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Abstract For a split semisimple Chevalley group scheme G with Lie algebra g over an arbitrary base
scheme S, we consider the quotient of g by the adjoint action of G. We study in detail the structure
of g over S. Given a maximal torus T with Lie algebra t and associated Weyl group W , we show that
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g → g/G commutes, or does not commute, with base change on S.
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1. Introduction

Let G be a split semisimple Chevalley group scheme over a base scheme S and let g be
its Lie algebra. The quotient of g by the adjoint action of G in the category of schemes
affine over S, that is to say, the spectrum of the sheaf of G-invariant functions of g, is
traditionally called the adjoint quotient of g and denoted g/G. Let T ⊂ G be a maximal
torus and t its Lie algebra. There is an induced action of the Weyl group W = WT on t

and the inclusion t ⊂ g induces a natural morphism π : t/W → g/G. In this paper, we
call it the Chevalley morphism.

The situation where the base is the spectrum of an algebraically closed field whose
characteristic does not divide the order of the Weyl group is well documented. In this
case π is an isomorphism, as proven by Springer and Steinberg [16]. It is known also
that the adjoint quotient is an affine space (see [6,7,20]). There are counterexamples to
these statements when the characteristic divides the order of the Weyl group. Another
difficulty comes from the fact that we are considering the quotient g/ Ad(G) of the
Lie algebra, and not G/ Int(G), and at some point this derivation causes some trouble
(Steinberg [17, p. 51] was also led to the same conclusion).

In this paper, we turn our attention to the integral structure of the adjoint quotient
and the Chevalley morphism, including the characteristics that divide the order of W .
In other words we are interested in an arbitrary base scheme S, and in the behaviour of
the previous objects under base change S′ → S. It is not hard to extend the results from
simple to semisimple groups, so for simplicity we restrict to simple Chevalley groups.

Our main result (Theorems 3.6 and 3.11) is that in most cases the Chevalley morphism
is an isomorphism, therefore reducing the calculation of g/G to the calculation of a
quotient by a finite group.
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Theorem 1.1. Let G be a split simple Chevalley group scheme over a base scheme S.
Then the Chevalley morphism π : t/W → g/G is schematically dominant, and is an
isomorphism if G is not isomorphic to Sp2n, n � 1.

Note that even when the base is a field, this improves the known results. Our proof
follows a classical strategy. The main new inputs are over a base field, a close analysis of
the root systems and determination of the conditions of non-vanishing of the differentials
of the roots (Lemma 1.4), and over a general base, a careful control of the poles along
the singular locus for the relative meromorphic functions involved in the proof. We treat
separately the exceptional case (Theorem 6.6).

Theorem 1.2. If G = Sp2n then the Chevalley morphism is an isomorphism if and only
if the base has no 2-torsion. Moreover, over an open affine subscheme Spec(A) ⊂ S, the
ring of functions of g/G is

A[c2, c4, . . . , c2n],

where the functions c2i are the coefficients of the characteristic polynomial. The formation
of the adjoint quotient commutes with arbitrary base change.

We see that for G = Sp2n, the formation of the adjoint quotient commutes with base
change. If this was true for all split simple Chevalley groups, then we could deduce the
main Theorem 1.1 above from the case S = Spec(Z) which is significantly easier (see
Corollary 3.7). Unfortunately it is not always so, and in order to see this, we study in
detail the orthogonal groups in types B and D. Our main result is the following theorem
(the missing notation appearing in it is briefly defined after the statement and further
explained in § 4.2).

Theorem 1.3. If G = SO2n or G = SO2n+1 then over an open affine subscheme
Spec(A) ⊂ S, the ring of functions of g/G is the following.

(i) If G = SO2n: A[c2, c4, . . . , c2n−2, pf;x(π1)ε1 · · · (πn−1)εn−1 ], where x runs through
a set of generators of the 2-torsion ideal A[2] ⊂ A, and εi = 0 or 1, not all 0.

(ii) If G = SO2n+1: A[c2, c4, . . . , c2n; x(π1)ε1 · · · (πn)εn ], where x runs through a set of
generators of A[2] and εi = 0 or 1, not all 0.

The functions that appear in the preceding theorem are the coefficients of the charac-
teristic polynomial c2i, the Pfaffian pf and some functions πi which we call the coefficients
of the Pfaffian polynomial. The functions c2i and pf are invariant, but the functions πi

are invariant only after multiplication by a 2-torsion element. The definition of these
objets needs some care, since it is not always the straightforward definition one would
think of.

Using the theorem above, we prove that the formation of the adjoint quotient for the
orthogonal groups commutes with a base change f : S′ → S if and only if f∗S[2] =
S′[2], where S[2] is the closed subscheme defined by the ideal of 2-torsion. This holds in
particular if 2 is invertible in OS , or if 2 = 0 in OS , or if S′ → S is flat. We prove also
that if S is noetherian and connected then the quotient is of finite type over S, and is
flat over S if and only if S[2] = S or S[2] = ∅.
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We feel it useful to say that when we first decided to study the adjoint quotient over
a base other than a field, we started with some examples among the classical Chevalley
groups and considered their Lie algebras. To our surprise, already in the classical case
we could not find concrete descriptions of them in the existing literature (for example
the Lie algebra of PSLn over Z). This lead to our study of the classical Lie algebras
over arbitrary bases (§ 2.4). We also faced the problem of relating the Lie algebra of a
group scheme and of any finite quotient of it (§ 2.1); note that the results of § 2.1 hold
for any smooth group scheme, not necessarily affine over the base. Let us finally mention
that spin groups over Z have also been studied very recently in such a concrete way by
Ikai [12,13].

Here is the outline of the article. At the end of this section we give our notation and
prove a combinatorial lemma about root systems which is crucial throughout the paper.
In § 2 we give two dual exact sequences

0 → L ie(K)∨ → L ie(G)∨ → ω1
H/S → 0

and

0 → L ie(G) → L ie(K) → (ω1
H/S)† → 0

describing the relation between the Lie algebra of a smooth group scheme G and the
Lie algebra of a quotient K := G/H (see more precise assumptions in Propositions 2.2
and 2.7). Then we specialize to Chevalley groups and their Lie algebras over Z. We
describe their weight decomposition (§ 2.2), the intermediate quotients of G → Gad and
Lie(G) → Lie(Gad) (§ 2.3) and we illustrate our results by describing the classical Cheval-
ley Lie algebras (§ 2.4). In § 3 we prove Theorem 1.1 above. In the remaining sections
(§§ 4–6) we treat the examples of Theorems 1.2 and 1.3 above by computing explicitly
the map t/W → g/G (see Theorem 4.8, Corollary 4.9, Theorem 5.3 and Theorem 6.6).

1.1. General notation

All rings are commutative with unit. If A is a ring, we denote by A[2] its 2-torsion
ideal, defined by A[2] = {a ∈ A, 2a = 0}. If S is a scheme, we denote by S[2] its closed
subscheme defined by the 2-torsion ideal sheaf.

If X is an affine scheme over Spec(A) we always denote by A[X] its function ring.
If S is a scheme, X is a scheme over S, and T → S is a base change morphism, we

denote by X ×S T or simply XT the T -scheme obtained by base change. In all the article,
we call relative Cartier divisor of X over S an effective Cartier divisor in X which is flat
over S.

Finally, the linear dual of an OS-module F is denoted F∨ := HomOS
(F ,OS).

1.2. Notation on group schemes

Let S be a scheme and let G be a group scheme over S. We will use the following
standard notation: eG : S → G is the unit section of G/S; Ω1

G/S is the sheaf of relative
differential 1-forms of G/S; and ω1

G/S = e∗
GΩ1

G/S . Recall that Ω1
G/S = f∗ω1

G/S , where
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f : G → S is the structure map, so that Ω1
G/S is locally free over G if and only if ω1

G/S

is locally free over S.
We will write Lie(G/S) (or simply Lie(G)) for the Lie algebra of G/S, and L ie(G/S)

(or simply L ie(G)) for the sheaf of sections of Lie(G/S). Note that Lie(G/S) is the
vector bundle V(ω1

G/S), with the Grothendieck notation. Sometimes we shall also use
Gothic style letters for Lie algebras, like g, t, psl, so, etc.

By Chevalley group scheme over a scheme S, we mean a deployable reductive group
scheme over S, with the terminology of [8, Exposé XXII, Définition 1.13]. By [8,
Exposé XXIII, Corollaire 5.3], such a group is characterized up to isomorphism by its
type (as defined in [8, Exposé XXII, Définition 2.7]: this is essentially the root datum
together with a module included in the weight lattice and containing the root lattice)
and is equal to GS , where G is a Chevalley group scheme over the ring of integers.

1.3. Roots that are integer multiples of weights

The next lemma comes up at various places in the article. It has as a consequence the
fact that the differential of a root can vanish along the Lie algebra of a maximal torus
in a simple Chevalley group only in case this group is Sp2n (including Sp2 � SL2)—see
Lemma 2.13. This will be crucial throughout the article: Lemma 3.2, on which relies the
proof of Theorem 3.11, is again a consequence of this lemma, as well as the fact that a
simply connected Lie algebra is equal to its own derived algebra in all cases but sp2n,
see Proposition 2.11.

Lemma 1.4. Let R be a simple reduced root system, Q(R) the root lattice and P (R)
the weight lattice. Assume there exists α ∈ R, λ ∈ P (R), l ∈ N such that α = lλ and
l � 2. Then l = 2, and either R is of type A1, or R is of type Cn and α is a long root.

Proof. Let us assume that R is the root system defined in [5, Planches I–IX]. If R is of
type A1, then the roots are α = ε1 − ε2 and −α. Since ε1 − (ε1 + ε2)/2 = (ε1 − ε2)/2 is a
weight, α is indeed twice a weight. Now let us assume that R is of rank greater than 1.

The hypothesis of the lemma implies that

∀β ∈ R, 〈β∨, α〉 = l〈β∨, λ〉 ∈ lZ. (1.1)

Let β be a root. If α and β have the same length, by [5, VI, No. 1.3, Proposition 8],
〈β∨, α〉 ∈ {−1, 0, 1}. If moreover we know that 〈β∨, α〉 �= 0, we see that (1.1) cannot hold.
By [5, VI, No. 1, Proposition 15, p. 154], we can assume that α is a simple root. This
implies that in the Dynkin diagram of R, all edges containing the vertex corresponding
to α must be multiple edges.

