview of the text, and a selection of some of the main results. For
clarity of the presentation, we will single out three stages in the text [4]: the definitions
about families of coverings; the construction of Hurwitz stacks and various examples; the
enumerative geometry of Hurwitz stacks.

7.1 Definitions about families of coverings. In Sections 1 to 5, we present various
definitions and basic results on coverings of smooth or nodal curves, their ramification,
their families, their deformations. Over a base field k, the typical object of study is an
algebraic curve C which is stable in the sense of Deligne and Mumford [DeMu], endowed
with an admissible action of a finite group G, which means that any element g ∈ G that
fixes a node without switching the branches acts on the tangent spaces by mutually inverse
characters. Overall these sections put together things that are known, except maybe for
two of them:

(1) the fact that a finite big enough number of m-canonical G-representations H0(C, ω⊗mC/k)
suffices to determine the ramification of the l’action: we call this the ”inversion” of the
Chevalley-Weil formula ([4], thm. 3.2.2 and prop. 4.2.5),

(2) the precise study of the collision of ramification points in a family and the role of
automorphisms that switch the branches ([4], thm. 4.2.2).

7.2 Construction of Hurwitz stacks and examples. In Sections 6 to 9, we construct
various Hurwitz stacks. This is the heart of our work. Let us fix an integer g, a finite
group G and a ramification datum ξ (a notion which is defined in [4] 2.2.1). We show
that the stack H̄g,G,ξ whose objects are families of stable curves of genus g endowed with
a faithful admissible action of G with ramification ξ is an algebraic Deligne-Mumford
stack, proper and smooth over Z[1/|G|], containing the stack Hg,G,ξ of smooth curves as
an open relatively dense substack ([4], thm. 6.3.1). It has a coarse mioduli space which is
projective and normal. If it is convenient, one can also consider the ramification divisor
as a marking in order to ensure that it stays in the smooth locus. The construction of
numerous known moduli spaces reduce to that of H̄g,G,ξ:

(1) non-Galois coverings: for a covering of smooth curves C → D, the triplem = (G,H, ξ)
composed of the Galois groups G = Gal(Z/D), H = Gal(Z/C) and the ramification
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datum of G acting on Z, is independent of the choice of a Galois closure Z → C. We call
it the monodromy type. We set

Aut(m) = {θ ∈ Aut(G), θ(H) = H et θ(ξ) = ξ}

and ∆(m) = Aut(m)/H, where the ramification datum θ(ξ) has an obvious definition
that the reader may find after Proposition 2.2.3 in [4]. We show that the stack Hg,g′,m

classifying coverings between smooth curves of genera g and g′ with fixed monodromy
equal to m is isomorphic to the quotient stack Hg,G,ξ/∆(m) ([4], thm. 6.6.6). Thus it has
a natural smooth compactification H̄g,g′,m := H̄g,G,ξ/∆(m).

(2) level structures: we show that the stack GM 0
g classifying smooth curves endowed

with a Teichmüller structure of level G (as defined in Deligne and Mumford [DeMu], 5.7,
5.8) is isomorphic to the rigidified stack Hh,G,0(Z(G), where h is defined by the equality
h−1 = |G|(g−1) and Z(G) is the centre of G. (The process of rigidification denoted by the
symbol ”( ” is described in [ACV], 5.1.1). Thus it has a natural smooth compactification

GM̄g := H̄h,G,0 ( Z(G) ([4], thm. 8.2.2 and rem. 8.2.3). This compactification has a
proper birational morphism (which is not representable in general) to the normalization

GMg (which is not smooth in general) defined by Deligne and Mumford.

(3) curves with symmetries: the substack Mg(G) ⊂Mg composed of curves admitting an
action of the group G (studied among others by González-Dı́ez and Harvey [GDH]) is a
closed substack, which is singular and reducible in general. We show that its normalization
is isomorphic to a disjoint sum of stacks of the form Hg,G,ξ/Aut(G), so that in particular
it is smooth (see a more precise description in [8] 3.4.1). Thus the closure M̄g(G) of
Mg(G) in M̄g has a natural proper desingularization, a disjoint sum of stacks of the form
H̄g,G,ξ/Aut(G). The functor of irreducible components of Mg(G) is a finite étale scheme
over Z[1/(30|G|)], as we saw in 3.5.