This excludes all simply laced root systems, as well as the root system of type F4.
Moreover, if R is of type Bn with n � 3, then α has to equal αn, but since 〈α∨

n−1, αn〉 =
−1, we have a contradiction. If R is of type Cn, then α has to equal αn again. Since
αn = 2εn, we have indeed α ∈ lP (R) with l = 2. Since B2 = C2, the last case to be
settled is that of G2. But in this case Q(R) = P (R); since R is reduced, it is not possible
that a root be a multiple of a weight. �
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2. On the Lie algebra of Chevalley groups

2.1. Lie algebras of quotients and coverings

In this section, our aim is to relate the Lie algebra of a group G and the Lie algebra
of a quotient G/H. More precisely, we consider a scheme S, a flat S-group scheme of
finite presentation G, and a closed subgroup scheme H ⊂ G which is flat and of finite
presentation over S. These group schemes define sheaves for the fppf topology (recall
that fppf stands for faithfully flat of finite presentation). We assume that the quotient
fppf sheaf K := G/H is representable by a scheme; this is always the case for Chevalley
groups, because they are defined over Z and then one may apply [1, Theorem 4.C].

Remark 2.1. In general, it follows from a theorem of Artin that the quotient fppf sheaf
is representable by an algebraic space over S. Indeed, this claim is Zariski local on S

so one may check it for affine schemes S. If S is the spectrum of a ring of finite type
over Z, the result follows from Corollary 6.3 of [2]. In general, since G and H are of
finite presentation they are pullbacks of group schemes G0 and H0 over an affine scheme
S0 = Spec(A0), where A0 is a ring of finite type over Z, and we can apply the previous
case. Thus, the reader familiar with algebraic spaces may use the subsequent results in
this setting.

We let π : G → K denote the quotient morphism, and eK := π ◦ eG. We write Tan(K)
for the restriction of the tangent space along eK and Tan(K) for its sheaf of sections.

Proposition 2.2. Let G be a flat S-group scheme of finite presentation, H ⊂ G a closed
subgroup scheme which is flat and of finite presentation, and assume that the quotient
fppf sheaf K = G/H is representable by a scheme.

(1) There is a canonical exact sequence of quasi-coherent OS-modules:

ω1
K/S → ω1

G/S → ω1
H/S → 0,

where ω1
G/S → ω1

H/S is the natural map deduced from the inclusion H ⊂ G.

(2) Assume furthermore that G is smooth over S and that there is schematically dom-
inant morphism i : U → S such that H ×S U is smooth over U . Then, there is a
canonical exact sequence of coherent OS-modules:

0 → Tan(K)∨ → L ie(G)∨ → ω1
H/S → 0

and L ie(G)∨ → ω1
H/S is the natural map deduced from the inclusion H ⊂ G.

Typically, in the applications, U will be an open subscheme of S or the spectrum of
the local ring of a generic point.

Proof. (1) We have the fundamental exact sequence for differential 1-forms:

π∗Ω1
K/S → Ω1

G/S → Ω1
G/K → 0.
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By right exactness of the tensor product, the sequence remains exact after we pullback via
eG. The only thing left to prove is that there is a canonical isomorphism e∗

GΩ1
G/K � ω1

H/S .
In order to do so, we use the fact that G → K is an H-torsor, so that we have an
isomorphism t : H ×S G → G ×K G given by t(h, g) = (hg, g). We consider the fibre
square:

H ×S G
t �� G ×K G

pr2 ��

pr1
��

G

π

��
G

π �� K

Then, if we call f : H ×S G → H the projection, we have the sequence of isomorphisms
on H ×S G:

t∗ pr∗
1 Ω1

G/K � t∗Ω1
G×KG/G � Ω1

H×SG/G � f∗Ω1
H/S

(the first and the third isomorphisms come from the invariance of the module of relative
differentials by base change [9, IV.16.4.5]). Pulling back along eH ×eG, we get the desired
result. Moreover, following the identifications, we see that the map ω1

G/S → ω1
H/S is the

same as the map induced by the inclusion H ⊂ G.

(2) Since G is smooth over S and G → K is faithfully flat, then K is also smooth over
S. Hence M = ω1

K/S and N = ω1
G/S are locally free OS-modules of finite rank, so that

M � Tan(K)∨ and N � L ie(G)∨.

It remains to check that M → N is injective. This will follow from the diagram

i∗i
∗M � � �� i∗i∗N

M
��

��

�� N

��

if we describe the injective morphisms therein. Since i : U → S is schematically dominant
and M is flat, we have an injective morphism M → M ⊗ i∗OU and the target module
is isomorphic to i∗i

∗M by the projection formula. Besides, the morphism G ×S U →
G/H ×S U is smooth since H ×S U is smooth over U , so by the short exact sequence of
Ω1s for a smooth morphism, the morphism i∗M → i∗N is injective. By left exactness
the morphism i∗i

∗M → i∗i
∗N is injective also. �

If H is finite over S, like in the cases we have in mind, we can dualize the exact sequence
of Proposition 2.2 thanks to a Pontryagin duality for certain torsion modules, which we
now present. Let A be a commutative ring and let Q be the total quotient ring of A,
i.e. the localization with respect to the multiplicative set of non-zero divisors (in fact we
should better consider the module of global sections of the sheaf of total quotient rings
on Spec(A), but in this informal discussion it does not matter). We wish to associate to
any finitely presented torsion A-module M a dual M† = HomA(M, Q/A). For general
M this does not lead to nice properties such as biduality; for example, if A = k[x, y] is
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a polynomial ring in two variables and M = A/(x, y), it is easy to see that M† = 0.
In this example there is a presentation A2 → A → M → 0 but one can see that there
is no presentation An → Am → M → 0 with n = m. In fact, this is a consequence
of our results below. Note that the fact that M is torsion implies n � m, thus if we
can find a presentation with n = m it is natural to say that M has few relations. By
the structure theorem for modules over a principal ideal domain, all finite abelian groups
have few relations, and from our point of view, this is the crucial property of finite abelian
groups that makes Pontryagin duality work. These considerations explain the following
definition.

Definition 2.3. Let F be a coherent OS-module; denote by K the sheaf of total quotient
rings of OS . We say that F is a torsion module with few relations if F ⊗ K = 0 and F is
locally isomorphic to the cokernel of a morphism (OS)n → (OS)n for some n � 1.

We have the following easy characterization.

Proposition 2.4. Let ϕ : E1 → E2 be a morphism between locally free OS-modules of
the same finite rank and let F = coker(ϕ). Then F is a torsion module with few relations
if and only if the sequence 0 → E1 → E2 → F → 0 is exact, i.e. ϕ is injective.

Proof. If ϕ is injective, then locally over an open set where E1 and E2 are free, its
determinant det(ϕ) ∈ OS is a non-zero divisor. Therefore, ϕ ⊗ Id : E1 ⊗ K → E2 ⊗ K is
surjective, hence an isomorphism. It follows that F ⊗K = coker(ϕ⊗ Id) = 0. Conversely,
if F is a torsion module with few relations, then coker(ϕ ⊗ Id) = F ⊗ K = 0 so that
ϕ ⊗ Id is an isomorphism. Since E1 and E2 are flat we have injections

E1 ⊗ K � � �� E2 ⊗ K

E1

��

��

�� E2

��

��

and it follows that ϕ is injective. �

Definition 2.5. Given a coherent OS-module F we define its Pontryagin dual by

F† = HomOS
(F ,K/OS).

As the following proposition proves, there is a satisfactory duality if we restrict to
torsion modules with few relations.

Proposition 2.6. Let F be a torsion OS-module with few relations. Then

(1) F† is also a torsion OS-module with few relations, and the canonical morphism
F → F†† is an isomorphism;

(2) for each exact sequence 0 → E1 → E2 → F → 0 where E1, E2 are locally free
OS-modules of the same finite rank, we have a canonical exact sequence 0 → E∨

2 →
E∨
1 → F† → 0.
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Proof. The assertions in point (1) are local over S and therefore are easy consequences
of point (2). In order to prove point (2) we set G = coker(E∨

2 → E∨
1 ) and we construct

a canonical non-degenerate pairing F × G → K/OS , as follows. Since F is torsion and
finitely generated, locally (over an open subset U ⊂ S) there is a non-zero divisor a ∈ OS

such that aE2 ⊂ E1. Given two sections f ∈ E2 and g ∈ E∨
1 over U , we let 〈f, g〉 denote

the class of (1/a)g(af) ∈ K modulo OS . It is easy to check that this is independent
of the choice of a. If f ∈ E1 or if g ∈ E∨

2 , then 〈f, g〉 = 0 so there results a pairing
F × G → K/OS and we will now check that it induces isomorphisms F → G† and
G → F†. By symmetry we will consider only σ : G → F†. If 〈· , g〉 is zero then we claim
that g ∈ E∨

1 extends to a form on E2. Indeed, for each f ∈ E2 we have (1/a)g(af) ∈ OS

so that the definition g(f) := (1/a)g(af) is unambiguous, since a is a non-zero divisor.
It follows that σ is injective. In order to check surjectivity we may assume that S is the
spectrum of a local ring, and in this case E1, E2 are trivial. Any u : F → K/OS factors
through (1/a)OS/OS ⊂ K/OS and then induces a morphism E2 → OS/aOS . Since E2 is
trivial this map lifts to u′ : E2 → OS . Moreover, if x ∈ E1 then u′(x) ∈ aOS , so we can
set v(x) = (1/a)u′(x); then it is easy to check that v is a form g on E1 that gives rise to
u. Hence σ is surjective. �

If S is a Dedekind scheme, that is to say a noetherian normal scheme of dimension 1,
then all coherent torsion OS-modules are torsion modules with few relations (by the
structure theorem for modules of finite type). However in general it is not so, as soon as
dim(S) � 2, and we saw a counterexample before Definition 2.3.

We are now able to dualize the sequence of Lie algebras in Proposition 2.2 (2) either if
H is smooth or if it is finite.

Proposition 2.7. Let G be a smooth S-group scheme and H ⊂ G a closed normal
subgroup scheme which is flat and of finite presentation over S. Let K = G/H be the
quotient.

(1) If H is smooth over S, then we have an exact sequence of locally free Lie algebra
OS-modules

0 → L ie(H) → L ie(G) → L ie(K) → 0

and if furthermore K is commutative, we have

[L ie(G),L ie(G)] ⊂ L ie(H).

(2) If H is finite over S and there is a schematically dominant morphism i : U → S such
that H ×S U is étale over U , then there is a canonical exact sequence of coherent
OS-modules:

0 → L ie(G) → L ie(K) → (ω1
H/S)† → 0,

and if furthermore H is commutative, then

[L ie(K),L ie(K)] ⊂ L ie(G).
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Proof. (1) All the sheaves in the exact sequence 2.2 (2) are locally free, so dualization
yields the asserted result. It is clear that the resulting sequence is an exact sequence of
sheaves of Lie algebras, so [L ie(G),L ie(G)] ⊂ L ie(H) in case K is commutative.

(2) The exact sequence in Proposition 2.2 (2) and Proposition 2.4 imply that ω1
H/S

is a torsion module with few relations. We get the dual sequence from Proposi-
tion 2.6. Here (ω1

H/S)† is not a Lie algebra, so it is a little more subtle to deduce that
[L ie(K),L ie(K)] ⊂ L ie(G). The assertion is local on S so we may assume that H is
embedded into an abelian scheme A/S (that is to say a smooth proper group scheme over
S with geometrically connected fibres), by a theorem of Raynaud [3, Theorem 3.1.1]. Let
π : A → B = A/H be the quotient abelian scheme, and let G′ = (G ×S A)/H where H

acts by h(g, a) = (hg, h−1a). We have two exact sequences of smooth S-schemes:

1 → G → G′ p−→ B → 1

and

1 → A → G′ → K → 1.

By smoothness we derive exact sequences of sheaves of Lie algebras

0 → L ie(G) → L ie(G′)
p−→ L ie(B) → 0

and

0 → L ie(A) i−→ L ie(G′) → L ie(K) → 0.

Combining these exact sequences we have an exact sequence

0 → L ie(G) → L ie(K) → L ie(B)/π(L ie(A)) → 0,

where π = p◦i. Here, the arrow L ie(K) → L ie(B)/π(L ie(A)) is induced by p which is a
morphism of Lie algebras. It follows immediately that [L ie(K),L ie(K)] ⊂ L ie(G). �

2.2. Lie algebras of Chevalley group schemes

Let G be a split simple Chevalley group scheme over Z, T ⊂ G a split maximal torus
over Z, and write as in [8] T = DZ(M), where M is a free Z-module. Since G is smooth,
Lie(G) is a vector bundle and hence is determined by L ie(G). Since the base is affine,
this is in turn determined by the free Z-module L ie(G)(Z) = Lie(G)(Z) together with
its Lie bracket.

Proposition 2.8. There is a weight decomposition

Lie(G)(Z) = Lie(T )(Z) ⊕
⊕

α

Lie(G)(Z)α

over the integers. Moreover, letting Q(R) (respectively P (R)) denote the root (respec-
tively weight) lattice, we have Q(R) ⊂ M ⊂ P (R).
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Proof. Since G is a smooth split reductive group scheme over Z, this essentially follows
from [8, Exposé I, 4.7.3], as explained in [8, Exposé XIX, No. 3]. �

Now let H be a closed subgroup scheme of the centre of G and let iH denote the
inclusion of the character group of T/H in that of T .

Proposition 2.9. Under the natural inclusions

Lie(G)(Z) ⊂ Lie(G)(Q) = Lie(G/H)(Q) ⊃ Lie(G/H)(Z),

we have Lie(G)(Z)iH(α) = Lie(G/H)(Z)α.

Proof. Since H ⊂ T , by Proposition 2.7, there are injections Lie(G)(Z) ⊂ Lie(G/H)(Z)
and Lie(T )(Z) ⊂ Lie(T/H)(Z), both of index |H|. All these maps are compatible with the
injection in Lie(G)(Q). Thus for each α, the inclusion Lie(G)(Z)iH(α) ⊂ Lie(G/H)(Z)α

must be of index 1, proving the proposition.
This proposition also follows from Chevalley’s construction of the simple group schemes

[8, Exposé XXV]. �

Remark 2.10. The Lie algebra over Z defined by generators and relations by Serre [15]
is the simply connected one, that is to say the Lie algebra of the simply connected corre-
sponding group scheme, because, with his notation, the generators Hi are by definition
the coroots.

Recall that π : G → G/H denotes the quotient morphism.

Proposition 2.11. Assume G is simply connected.

(1) When G is not Sp2n, n � 1, we have

[Lie(G)(Z), Lie(G)(Z)] = Lie(G)(Z)

and [Lie(G/H)(Z), Lie(G/H)(Z)] = dπ(Lie(G)(Z)).

(2) If G = Sp2n, then [Lie(G)(Z), Lie(G)(Z)] has index 22n in Lie(G)(Z).

Proof. (1) Let g = Lie(G)(Z) and choose a Cartan Z-subalgebra h ⊂ g. Choose a basis of
the roots, and denote by u+, u− ⊂ g the direct sum of the positive (respectively negative)
root spaces. By Corollary 2.8, we have g = h ⊕ u+ ⊕ u−. Since G is neither SL2 (= Sp2)
nor Sp2n, by Lemma 1.4, no root is an integer multiple of a weight, and so [h, u±] = u±.
Moreover, it follows from Serre’s presentation of the simple Lie algebras in terms of the
Cartan matrix (see Remark 2.10) that in this case [g, g] ⊃ h. In particular,

dπ(Lie(G)(Z)) = dπ([Lie(G)(Z), Lie(G)(Z)])

= [dπ(Lie(G)(Z)), dπ(Lie(G)(Z))]

⊂ [Lie(G/H)(Z), Lie(G/H)(Z)].

The reverse inclusion follows from Proposition 2.7.



684 P.-E. Chaput and M. Romagny

(2) Assume that G stabilizes the form ( 0 In

−In 0 ), where In stands for the identity matrix.
Then

g =

{ (
A B

C −tA

)
: tB = B, tC = C

}
,

where tA denotes the transpose of the matrix A. If A is an arbitrary matrix and B is
symmetric, then we have the equality[ (

A 0
0 −tA

)
,

(
0 B

0 0

) ]
=

(
0 AB + B tA

0 0

)
.

From this it follows that [g, g] ⊂ g is the Z-submodule of elements ( A B
C −tA ) with B and

C having even diagonal elements. Therefore, it is a submodule of index 22n. �

2.3. The differential of the quotient maps

We will now describe the differentials of the quotient maps between Chevalley groups
in the neighbourhood of a prime p ∈ Spec(Z). So we consider the base ring R = Z(p).
Let G be simply connected and let n be the order of the centre of G. Assume moreover
that the centre of G is the group of nth roots of unity µn (this is the case if G is not
of type D2l; for this particular case see § 2.4). Write n = pkm with m prime to p, and
Gi := G/µpi . We have the successive quotients

G = G0 → G1 → G2 → · · · → Gk → Gad

and the corresponding sequence of Lie algebras

Lie(G) = Lie(G0) → Lie(G1) → Lie(G2) → · · · → Lie(Gk) �−→ Lie(Gad).

On the generic fibre all these maps are isomorphisms. In order to study what happens on
the closed fibre, we set g = Lie(G)(Fp) and gi = Lie(Gi)(Fp), and we let zi respectively
z denote the centre of gi respectively g. We start with a lemma.

Lemma 2.12. The centre zi is isomorphic to the one-dimensional Lie algebra Fp if i < k,
and the algebra gk has trivial centre.

Proof. Let x ∈ gi be a central element. According to the decomposition of Proposi-
tion 2.8, we can write x =

∑
xα + h. The lemma is easily checked directly when gi = sl2

or gi = sp2n, so assume we are not in these cases.
According to the following Lemma 2.13, for any root β there exists a finite extension

K/Fp and a point t ∈ t ⊗ K such that dβ(t) �= 0. We then have 0 = [t, x] =
∑

dα(t)xα,
from which it follows that xβ = 0. Thus x = h ∈ t. Now, let again β be an arbitrary root
and let 0 �= y ∈ (gk)β . We have 0 = [x, y] = dβ(x) · y, therefore dβ(x) = 0.

Since we can reverse the above argument, the centre of gi consists of all the elements
in t along which all the roots vanish. With the notation of Proposition 2.8, t � M∨ ⊗Fp,
and therefore zi � Hom(M/Q(R), Fp). Since M/Q(R) ⊂ P (R)/Q(R) and in our case
P (R)/Q(R) is principal, M/Q(R) is also principal and zi can be at most one dimensional.
Moreover, it is trivial if and only if Q(R) = M , which means that gi is adjoint, or
i = k. �
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Lemma 2.13. Assume that g is neither isomorphic to sl2 nor sp2n, or that the charac-
teristic of Fp is not 2. Then there exists a finite extension K of Fp and t ∈ t ⊗ K such
that ∀α ∈ R, dα(t) �= 0.

Proof. Let R denote the root system of G. By Proposition 2.8 we have Q(R) ⊂ M ⊂
P (R). The linear functions on t defined over Fp are in bijection with M ⊗ Fp; therefore
a root α ∈ Q(R) will yield a vanishing function on t if and only if it is a p-multiple of
some element in M . By Lemma 1.4, this can occur only if p = 2, M = P (R) (thus G is
simply connected) and G is of type A1 or Cr. By assumption we are not in these cases.
Let N be the number of positive roots. Taking a finite extension K/Fp if needed, t is not
a union of N hyperplanes, so the lemma is proved. �

Let g′ := g/z. We can now describe the maps Lie(Gi) → Lie(Gi+1) on the closed fibre.

Proposition 2.14. The Lie algebras gi are described as follows.

(1) For all i with 0 < i < k, we have an isomorphism of Lie algebras gi � g′ ⊕ Fp. In
particular, all these Lie algebras are isomorphic.

(2) For i = 0 we have a non-split exact sequence of Lie algebras 0 → Fp → g0 → g′ → 0.

(3) For i = k we have a non-split exact sequence of Lie algebras 0 → g′ → gk → Fp → 0.

In these terms, the maps gi → gi+1 are described as follows. The map g0 → g1 takes Fp

to zero and maps onto g′ ⊂ g1, and for all i with 0 < i < k, the map gi → gi+1 takes Fp

to zero and maps g′ ⊂ gi isomorphically onto g′ ⊂ gi+1.

Proof. Let Zi := ker(Gi → Gi+1). For all i � k−1, we have Zi � µp, and its Lie algebra
is included in zi. Because Zi → Gi+1 is trivial, the map gi → gi+1 takes zi to 0.

By tensoring the result of Proposition 2.7 by Fp, there is an exact sequence

gi → gi+1 → Z/pZ → 0,

from which it follows that gi/zi is mapped isomorphically onto a codimension 1 subalgebra
of gi+1,Fp denoted g′

i+1,Fp
. By Lemma 2.12, no x ∈ g′

i+1,Fp
can be central in gi+1 so that

we have, for 0 < i < k,
gi,Fp = g

′
i,Fp

⊕ zi,Fp

as vector spaces. Since g′
i,Fp

is a Lie subalgebra, it is also an equality of Lie algebras. In
particular all the Lie algebras gi for 0 < i < k are isomorphic.