7.3 Enumerative geometry of Hurwitz stacks. In Section 10, following the strategy
initiated by Mumford [Mu], we study the tautological classes in the Chow ring of the
Hurwitz stack H̄g,G,ξ and the tautological relations between them. Here a crucial role is
played by the correspondence

M̄g′,b ←− H̄g,G,ξ −→ M̄g,r

where the left arrow maps a curves with action (C,G) to the quotient curve C/G marked
by the branch points, and the right arrow maps (C,G) to the curve C marked by the
ramification points. Because of the action of the group G, we obtain plenty of tautological
classes by considering isotypical components of preimages of the tautological bundles living
on M̄g,r. Let us state simply two results.

(1) In the Picard group, the Riemann-Hurwitz relation gives an expression of the canon-
ical sheaf of the universal curve C̄g,G,ξ in terms of the preimage of the canonical sheaf
of the universal curve C̄g′,b and of certain classes coming from the ramification. Taking
powers of this relation in the Chow ring, we get higher Riemann-Hurwitz formulas that
give expressions of κ classes (direct images of Chern classes of the Hodge bundle on the
universal curve) coming from M̄g,r in terms of those coming M̄g′,b and classes coming
from the normal sheaf along the ramification ([4], thm. 10.3.4).
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(2) Applying the Grothendieck-Riemann-Roch theorem, we compute the Chern character
of the bundle defined by the branch locus of the coverings on the universal curve of
genus g′ (or better on a modification of the universal curve where the branch divisor
becomes Cartier). The result gives this character as a function of the ψ classes (defined
by the morphisms of evaluation at the marked sections) and the κ classes. We refer to
[4], thm 10.4.1 for a precise statement.

8 Galois group whose order is not invertible

8.1 An example : Potts curves. In genus g > 2, very few examples are available
where stacks of Galois coverings of curves are studied thoroughly at the characteristics
that divide the order of the Galois group. It may therefore be useful to recall that in my
Ph.D. thesis I worked out the example of some Galois smooth coverings of genus p− 1 of
the projective line, with dihedral Galois group G = Dp, called Potts curves. It is shown
in [1] that:

(1) the stack of Potts curves is a Deligne-Mumford stack of dimension 1,

(2) the formation of its coarse moduli space commutes with passage to the fibre at p,

(3) the fibre at p is an étale gerbe over its moduli space.

8.2 The stack of p-torsors. Let R = (R,K, k, π) be a discrete valuation ring. As we
said already in Section 5, a torsor YK → XK under the group G = Z/pZ, let us say in
characteristic 0 to fix ideas, may be extended on a non-empty open set over R to a torsor
Y → X under one of the three groups of order p, namely Z/pZ, µp or αp. However if for
instance XK and YK are proper and we insist to extend them into proper R-schemes, then
in general we can at best extend the torsor structure in a neighbourhood of the generic
points of the special fibre. A necessary condition is to find a flat R-morphism Y → X,
and this is not always possible.

Let us now start out from a torsor YK → XK whose base and total space are smooth
curves. In order to extend it, we can choose the stable model Y of YK and the quotient
X = Y/G (after a finite extension of the base if needed). This morphism is not flat a
priori, but a crucial observation due to D. Abramovich is that we can modify the curve
X into a twisted curve X → X in a unique way so that Y → X lifts to a flat G-invariant
morphism. (We refer to [AOV], Section 2 for the definition of a twisted curve; let us simply
say that this is a one-dimensional Artin stack with finite linearly reductive stabilizers.)
Then we show that the scheme-theoretic image of the morphism GX → AutX (Y ) is a
finite flat X -group scheme G of degree p, and that Y →X is a torsor under G . Moreover
one checks that the morphism γ : GX → G is a generator in the sense that the p sections
γ(i), 0 6 i 6 p− 1, form a full set of sections of G (see [KM] 1.8 and Section 6.1).

If we include marked points, we are led to the following definition. We fix integers
g, h, n > 0 such that 2g − 2 + n > 0. Over a base scheme S, we call stable n-marked
p-torsor a triple composed of

(i) an n-marked twisted curve (X , {Σi}16i6n) of genus h,

29



(ii) a stable marked curve with étale markings (Y, {Pi}16i6n),

(iii) a finite locally free X -group scheme G of degree p endowed with a generator
γ : (Z/pZ)X → G ,

such that Y → X is a G -torsor and Pi = Σi ×X Y for all i. The category of n-marked
stable p-torsors (of genera g and h) is a Z-stack denoted STp,g,h,n. In a stable p-torsor,
the Pi have degree 1 or p above S. Those that have degree 1 (i.e. those that are sections)
correspond to ramification points of the morphism Y → X → X where X → X is the
coarse moduli space, and their number m is determined by the Riemann-Hurwitz formula
2g−2 = p(2h−2)+m(p−1). The others correspond to marked points, in number n−m.
In the article [9], in collaboration with D. Abramovich, we show the following result.