For i = 0, we have an exact sequence of Lie algebras 0 → Fp → g0,Fp → g′ → 0, but
this sequence does not split (in fact if it did split, then we would have [g0,Fp

, g0,Fp ] ⊂ g′,
contradicting Proposition 2.11).

For i = k > 0, we have a sequence 0 → g′ → gk,Fp → Fp → 0, which again cannot split
because gk,Fp

has trivial centre, by Lemma 2.12. �
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Remark 2.15. For 0 < i < k, consider the Lie algebras Lie(Gi), as schemes over
Spec(Z(p)). They have isomorphic underlying vector bundles (namely the trivial vec-
tor bundle), and their generic fibres as well as their special fibres are isomorphic as
Lie algebras. However, they need not be isomorphic. For example, if G = SLpk then it
is immediate from Proposition 2.11 that Gi = G/µpi uniquely determines i, because
[Lie(Gi)(Z), Lie(Gi)(Z)] = Lie(G)(Z) and the quotient Lie(Gi)(Z)/ Lie(G)(Z) is a cyclic
abelian group of order pi. In fact the only difference between them comes from the defi-
nition of the Lie bracket on the total space.

2.4. Classical Lie algebras

We now give an explicit description of some of the classical Chevalley Lie algebras, in
which the exact sequence of Proposition 2.2 will become very transparent.

Let M be a free Z-module of rank n, and let m be an integer dividing n. We define a
Z-Lie algebra L(M |m) as follows: let Hom(M, (1/m)M) denote the Z-module of linear
maps f : M ⊗ Q → M ⊗ Q such that f(M) ⊂ (1/m)M . The trace of such a map is an
element in (1/m)Z. Any such map induces a map f̄ : M/mM → (1/m)M/M . Note that
multiplication by m induces a canonical isomorphism (1/m)M/M � M/mM so that f̄

may be seen as an endomorphism of the free Z/mZ-module M/mM . Finally, let L(M |m)
(respectively S(M |m)) denote the submodule of Hom(M, (1/m)M) of elements f such
that f̄ is a homothety (respectively f̄ is a homothety and f has vanishing trace). These
are obviously Lie subalgebras of End(M ⊗ Q).

Proposition 2.16. Let n, m be as above; then Lie(SLn /µm)(Z) � S(Zn|m).

Proof. Let n, m be integers such that m divides n. Let sln denote the Lie algebra of
SLn, and let sln,m denote the Lie algebra of the quotient SLn /µm.

The exact sequence of Proposition 2.2 translates in our case to

0 → sln,m(Z)∨ → sln(Z)∨ → Z/mZ → 0.

To compute the morphism sln(Z)∨ → Z/mZ, let us first compute the analogous mor-
phism gln(Z)∨ → Z/mZ given by the inclusion µm ⊂ GLn. We decompose this inclusion
as µm ⊂ GL1 ⊂ GLn. The corresponding morphisms are

gln(Z)∨ → Z → Z/mZ,

where the first map is evaluation at the identity (in fact, it is the dual map to the
inclusion Lie(GL1) → Lie(GLn)) and the second is the quotient morphism. By restriction
to SLn, the morphism sln(Z)∨ → Z/mZ is given by evaluation at In modulo m (note
that this is well defined since sln(Z)∨ = gln(Z)∨/(trace)). Let fi,j : sln(Q) → Q be the
linear form M �→ Mi,j . Thus sln,m(Z)∨ ⊂ sln(Z)∨ is the set of linear forms

∑
λi,jfi,j

with m|
∑

λi,i. Since sln,m(Z) is the dual in sln(Q) of sln,m(Z)∨, it follows applying
fi,j (i �= j) (respectively mfi,i, fi,i − fj,j) that if M ∈ sln(Q) belongs to sln,m(Z), then
Mi,j ∈ Z (respectively mMi,i ∈ Z, Mi,i −Mj,j ∈ Z). Conversely, matrices satisfying these
conditions are certainly in sln,m(Z). The proposition is therefore proved. �
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Now, assuming that n is even, we describe the four Lie algebras of type Dn: spin2n,
so2n, pso2n, and a fourth one that we denote by pspin2n. We need to introduce some
notation.

Notation 2.17. Let n be an integer and let us consider the following sublattices of Qn:

• Nso = Zn;

• Nad is generated by Zn and 1
2 (1, . . . , 1);

• if l is even, Nps is the sublattice of Nad of elements (xi) with
∑

xi divisible by 2;

• Nsc is the sublattice of Zn of elements (xi) with
∑

xi divisible by 2;

• we denote by L∗ (∗ ∈ {z, ad, ps, sc}) the lattice of matrices with off-diagonal coef-
ficients in Z and with the diagonal in N∗.

Proposition 2.18.

(1) There is a natural identification of sp2n(Z) (respectively psp2n(Z)) with the Lie
algebra of matrices of the form ( A B

C −tA ) with tB = B, tC = C (n × n)-matrices
with coefficients in Z and A ∈ gln(Z) (respectively A ∈ L(Zn|2)).

(2) Assume n is odd. Then there is a natural identification of so2n(Z) (respectively
pso2n(Z), spin2n(Z)) with the Lie algebra of matrices of the form ( A B

C −tA ) with
tB = −B, tC = −C and A in Lso (respectively Lad, Lsc).

(3) Assume n is even. There is a natural identification of so2n(Z) (respectively pso2n(Z),
spin2n(Z), pspin2n(Z)) with the Lie algebra of matrices of the form ( A B

C −tA ) with
tB = −B, tC = −C and A in Lso (respectively Lad, Lsc, Lps).

Proof. This is a direct consequence of Proposition 2.8. For example, let g(Z) be a Lie
algebra of type Dn over Z. Proposition 2.8 implies that all Lie algebras of type Dn will
differ only by their Cartan subalgebras. Therefore, g(Z) is in fact a set of matrices of
the form ( A B

C −tA ) with tB = −B, tC = −C, and the off-diagonal coefficients of A in Z.
Moreover, with the notation of Proposition 2.8, g(Z) corresponds to a module M between
the root lattice and the weight lattice, and the Cartan subalgebra (the subalgebra when
A is diagonal and B = C = 0) identifies with the dual lattice of M . Therefore, the
description of the proposition follows from the description of the root and weight lattices
in [5]. �

Using this description or Lemma 2.12 we can deduce the dimension of the centre of
g(F2):

spin2n(F2) so2n(F2) pspin2n(F2) pso2n(F2)

n even 2 1 1 0
n odd 1 1 — 0
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For example, we give a description of the centre of spin2n(F2). Let C1 (respectively
C2) be the matrix of the form ( A B

C −tA ) with B = C = 0 and A = In (the identity matrix,
respectively A = ( 2 0

0 0 ), the matrix with only one non-vanishing coefficient in the top-left
corner, equal to 2). Note that C1, C2 ∈ spin2n(Z) (but C1, C2 are not divisible by 2 in
spin2n(Z)). For any matrix B in spin(Z) ⊂ so(Z), we obviously have [C1, B] = 0 and
2|[C2, B]. From these remarks it follows that the classes of C1 and C2 modulo 2spin(Z)
generate over F2 the two-dimensional centre of spin2n(F2).

3. The Chevalley morphism

We start this section by some elementary results on regular elements in Lie algebras of
algebraic groups (§ 3.1), to be used in § 3.3, then we prove that the Chevalley morphism
is unconditionally schematically dominant (§ 3.2) and finally we prove the the Chevalley
morphism is an isomorphism unless G = Sp2n for some n � 1 (§ 3.3). The case G = Sp2n

will be treated later.
We emphasize that from now on, in contrast for example with § 2.3, the Lie algebras

are viewed really as schemes and not merely as vector spaces or modules.

3.1. Regular elements

Let g be a restricted Lie algebra of dimension d over a field. For each x ∈ g, we denote
by χ(x) = td + c1(x)td−1 + · · · + cd−1(x)t + cd(x) the characteristic polynomial of adx

acting on g. The rank of g is the least integer l such that cd−l �= 0, and we set δ := cd−l.
An element x ∈ g is called regular if the nilspace g0(adx) := ker(adx)d of g relative to
adx has minimal dimension l. (These elements are commonly called regular semi-simple
and we adopt a simpler terminology within the present article.) For Chevalley groups
other than the symplectic group, an element x is regular if and only if δ(x) �= 0; then, the
Cartan subalgebras of minimal dimension are exactly the centralizers of regular elements.
For these facts see [18, pp. 52–53]. Note also that our definition of regular elements differs
from that in [20], according to which the singular locus has codimension 3 in g.

If, furthermore, g is the Lie algebra of a smooth connected group G, then in fact the
Cartan subalgebras are conjugate, and in particular they all have the same dimension.
This is proven in [10, Corollary 4.4]. Also, in this case the coefficients of the characteristic
polynomial χ are invariant functions for the adjoint action of G on g.

We will use the notation Sing(g) for the closed subscheme of singular elements, defined
by the equation δ = 0, and Reg(g) for its complement, the open subscheme of regular
elements. We have the corresponding subschemes Sing(t) and Reg(t) in t.

In the relative situation, if g is a Lie algebra of dimension d over a scheme S, then
the objects χ, δ, Reg(g), Sing(g) are defined by the same procedure as above. We recall
our general convention that a relative Cartier divisor of some S-scheme X is an effective
Cartier divisor in X which is flat over S.

Lemma 3.1. Let G be a split simple Chevalley group over a scheme S, not isomorphic
to Sp2n, n � 1. Let s : Sing(g) → S be the locus of singular elements. Then s∗OSing(g) is
a free OS-module, in particular Sing(g) is a relative Cartier divisor of g over S.
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Proof. Since the objects involved have formation compatible with base change, it is
enough to prove the lemma over S = Spec(Z). We have to prove that the ring Z[g]/(δ) is
free as a Z-module. Since δ is homogeneous, this ring is graded. If we can prove that it
is flat over Z, then its homogeneous components are flat also, and since they are finitely
generated, they are free over Z, and the result follows. So it is enough to prove that
Z[g]/(δ) is flat. By the corollary to Theorem 22.6 in [14], it is enough to prove that the
coefficients of δ generate the unit ideal, or in other words, that δ is a non-zero function
modulo each prime p. So we may now assume that the base is a field k of characteristic
p � 0, and we may also assume that k is algebraically closed. Let t be the Lie algebra of
a maximal torus T . By Lemma 2.13, we can choose t ∈ t(k) such that ∀α ∈ R, dα(t) �= 0.
Then δ(t) is the product of the scalars dα(t), up to a sign. Hence it is non-zero. �

We continue with the split simple Chevalley group G over S. In the sequel, products
are understood to be fibred products over S. We now turn our attention to the morphism
G/T × t → g. We use the same construction as in [16, 3.17]: note that the normalizer
NG(T ) acts on G × t by n · (g, τ) = (gn−1, Ad(n) · τ) and this induces an action of
W = NG(T )/T on G/T × t. The morphism G/T × t → g induced by the adjoint action
is clearly W -invariant.

Lemma 3.2. Let G be a split simple Chevalley group over a scheme S, not isomorphic
to Sp2n, n � 1. Then the map G/T × t → g is schematically dominant. Its restriction

b : G/T × Reg(t) → Reg(g)

is a W -torsor and hence induces an isomorphism (G/T × Reg(t))/W → Reg(g).

Proof. Here again, the objects involved have formation compatible with base change,
so it is enough to prove the lemma over S = Spec(Z). We will first prove that b is a
W -torsor. It is enough to prove that b is surjective, étale, and that W is transitive in the
fibres. Indeed, if b is étale then the action must also be free and b induces an isomorphism
(G/T × Reg(t))/W → Reg(g).

The map c = ad : G × Reg(t) → Reg(g) is surjective because if x ∈ Reg(g), then
its centralizer z(x) is a Cartan subalgebra, and since Cartan subalgebras are conjugate,
there exists g ∈ G such that (ad g)(t) = z(x). Thus there is y ∈ t such that (ad g)(y) = x

and clearly y is regular. We now prove that c is smooth. Since its source and its target
are smooth over S, it is enough to prove that for all s ∈ S, the map cs is smooth. By
homogeneity, it is enough to prove that the differential of cs at any point (1, t) with
t ∈ Reg(t) is surjective.

Then T1Gk = gk and the tangent map ψ = dc : T1Gk × tk → gk is given by (x, τ) �→
[x, t] + τ . Recall that gk =

⊕
α∈R gα ⊕ tk, where [τ, x] = dα(τ)x for all x ∈ gα. Again

by Lemma 2.13, we can choose τ ∈ tk such that ∀α ∈ R, dα(τ) �= 0. Thus, we have
ψ(gk × {0}) =

⊕
α∈R gα. Since ψ({0} × tk) = tk, ψ is a surjective linear map. It follows

that b is also surjective and smooth, hence étale, by dimension reasons.
Finally, let (g, x) and (h, y) have the same image in g, for x, y ∈ t. This means that

(adw)(x) = y, where w = h−1g. Thus (adw)(z(x)) = z((adw)(x)) = z(y), that is to say



690 P.-E. Chaput and M. Romagny

(adw)(t) = t since z(x) = z(y) = t. By [11, 13.2, 13.3], T is the only maximal torus with
Lie algebra t, so it follows that w normalizes T . Hence w defines an element of the Weyl
group W .

Now we consider the map G/T × t → g. From the preceding discussion it is dominant
in the fibres, and since G/T × t is flat over S, the map is itself schematically dominant
by [9, Théorème 11.10.9]. This concludes the proof of the lemma. �

3.2. The Chevalley morphism is dominant

We now deal with the cases that are not covered by Lemma 3.1.

Notation 3.3. Consider the following subalgebras of sl2 and sp2n.

• Let b ⊂ sl2 be the subalgebra of upper-triangular matrices.

• Let L denote the set of long roots of sp2n; if α is a root, denote by sp2n,α the
corresponding root space.

• Let h ⊂ sp2n be the sum t ⊕
⊕

α∈L sp2n,α.

Lemma 3.4. Let k be a field. Then the maps (SL2)k × bk → (sl2)k and (Sp2n)k × hk →
(sp2n)k, given by restricting the adjoint action, are dominant. Moreover, h is isomorphic,
as a Lie algebra, to sl

⊕n
2 .

Combining the two statements of this lemma, it follows that in the proof of Theorem 3.6
below, we will be able to replace the Lie subaglebra h � sl

⊕n
2 by a sum of the form b⊕n.

Proof. The result about (sl2)k is an immediate consequence of the fact that, over an
algebraically closed field, any matrix is conjugated to an upper-triangular matrix.

To prove that (Sp2n)k ×hk → (sp2n)k is dominant, we argue as in Lemma 3.2. Since all
the short roots are not integer multiples of a weight, we can choose t ∈ tk such that for all
short roots α, we have dα(t) �= 0. Let S denote the set of short roots of sp2n. If ψ denotes
the differential at (1, t) of the adjoint action, it follows that ψ(sp2n×{0}) ⊃

⊕
α∈S sp2n,α.

Since hk = tk ⊕
⊕

α∈L sp2n,α, it follows that ψ is surjective and the restriction of the
action is dominant.

To prove that h � sl
⊕n
2 , one can compute explicitly in the Lie algebra sp2n. Assume

that sp2n is defined by the matrix ( 0 I
−I 0 ), where I denotes the identity matrix of size n.

Then a matrix ( A B
C D ) belongs to sp2n if and only if D = −tA and B and C are symmetric

matrices. Choosing the torus t = {( d 0
0 −d )} in sl2n, and εi the coordinate forms on t, it is

well known and easy to check that the long roots are ±2εi. It follows that h = {( d δ
ε −d ) :

d, δ, ε diagonal}. Thus h is isomorphic to sl
⊕n
2 . �

Lemma 3.5. Let S = Spec(A) be an affine base scheme and g = sl2. Then the restriction
morphism A[b]T → A[t] is bijective.
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Proof. Let f ∈ A[b]. Writing a typical element in b as ( a b
0 −a ), we identify f with a

polynomial in a, b. Since(
t 0
0 t−1

) (
a b

0 −a

) (
t 0
0 t−1

)−1

=

(
a t2b

0 −a

)
,

f is T -invariant if and only if f(a, b) = f(a, t2b) ∈ A[a, b, t]. This means that f does not
depend on b, and we indeed have an equality A[b]T = A[t]. �

Using the two preceding lemmas, we can now prove the main result of this section.

Theorem 3.6. Let S be a scheme and let G be a split simple Chevalley group over S.
Then the Chevalley morphism π : t/W → g/G is schematically dominant.

Proof. First, let S = Spec(Z). Let us write h = b in the case of SL2, h = sl
⊕n
2 in the

case of Sp2n, and h = t in the other cases. We also write H = T (respectively H = SL⊕n
2 ,

H = T ) in the case of SL2 (respectively Sp2n, the other cases). The adjoint action restricts
to a map ϕ : G × h → g. If G acts on itself by left translation, trivially on h, and by
the adjoint action on g, then ϕ is G-equivariant. Moreover, by Lemmas 3.2 and 3.4, the
restriction ϕk of ϕ to any fibre of Spec(Z) is dominant. Since the schemes G × h and g

are flat over Z, it follows from [9, Théorème 11.10.9] that ϕ is universally schematically
dominant.

Now we let S be arbitrary, and prove that π is schematically dominant. The question is
local over S so we may assume S = Spec(A) affine. On the function rings, the Chevalley
morphism can be decomposed as two successive restriction morphisms A[g]G → A[h]H →
A[t]. The theorem amounts to the fact that this composition is injective.

First we concentrate on A[g]G → A[h]H . We have already proved that the map ϕ∗ :
A[g] → A[G]⊗A A[h] is injective. This map is G-equivariant, so if f ∈ A[g] is G-invariant,
we have

ϕ∗(f) ∈ (A[G] ⊗A A[h])G = A[G]G ⊗A A[h] = A ⊗A A[h] = A[h].

Therefore, ϕ∗(f) = 1 ⊗ i∗(f) where i : h → g is the inclusion. Since ϕ∗ : A[g] →
A[G] ⊗A A[h] is injective, it follows that A[g]G → A[h] is injective.

In case G �= Sp2l, we have t = h so the proof of the theorem is complete. In case
G = SL2, Lemma 3.5 shows the injectivity of the Chevalley morphism. Finally, let us
consider the case of Sp2n with n > 1. Since by Lemma 3.4, h � sl

⊕n
2 and H � SLn

2 , and
since the theorem is proved for SL2, we know that A[h]H → A[t] is injective, and we can
once again conclude. �

It is interesting to mention an easy consequence of this theorem: if the base scheme is
Spec(Z), then the Chevalley morphism is an isomorphism, see the corollary below. This
will of course be a particular case of Theorems 3.11 and 6.6, however, while Theorem 3.11
needs some more work, we get the present result almost for free. This corollary is in fact
worthwhile because it shows that if the formation of the adjoint quotient commuted with
base change (which is not the case), then we would get the case of a general base scheme
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S from the case S = Spec(Z) and hence everything would be finished right now. So here
is this corollary.

Corollary 3.7. Assume that S is the spectrum of a factorial ring with characteristic
prime to the order of W . Then the Chevalley morphism π : t/W → g/G is an isomor-
phism.

Proof. Let S = Spec(A) and let K be the fraction field of A. By Theorem 3.6 it is
enough to prove that the restriction morphism res : A[g]G → A[t]W is surjective. Let P

be a W -invariant function on t. From the assumption on the characteristic of K, it follows
that K[g]G → K[t]W is an isomorphism, so there is Q ∈ K[g]G such that res(Q) = P .
Since A is factorial, we can write Q = cQ0 where Q0 is a primitive polynomial (i.e. the
greatest common divisor of its coefficients is 1) and c ∈ K is the content of Q. If we
write c = r/s with r and s coprime in A, we claim that s is a unit in A. For, otherwise,
some prime p ∈ A divides s. Then res(rQ0) = sP = 0 in (A/p)[t]W so res(Q̄0) = 0 in
(A/p)[t]W , since r and s are coprime. By Theorem 3.6 again, it follows that Q̄0 = 0 in
(A/p)[g]G, in contradiction with the fact that Q0 is primitive. Hence Q ∈ A[g]G as was
to be proved. �

3.3. The Chevalley morphism is an isomorphism for G �= Sp2n

Before we can give the proof of the main result (Theorem 3.11), we need a technical
result which we establish in a sequence of three lemmas. The starting point, in the first
lemma below, is a variation on a statement used in Springer and Steinberg [16] (see
Chapter II, the proof of Theorem 3.17′, point (2) therein). However, we were not able
to understand their proof.∗ Since moreover we need a slightly more general result, we
provide a proof.

In the following, if M is a module over a ring A, we say that a ∈ A divides m ∈ M if
and only if m = am′ for some m′ ∈ M . In this case, we write a | m.