Theorem. The stack STp,g,h,n of n-marked stable p-torsors is a Deligne-Mumford stack
which is proper over Spec(Z).

The considerations that we gave as an introduction yielded a sketch of proof of the
valuative criterion for properness for STp,g,h,n, for the K-points that factor through the
locus of smooth p-torsors. This is however not enough to prove properness because these
may not be dense, and more work is needed in our paper [9].

8.3 The question of reduction at p of the Hurwitz stack. Over the ring Z[1/p],
let us compare the stack STp,g,h,n ⊗ Z[1/p] with the Hurwitz stacks of Section 7. In the
case of the group G = Z/pZ, the ramification datum reduces to the integer m equal to
the number of ramification points. It is not hard to see that the stack STp,g,h,n ⊗ Z[1/p]
is isomorphic to the Hurwitz stack H̄g,G,m,d of stable genus g curves endowed with an
admissible action of G ramified at m points, with d = n−m marked points. In order to
answer the question of reduction at p of the Hurwitz stacks H̄g,G,m,d, what we have to do
now is to study with more details the special fibre of STp,g,h,n. The deformation theory
splits into three steps: first deform the twisted curve X (this problem is unobstructed),
then the group scheme G → X , and finally the stable curve Y → X as a torsor. This
will be the topic of a further work; we hope for instance to be able to find in the fibre
at p some nice components, those containing the smooth curves, etc.

8.4 Galois groups of order divisible by p2. As a conclusion, we wish to point out
that the case of cyclic coverings of order p is particularly simple because of the fact that
the group Z/pZ has no nontrivial subgroup. As far as the Galois group G = Z/p2Z is
concerned (for example), things become significantly harder. It is plausible that in the
situation of 8.2, the scheme-theoretic image of the morphism GX → AutX (Y ) is again
a finite flat X -group scheme G of degree p2. However, we have many examples showing
that Y →X is not a torsor under G in general (we gave such examples in Section 5).

Another hope that one may have is that on the special fibre, the group Gk might be
constant at least on open sets (like what happens in degree p), that is to say of the form
G′k×Spec(k) Xk for a certain finite k-group G′k which is nothing else than (the special fibre
of) an effective model of G as constructed in the article [7], see Section 5. The examples
of Tossici’s article [To1] show that this is not the case: we give a counter-example below.
Thus much remains to be understood about these models, the variation of the stabilizers,
the ramification...
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8.5 An example. We give a counter-example in the local case – it is easy to extend it
to an affine curve. We omit some computations in order to keep the text at a reasonable
length. Let us take a discrete valuation ring R = (R,K, k, π) containing a primitive p2-th
root of unity ζ and set G = Z/p2Z. We denote by X = Spec(A) the localization of the
affine R-line at the origin of the special fibre, that is A = R[Z]m where m = (π, Z). We
choose integers γ1, γ2 > 2 such that v(p) > pγ1 = p2γ2 > 0, an element f ∈ A whose
reduction modulo π is invertible but not a p-th power, we set r = πγ2−1Z and g = 1+rpf .
Finally, for each γ 6 v(p)/(p− 1) we define Pγ(T ) = π−pγ((1 + πγT )p− 1) ∈ R[T ] and we
consider the finite morphism Y → X described inside A2

R ×X = Spec(A[T1, T2]) by the
equations :

Pγ1(T1) = f , Pγ2(T2) =

1+rpf
(1+rT1)p

(1 + πγ1T1)− 1

πpγ2
.

One checks that Y is normal, flat over R with integral fibres. On the generic fibre,
YK → XK is the G-torsor with equation

T p
2

= (1 + πpγ1f)gp

where T = (1+rT1)(1+πγ2T2). The G-action T 7→ ζT extends to Y . Set H(T1) = 1+rT1.
According to Theorem 6.2.1 in [To1], if p > 3 then the effective model of G is controlled
by the solutions a ∈ R of the equation, for variable m > γ1:

(4)m : aH(T1) ≡ πm−γ1H ′(T1) mod πγ2 .

In order to evaluate the invariant κ of [To1] 6.1.3, let us do m = γ1 i.e. look at the
equation

a(1 + rT1) ≡ r mod πγ2 .

If we consider the action of G over the discrete valuation ring R1 = R, this equation has no
solution and it follows that the associated invariant κ satisfies κ1 > γ1. Now let us call η
the generic point of Xk. Over the discrete valuation ring R2 = OX,η with uniformizer π,
the equation has the solution a = r ∈ R2. It follows that κ2 = γ1. According to [To1] 6.2.1,
the effective models G′1 and G′2 are different.
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