Lemma 3.8. Let k be a field, V a k-vector space, endowed with the trivial G-action.
Consider the k[g]-module V [g] := V ⊗k[g], endowed with the tensor product action of G.
Let d ∈ k[g] and a ∈ V [g] be such that d is G-invariant and the class of a modulo dV [g]
is G-invariant. Then d|t | a|t implies d | a.

Proof. Considering the coordinates of a in a k-basis of V , we may assume that V = k.
We may further assume that k is algebraically closed. We fix a base of the root system
and we consider the Borel subalgebra b = t ⊕

⊕
α>0 gα.

We will use the assumptions to argue that for a point x ∈ g such that d(x) = 0, the
function a is constant on the closure of the G-orbit of x (the closed orbit, for short). To
see this, just note that for all g ∈ G, since a is invariant modulo d, there exists r ∈ k[g]

∗ We refer to point (2) of the proof of Theorem 3.17′ in [16, Chapter II]. The sentence ‘this can be
proved like the corresponding result. . . ’ requires the reader to go to point (2) in the proof of Theorem 6.16
of [17]. In this proof, Steinberg uses statement 6.4 that a certain map β is an isomorphism. However,
in [16] the corresponding map β is precisely the one we want to prove is an isomorphism, so it seems
that this justification cannot be used as it stands.
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such that g−1a = a + dr, so that a(gx) = a(x) + d(x)r(x) = a(x). By continuity, a is
constant on the closed orbit of x.

We come to the proof itself. First, assume that d has no square factors. Let x ∈ g be
such that d(x) = 0; it is enough to show that a(x) = 0. Since the Borel subalgebras are
conjugated and their union is g, there exists g ∈ G such that x′ := gx lies in b. Since
d is invariant, we have d(x′) = d(x) = 0, so that a is constant on the orbit of x and
a(x′) = a(x). Thus we may replace x by x′ and hence assume that x belongs to b. Write
x = τ +

∑
α>0 xα with τ ∈ t and xα ∈ gα. It is a standard fact that the toral part τ lies in

the closed orbit of x under G. To see this, choose an element ω∨ in the coroot lattice such
that nα := 〈ω∨, α〉 is positive for all roots α > 0 (for example, one may take ω∨ equal
to the sum of the coroots α∨ for α > 0). To it, is associated a one-parameter-subgroup
X : Gm → T such that α(X(t)) = tnα for all α > 0. Thus X acts via

X(t)x = τ +
∑
α>0

tnαxα

and we see that τ is in the closed orbit of x. Therefore, d(τ) = d(x) = 0 and a(x) = a(τ).
Since d|t divides a|t we get a(τ) = 0 and the lemma is proved in case d is square-free.

Now let d be arbitrary and write d = d1d2 where d1 is the product of the prime factors
of d, with multiplicity 1. Thus d1 is square-free, and since G is connected and hence
has no non-trivial characters, we see that d1 is G-invariant. Since (d1)|t | a|t we have
d1 | a and there exists a2 such that a = d1a2. If (d1)|t = 0 then d1 = 0 by invariance,
hence a = 0 and the lemma is proved. Otherwise, since k[t] is a domain, we find that
(d2)|t | (a2)|t, and the lemma follows again by induction on the degree of d. �

Lemma 3.9. Let A be a complete local ring with maximal ideal M , and let a, d ∈ A[g]G.
Assume that the degree of d is equal to the degree of its reduction modulo M . Then
d|t | a|t implies d | a.

Proof. Let k := A/M and ã denote the reduction of a modulo M . It follows from the
assumptions that d̃|t divides ã|t, hence d̃ divides ã by Lemma 3.8, hence

deg(a) − deg(d) � deg(ã) − deg(d) = deg(ã) − deg(d̃) � 0.

Let A[g]0 ⊂ A[g] be the submodule of A[g] of polynomials of degree bounded by deg(a)−
deg(d). We will construct a sequence of elements bj ∈ A[g]0 such that a ≡ bjd modulo
M j [g], converging to some b such that a = bd in A[g]. The element b1 is provided by the
lemma above. By induction, assume that bj has been found. Let a − bjd denote the class
of a− bjd in M j/M j+1[g]. Then a − bjd is invariant modulo d and (a − bjd)|t is divisible
by d|t. Thus by Lemma 3.8 applied with V = M j/M j+1, there exists c̄ ∈ M j/M j+1[g]
such that a − bjd − cd = 0. Using the assumption that d has the same degree as its
reduction modulo M , we find that the degree of c̄ is bounded by deg(a) − deg(d). Let
c ∈ M j [g]0 be a lift of c̄, and set bj+1 = bj + c. We get a − (bj+1)d ∈ M j+1[g]0. Since
bj+1 ≡ bj modulo M j in the module A[g]0 which is a free finitely generated A-module,
hence complete, the sequence (bj) has a limit b in A[g], and a = bd. �
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Lemma 3.10. Let A be any ring. Let δ be the equation of the locus of singular elements
in g (see § 3.1). Let a ∈ A[g]G and assume δ|t | a|t. Then δ | a.

Proof. Let A0 ⊂ A be the Z-algebra generated by the finitely many coefficients of a

and δ. It is enough to prove that δ divides a in A0[g]. In other words, we may replace A

by A0 and hence assume that A is noetherian.
Let D = Sing(g) = {δ = 0} be the locus of singular elements and p : D → S = Spec(A)

the structure morphism. We claim that the condition δ | a defines a closed subscheme of
S. Indeed, from Lemma 3.1 we know that the algebra p∗OD is locally free over S. Since
the claim is local, we may localize and hence assume it is free. Let ai be the finitely many
non-zero components of a|D on some basis of Γ (D,OD) as a free A-module. Then δ | a if
and only if all the ai vanish. Since D is a relative Cartier divisor, the formation of these
objects commutes with base change, so that the above description is functorial, and the
condition δ | a is represented by the closed subscheme S0 ⊂ S defined by the ideal I ⊂ A

generated by the coefficients ai.
We want to prove that S0 = S, or in other words I = 0. Since this is a local problem,

we may replace A by its localization at some prime ideal. Since A is noetherian, its
completion is a faithfully flat ring extension so we may replace A by its completion and
hence assume that it is complete. Then the claim is just Lemma 3.9. �

We can now prove our main result.

Theorem 3.11. Let S be a scheme and let G be a split simple Chevalley group over S.
Assume that G is not isomorphic to Sp2n, n � 1. Then the Chevalley morphism π :
t/W → g/G is an isomorphism.

Proof. By Theorem 3.6 it is enough to prove that the map on functions is surjective.
Let f be a W -invariant function on t and let f1 be the function on G/T × t defined by
f1(g, x) = f(x). Since it is W -invariant, it induces a function on (G/T × t)/W which
we denote by the letter f1 again. By Lemma 3.2 the function h := f1 ◦ b−1 is a G-
invariant relative meromorphic function whose domain of definition contains Reg(g). We
may write h = k/δm for some function k not divisible by δ, and some integer m. Since
k is G-invariant on a schematically dense open subset, it is G-invariant. Assume that
m � 1. Let s ∈ S be a point. Since a generic element of ts is regular, h is defined as a
relative rational function on t. By definition of b, we moreover have h|t = f . It follows
that we have

k|t = f · δm
|t .

Lemma 3.10 implies that δ divides k. This is a contradiction with our assumptions,
therefore h is a regular function extending f to a G-invariant function on g. �

In the remaining sections, we compute explicitly the ring of invariants in the case where
G is one of the groups SO2n, SO2n+1 or Sp2n.
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4. The orthogonal group SO2n

In the case of the group G = SO2n, the explicit computation will prove that the formation
of the adjoint quotient for the Lie algebra does not commute with all base changes. In
fact, we will be able to describe exactly when commutation holds. We will see also that
over a base field, the quotient is always an affine space.

4.1. Definition of SO2n

4.1.1. The orthogonal group

The free Z-module of rank 2n is denoted by E; we think of it as the trivial vector bundle
over Spec(Z). The standard quadratic form of E is defined for v = (x1, y1, . . . , xn, yn) by

q(v) = x1y1 + · · · + xnyn.

It is non-degenerate in the sense that {q = 0} ⊂ P(E) is smooth over Z. The polarization
of q is

〈v, v′〉 = q(v + v′) − q(v) − q(v′) = x1y
′
1 + x′

1y1 + · · · + xny′
n + x′

nyn.

The orthogonal group O2n is the set of transformations P ∈ GL2n that preserve q, more
precisely, the zero locus of the morphism Ψ from GL2n to the vector space of quadratic
forms defined by Ψ(P ) = q ◦ P − q. Thus the Lie algebra o2n is the subscheme of gl2n

composed of matrices M such that by dΨId(M) = 0 with

dΨId(M)(v) = 〈v, Mv〉.

It is not hard to verify that o2n ⊂ gl2n is a direct summand of the expected dimension,
so that O2n is a smooth group scheme over Z.

Remark 4.1. Let us denote by B the matrix of the polarization of q. Clearly, an orthog-
onal matrix P preserves the polarization, and it follows that tP BP = B. However, one
checks easily that the closed subgroup scheme X ⊂ GL2n defined by the equations
tP BP = B is not flat over Z because its function ring has 2-torsion. In fact O2n is the
biggest subscheme of X which is flat over Z. Accordingly Lie(X) ⊂ gl2n is defined by
tM B + BM = 0, and o2n is the biggest Z-flat subscheme of Lie(X).

4.1.2. Dickson’s invariant

Over any field k, it is well known that O2n ⊗ k has two connected components. In
odd characteristic, the determinant takes the value 1 on one and −1 on the other. In
characteristic 2 the determinant does not help to separate the connected components.
Instead one usually uses Dickson’s invariant D(P ) defined, for an orthogonal matrix P ,
to be 0 if and only if P acts trivially on the even part of the centre of the Clifford algebra.
Equivalently, D(P ) = 0 if and only if P is a product of an even number of reflections
(there is just one exception; see [19, p. 160]). Here is a more modern, base-ring-free way
to consider the determinant and Dickson’s invariant altogether.



696 P.-E. Chaput and M. Romagny

Lemma 4.2. Let det ∈ Z[O2n] be the determinant. Then, there is a unique element
δ ∈ Z[O2n] such that det = 1 + 2δ.

Proof. Since for any P ∈ O2n, we have det(P ) ∈ {−1, 1}, the function det−1 vanishes
on the fibre O2n ⊗ F2. Since O2n ⊗ F2 is reduced, 2 divides det−1, yielding the existence
of δ. It is unique because O2n is flat over Z, and in particular has no 2-torsion. �

Let us introduce the Z-group scheme

G = Spec
(

Z

[
u,

1
1 + 2u

])

with unit u = 0 and multiplication u ∗ v = u + v + 2uv. Its fibre at 2 is isomorphic to the
additive group while all other fibres are isomorphic to the multiplicative group. When
one passes from det to δ, the multiplicativity formula det(P1P2) = det(P1) det(P2) gives
δ(P1P2) = δ(P1) + δ(P2) + 2δ(P1)δ(P2). In other words, we have the following lemma.

Lemma 4.3. δ defines a morphism of groups O2n → G. �

The schematic image of δ is the subgroup of G given by u(u + 1) = 0, isomorphic to
the constant Z-group scheme Z/2Z.

Definition 4.4. We define SO2n as the kernel of δ.

The group SO2n is smooth over Z with connected fibres. The closed subgroup scheme
T of diagonal matrices in SO2n is a maximal torus, we denote by t its Lie algebra
and by λi its coordinate functions. Its normalizer N is the closed subgroup scheme of
orthogonal monomial matrices. The Weyl group W = N/T is the semi-direct product
(Z/2Z)n−1 � Sn where Sn is the symmetric group on n letters. It acts on T as follows.
The subgroup (Z/2Z)n−1 is generated by the transformations εi,j which take λi and λj

to their opposite and leave all other λk unchanged. The subgroup Sn permutes the λi.
The action of W on t has analogous expressions that are immediate to write down.

4.1.3. The Pfaffian

Recall that there is a unique function on so2n, called the Pfaffian and denoted pf,
such that det(M) = (−1)n(pf(M))2. (The sign (−1)n comes from the fact that in our
context, the Pfaffian is pf ′(BM) where pf ′ is the usual Pfaffian and B is the matrix of
Remark 4.1.) Furthermore, the Pfaffian is invariant for the adjoint action of SO2n.

4.2. Invariants of the Weyl group

We denote by t the n-dimensional affine space with coordinate functions Xi, and by
W the group generated by the permutations of the coordinates and the reflections εi,j

which map Xi and Xj to their opposite and leave the other coordinates invariant. We
denote by σk the complete elementary symmetric functions in n variables.

Proposition 4.5. Let A be a ring, then A[t]W is generated by X1 · · ·Xn, σk(X2
i ), and

xσk(Xi), where k < n and x runs through the 2-torsion ideal of A.
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Proof. Let F be a function in X1, . . . , Xn which is invariant under the Weyl group. Let
us say that a monomial is good if the exponents of its variables Xi all have the same
parity (this is either a monomial in the X2

i , or X1 · · ·Xn times a monomial in the X2
i ).

We say that it is bad otherwise. We can write uniquely F as the sum of its good part
and its bad part:

F (X1, . . . , Xn) = F1(X2
1 , . . . , X2

n, X1 · · ·Xn) + F2(X1, . . . , Xn).

The group W respects this decomposition, hence F being W -invariant, its good and bad
parts also are. In particular they are Sn-invariant, so that

F (X1, . . . , Xn) = G1(σ1(X2
i ), . . . , σn−1(X2

i ), X1 · · ·Xn) + G2(σ1(Xi), . . . , σn(Xi)).

Letting the εi,j act, we see that all coefficients of G2 must be 2-torsion. The proposition
is therefore proved. �

4.3. Computation of the Chevalley morphism

In this subsection we will describe explicitly the invariants of so2n under SO2n that
correspond to the Weyl group invariants under Theorem 3.11, see Theorem 4.8 below.
The Lie algebra so2n has a universal matrix M whose most important attributes are
its characteristic polynomial χ and its Pfaffian pf = pf(M). In fact M and χ are the
restrictions of the universal matrix of gl2n and its characteristic polynomial. From the
equality tM B + BM = 0 (see Remark 4.1) it follows that χ is an even polynomial, that
is to say

χ(t) = det(t Id −M) = t2n + c2t
2n−2 + · · · + c2n.

The functions c2i are invariants of the adjoint action; note that

c2n = det(M) = (−1)n(pf(M))2.

There are some more invariants coming from characteristic 2. Indeed, in this case it
follows from Proposition 2.18 that homotheties belong to so2n and thus we can define
the Pfaffian characteristic polynomial by

πF2(t) = pf(t Id −MF2).

We have χF2(t) = (πF2(t))
2. Now let us consider one particular lift of πF2 to Z.

Definition 4.6. Let σ : F2 → Z be such that σ(0) = 0 and σ(1) = 1. The polynomial
π ∈ Z[so2n][t] is defined as π(t) = tn + π1t

n−1 + · · · + πn−1t + πn where πn := pf(M) and
the other coefficients πi (1 � i � n − 1) are the lifts of the corresponding coefficients of
πF2 via σ.

We note that for any ring A, the (images of the) elements π1, . . . , πn−1, πn are alge-
braically independent over A, because they restrict on a maximal torus to the functions
σi(Xj), the symmetric functions in the coordinates, which are themselves algebraically
independent over A. We defined the functions πi by arbitrary lifting, but we can make
them somehow universal.
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Proposition 4.7. Let O be the ring Z[X]/(2X) and denote by τ the image of X in O.
Then (O, τ) is universal among rings with a 2-torsion element. Moreover, any monomial
function τ(π1)α1 · · · (πn−1)αn−1 on so2n,O is independent of the choice of the lifts πi and
invariant under the adjoint action of SO2n,O. Finally, for each i ∈ {1, . . . , n} we have
τ(πi)2 = τc2i.

Proof. The universality statement about (O, τ) means that for any pair (A, x) where A

is a ring and x is a 2-torsion element of A, there is a unique morphism f : O → A such
that f(τ) = x. This is obvious. Since 2τ = 0, it is clear also that τ(π1)α1 · · · (πn−1)αn−1

is independent of the choice of πi. The fact that this monomial is invariant comes from
the invariance of the Pfaffian characteristic polynomial in characteristic 2. Finally, the
equalities τ(πi)2 = τc2i come from the equalities (πi)2 = c2i in characteristic 2. �

Proposition 4.7 implies in particular that for any ring A and any x ∈ A[2], the quantity
x(π1)α1 · · · (πn−1)αn−1 is a well-defined invariant function on so2n,A.

Theorem 4.8. Let A be a ring, G = SO2n,A, g = so2n,A. The ring of invariants A[g]G is

A[c2, c4, . . . , c2n−2, pf;x(π1)ε1 · · · (πn−1)εn−1 ],

where x runs through a set of generators of the 2-torsion ideal A[2] ⊂ A, and εi = 0 or
1, not all 0.

Proof. By Theorem 3.11 and Proposition 4.5, we have

A[g]G = A[σk(X2
i ); X1 · · ·Xn; xσk(Xi)],

where as before the Xi are the coordinate functions on the torus. We now use the pre-
vious proposition. Since c2k restricts on the torus to ±σk(X2

i ), the Pfaffian restricts to
X1 · · ·Xn, xπk restricts to xσk(Xi), and since xπ2

i = xc2i, the theorem is proved. �

The behaviour of the ring of invariants is therefore controlled by the 2-torsion. More
precisely, for a scheme S let S[2] be the closed subscheme defined by the ideal of 2-torsion.
If f : S′ → S is a morphism of schemes, we always have S′[2] ⊂ f∗S[2]. We have the
following corollary.

Corollary 4.9.

(1) The formation of the quotient in the previous theorem commutes with a base change
f : S′ → S if and only if f∗S[2] = S′[2]. This holds in particular if 2 is invertible
in OS , or if 2 = 0 in OS , or if S′ → S is flat.

(2) Assume that S is noetherian and connected. Then the quotient is of finite type
over S, and is flat over S if and only if S[2] = S or S[2] = ∅.

Proof. First we recall some general facts on the formation of the ring of invariants for
the action of an affine S-group scheme G acting on an affine S-scheme X. The formation
of X/G = Spec((OX)G) commutes with flat base change, and in particular with open
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immersions. It follows that if (Si) is an open covering of S then with obvious notation
Xi/Gi is an open set in X/G, and X/G can be obtained by gluing the schemes Xi/Gi.
Therefore, if (S′

i,j) is an open covering of Si ×S S′ for all i, the formation of the quotient
commutes with the base change S′ → S if and only if for all i, j the formation of the
quotient Xi/Gi commutes with the base change S′

i,j → Si. This reduces the proof to the
case of a base change of affine schemes S′ = Spec(A′) → S = Spec(A).

Call B (respectively B′) the ring of invariants over A (respectively A′). Observe that
B inherits a graduation from the graduation of the function algebra of so2n,A, and its
only homogeneous elements of degree 1 are those of the form xπ1 with x ∈ A[2]. We
proceed to prove (1) and (2).

(1) The base change morphism B ⊗A A′ → B′ is A′[c
¯
, pf, xπ

¯
ε] → A′[c

¯
, pf, x′π

¯
ε] where

c
¯

= (c2, c4, . . . , c2n−2), xπ
¯

ε = x(π1)ε1 · · · (πn−1)εn−1 , with x ∈ A[2],

and x′π
¯

ε is the same quantity with x′ ∈ A′[2]. This map is clearly injective. If it is
surjective, then in particular for any x′ ∈ A′[2] we have x′π1 ∈ A′[c

¯
, pf, xπ

¯
ε]. Thus there

is a′ ∈ A′ and x ∈ A[2] such that x′π1 = a′xπ1. Since π1 is a non-zero divisor we get
x′ = a′x, so A′[2] is the image of A[2]. This is exactly the assertion that f∗S[2] = S′[2].
The converse is easy, as well as the particular cases stated in assertion (1).

(2) If A is noetherian, A[2] is finitely generated and then B is of finite type over A. Now
let I := A[2]. If I = 0 then B is a polynomial ring, and this is also the case if I = A

because then c2, c4, . . . , c2n−2 are polynomials in pf(M), π1, . . . , πn−1. It remains to prove
that if B is flat over A then I = 0 or I = A. In this case the 2-torsion ideal of B is IB,
as we see from tensoring by B the exact sequence

0 → A/I
×2−−→ A → A/2A → 0.

So for any y ∈ I, we have yπ1 ∈ B[2] = IB hence we may write yπ1 = i1b1 + · · · + irbr

with ik ∈ I and bk ∈ B. Let xkπ1 be the degree 1 component of bk, then by taking
the components of degree 1 and using the fact that π1 is a non-zero divisor, we find
y = i1x1 + · · · + irxr ∈ I2. Thus I = I2, and if the spectrum of A is connected, this
implies I = 0 or I = A. �

5. The orthogonal group SO2n+1

For G = SO2n+1, the computation of the quotient is a little more involved since using the
natural representation of dimension 2n + 1 brings some trouble, as we explain below. We
show which point of view on SO2n+1 will lead to the definition of the correct invariants.
Then, the results are essentially the same as for G = SO2n.

5.1. Definition of SO2n+1

In this section, E is the free Z-module Z2n+1. Its standard quadratic form q is

q(v) = x1y1 + · · · + xnyn + z2,
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where v = (x1, y1, . . . , xn, yn, z). It is non-degenerate, and its polarization is

〈v, v′〉 = q(v + v′) − q(v) − q(v′) = x1y
′
1 + x′

1y1 + · · · + xny′
n + x′

nyn + 2zz′.

In contrast with the even-dimensional case, in characteristic 2 the polarization has a
non-zero radical which is the line generated by the last basis vector of E ⊗ F2.

Now, let Ẽ = Z2n+2 with canonical basis (e1, e
′
1, . . . , en+1, e

′
n+1) and standard

quadratic form defined (as in § 4.1) by q(v) = x1y1 + · · · + xn+1yn+1, where v =
(x1, y1, . . . , xn+1, yn+1). We consider the isometric embedding i : E ↪→ Ẽ given by

i(x1, y1, . . . , xn, yn, z) = (x1, y1, . . . , xn, yn, z, z).

Since i is an isometry, it is harmless to use the same letter for q and for q|E . The orthogonal
subspace of E in Ẽ is the free rank 1 submodule generated by the vector ε = en+1−e′

n+1.
Note that the group of transformations of (Ẽ, q) is the group O2n+2 as defined in § 4.1.
Then we define SO2n+1 as a closed subgroup scheme of SO2n+2 by

SO2n+1 = {P ∈ SO2n+2, P (ε) = ε}.

Accordingly, its Lie algebra is

so2n+1 = {M ∈ so2n+2, M(ε) = 0}.

It is a simple exercise to verify that so2n+1 ⊂ so2n+2 is a direct summand of the expected
dimension, so that SO2n+1 is a smooth group scheme over Z.

Remark 5.1. Let O(q|E) be the group of linear transformations of E that preserve q,
and SO(q|E) the kernel of the Dickson invariant. Since a matrix P ∈ SO2n+1 pre-
serves the line generated by ε, it preserves its orthogonal E. This leads to a morphism
SO2n+1 → SO(q|E). However, because of the existence of a one-dimensional radical in
characteristic 2, one can see that the fibre SO(q|E) ⊗ F2 is non-reduced and its reduced
subscheme is the closed subgroup scheme H of transformations that act as the identity
on the radical. Thus SO2n+1 → SO(q|E) is not an isomorphism. In fact, one may see that
this map realizes SO2n+1 as the dilatation of SO(q|E) with centre H. Recall from [4, 3.2]
that the dilatation is a map π : SO2n+1 → SO(q|E) which is universal for the properties:
SO2n+1 is Z-flat and its special fibre at 2 is mapped into H. It can be checked that
the dilatation is indeed smooth over Z and is the Chevalley orthogonal group. In this
formulation, the special orthogonal group is not naturally a group of matrices. This is
why we used another presentation. �

The closed subgroup scheme T ⊂ SO2n+2 of diagonal matrices fixing ε is a maximal
torus of SO2n+1, we denote by t its Lie algebra and by λi its coordinate functions. Its
normalizer N is the closed subgroup scheme of orthogonal monomial matrices fixing ε.
The Weyl group W = N/T is the semi-direct product (Z/2Z)n � Sn. It acts on T as
follows. The subgroup (Z/2Z)n−1 is generated by the transformations εi which take λi

to its opposite and leave all other λk unchanged. The subgroup Sn permutes the λi.
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5.2. Explicit computation of the Chevalley morphism

Let M be the universal matrix over so2n+1. Using the embedding of so2n+1 into so2n+2,
we define invariants by restriction from those of so2n+2 defined in § 4.3. For example, let
us view the universal matrix M as a matrix in so2n+2. Since M(ε) = 0, the determinant
of M vanishes and hence its characteristic polynomial in dimension 2n + 2 is

t2n+2 + c2t
2n + · · · + c2nt2.

We define the characteristic polynomial of M as

χ(t) = t2n+1 + c2t
2n−1 + · · · + c2nt.

Note that this is not the characteristic polynomial associated to an actual action on the
natural representation of dimension 2n + 1. Using again the embedding in so2n+2, we see
that in characteristic 2 we have again a polynomial π(t) defined uniquely by the identity
χF2(t) = t(πF2(t))

2. By abuse, we call it again Pfaffian characteristic polynomial. We
may define lifts of its coefficients by the same process as in Definition 4.6 and we obtain
a polynomial π(t) = tn + π1t

n−1 + · · · + πn−1t + πn where πi ∈ Z[so2n]. As in § 4.3, for
any ring A the elements π1, . . . , πn−1, πn are algebraically independent over A. In the
same way as in § 4.3, we prove the following proposition.

Proposition 5.2. Let (O, τ) be the ring defined in Proposition 4.7. Then any monomial
function τ(π1)α1 · · · (πn)αn on so2n+1,O is independent of the choice of the lifts πi and
invariant under the adjoint action of SO2n+1,O. Also, for each i ∈ {1, . . . , n} we have
τ(πi)2 = τc2i. �

So for any ring A and any x ∈ A[2], the quantity x(π1)α1 · · · (πn)αn is a well-defined
invariant function on so2n+1,A. Exactly the same proof as the proof of Theorem 4.8 gives
the following theorem.

Theorem 5.3. Let A be a ring and G = SO2n+1,A. Then the ring of functions of g/G is

A[c2, c4, . . . , c2n; x(π1)ε1 · · · (πn)εn ],

where x runs through a set of generators of the 2-torsion ideal A[2] ⊂ A, and εi = 0 or
1, not all 0. �

Finally, all the statements of Corollary 4.9 also hold word for word for G = SO2n+1.

6. The symplectic group Sp2n

The computation of the adjoint quotient and of the Chevalley morphism π : t/W → g/G

for Sp2n requires the preliminary computation of the corresponding quantity for the
group SL2. We also found it interesting to deal with the case of PSL2.
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6.1. Preliminary cases: SL2 and PSL2

We denote by ( a b
c −a ) the universal matrix of sl2; therefore A[a] is the ring of functions

on t over A. The same proof as that of Proposition 4.5 yields the following fact.

Fact 6.1. Let A be a ring, then A[t]W is equal to A[a2] ⊕ aA[2][a2].

We set det(a, b, c) = −a2 − bc. This fact and the next proposition show that we do not
have t/W � g/G.

Proposition 6.2. Let A be a ring, then A[sl2]SL2 = A[det].

Proof. The action of the diagonal matrix ( u 0
0 u−1 ) on the coordinate functions reads

a �→ a,

b �→ u2b,

c �→ u−2c.

⎫⎪⎬
⎪⎭ (6.1)

Any invariant polynomial can therefore be written as a polynomial in a and bc.
On the other hand, the action of the unipotent element ( 1 t

0 1 ) reads

a �→ a + tc,

b �→ b − 2ta − t2c,

c �→ c.

⎫⎪⎬
⎪⎭ (6.2)

Assume we have a homogeneous invariant of odd degree 2d + 1. Since it is a polynomial
in a and bc, it can be written as af(a2, bc), with f homogeneous of degree d. We consider
the identity

af(a2, bc) = (a + tc)f((a + tc)2, (b − 2ta − t2c)c),

and specialize to a = 0. We get tcf(t2c2, bc−t2c2) = 0 so f(t2c2, bc−t2c2) = 0. Performing
the invertible change of coordinates d = b + t2c, we therefore get f(t2c2, cd) = 0 =
cdf(t2c, d), from which it follows that f = 0.

Thus there are no invariants of odd degree and the image of the restriction morphism
is included in A[a2]. Since det is an invariant, this image is exactly A[a2], which implies
the proposition. �

We pass to PSL2. By Proposition 2.16 and its proof, the coordinate ring of psl2 over
A is A[α, b, c], where α = 2a.

Fact 6.3. Let A be a ring, then A[t]W is equal to A[α2] ⊕ αA[2][α2].

Proposition 6.4. Let A be a ring, then A[psl2]PSL2 = A[4 det] + αA[2][4 det].

Proof. We know from Theorem 3.6 that A[psl2]PSL2 injects into A[t]W = A[α2] ⊕
αA[2][α2]. On the other hand, 4 det = −α2−4bc is certainly an invariant in the coordinate
ring, as well as xα, if x ∈ A is a 2-torsion element, since by (6.2) α is mapped to α + 2tc

under the action of the unipotent element ( 1 t
0 1 ). Thus the proposition is proved. �
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6.2. Explicit computation of the Chevalley morphism

We denote by t the n-dimensional affine space with coordinate functions Xi, and W the
group generated by the permutations of the coordinates and the reflections εi which map
Xi to its opposite and leave the other coordinates invariant. Recall that σk denotes the
complete elementary symmetric functions in n variables. The same proof as for Proposi-
tion 4.5 yields the following proposition.

Proposition 6.5. Let A be a ring, then A[t]W is generated by σk(X2
i ) and xσk(Xi),

where k < n and x runs through the 2-torsion ideal of A. �
We denote by E the natural representation of G = Sp2n, of dimension 2n. By definition,

we therefore have a morphism G → GL(E), which also induces a morphism g → gl(E).
Let M be the universal matrix over gl(E), and let χ be its characteristic polynomial:

χ(t) = det(t Id −M) = t2n − c1t
2n−1 + c2t

n−2 + · · · + c2n.

Theorem 6.6. Let A be a ring and let G = Sp2n,A. Then the morphism π : t/W → g/G

is an isomorphism if and only if A has no 2-torsion. Moreover, the ring of functions of
g/G is

A[c2, c4, . . . , c2n].

The formation of the adjoint quotient g → g/G over a scheme S commutes with any base
change S′ → S.

Proof. Let G = Sp2n,A and g = Lie(G). By Theorem 3.6 and Proposition 6.5, A[g]G

is a subring of A[t]W = A[σk(X2
i ); x.σk(Xi)]. With the notation of Lemma 3.4, it is

also a subring of the image of A[h]H in A[σk(X2
i ); x.σk(Xi)]. The latter is A[σk(X2

i )] by
Proposition 6.2. Since c2k ∈ A[g]G maps to ±σk(X2

i ) ∈ A[t]W , the theorem is proved. �
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