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Sekiguchi-Suwa theory revisited

par Ariane MÉZARD, Matthieu ROMAGNY et Dajano TOSSICI

Résumé. Nous donnons une présentation de la construction due
à S. Sekiguchi et N. Suwa d’une isogénie cyclique de schémas
en groupes affines et lisses qui unifie les isogénies de Kummer
et d’Artin-Schreier-Witt. Nous effectuons la construction sur un
anneau de base arbitraire. Nous étendons les énoncés de certains
résultats de manière à en donner une forme adaptée à une re-
cherche future des modèles des schémas en groupes de racines de
l’unité.

Abstract. We present an account of the construction by S.
Sekiguchi and N. Suwa of a cyclic isogeny of affine smooth group
schemes unifying the Kummer and Artin-Schreier-Witt isogenies.
We complete the construction over an arbitrary base ring. We
extend the statements of some results in a form adapted to a
further investigation of the models of the group schemes of roots
of unity.

1. Introduction

Given a prime p and an integer n > 1, consider the problem of de-
scribing étale cyclic coverings of order pn of algebras, or schemes. Over
a field of characteristic 0, the Kummer isogeny provides such a covering
which is universal on local rings. Over a field of characteristic p, an isogeny
with the same virtues is given by the Artin-Schreier-Witt theory. In the
end of the nineties, T. Sekiguchi and N. Suwa gave the construction of an
isogeny of smooth affine n-dimensional group schemes over a discrete val-
uation ring of mixed characteristic, putting the Kummer isogeny and the
Artin-Schreier-Witt isogeny into a continuous family satisfying a certain
universality property. This is presented in the papers [SS1] and [SS3] and
we give a more detailed overview in Section 2 below.

The present paper is an account of this construction, with emphasis on
some features that we found especially interesting. We have three main
goals in writing such an account.
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accepté le 19 novembre 2013..
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Our first goal is to generalize their theory in such a way that it can handle
as many isogeny kernels as possible. The fact is that the formalism devel-
oped by Sekiguchi and Suwa in their series of papers in order to construct
a unification of the Kummer and Artin-Schreier theories provides us with
a machinery to handle many models of the group scheme of pn-th roots of
unity µpn . For this, we need to give some complements to the papers [SS1]
and [SS3] and make sure that the proofs of the generalized statements work.
The result is Theorem 6.2. Also, since the article [SS3] was never published,
we wanted to check thoroughly all the details so as to rely safely on it.

Our second goal is to emphasize the geometric nature of the construction.
Indeed, the assumption that the base is a discrete valuation ring is almost
useless in [SS1] and [SS3]. With suitable formulations, everything works over
an (almost) arbitrary Z(p)-algebra, and the result is a parameterization of
a nice family of affine smooth group schemes called filtered group schemes,
containing plenty of models of µpn . The parameter space is a countable
union of schemes of finite type over Z(p), as we prove in Theorem 5.1. We
show how to formulate things in this geometric, functorial way.

Our third goal is to propose a hopefully pleasant exposition of the theory,
with the idea that this tremendous piece of algebra deserves to be better
known. We introduce some terminology for important concepts when we
think that it may be enlightening (fundamental morphisms, framed group
schemes, Kummer subgroup). We focus on key points rather than lengthy
calculations. We emphasize the inductive nature of the intricate construc-
tions with an algorithmic presentation. We do not claim that reading our
text is a gentle stroll leading without effort to a transparent understand-
ing of the papers [SS1] and [SS3]. Rather, we hope that having a slightly
different viewpoint will help the interested reader to immerse into these
papers.

Summary of contents. We first present the main lines of the strategy
of Sekiguchi and Suwa to construct some affine smooth group schemes
embodying the unification of Kummer and Artin-Schreier-Witt theories.
(§1.1-1.3). Our aim is to describe as many isogenies as possible between
these groups, and to study their kernels (§1.4). We recall the necessary no-
tions on Witt vectors (§2). We define and classify framed formal groups by
a universal object (Theorem 3.2.9). We emphasize that the construction by
induction is given by an explicit and computable algorithm (§3). Section 4
is devoted to framed group schemes. In order to obtain algebraic objects we
have to truncate the previous formal objects carefully. At last, we consider
explicit isogenies between framed group schemes and we obtain the condi-
tion to define finite flat Kummer group schemes (§5). In Appendix A, we
compare Ext groups of sheaves in the small and big flat sites of a scheme.
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Notations. The roman and the greek alphabets do not contain enough
symbols for Sekiguchi-Suwa theory. Using the same letters for different
objects could not always be avoided. We tried our best to choose good
notations, but in some places they remain very heavy. In other places, we
changed slightly the notations of Sekiguchi and Suwa. We apologize for the
inconvenience.
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2. Overview of Sekiguchi-Suwa theory

2.1. Unifying Kummer and Artin-Schreier-Witt theories. Fix a
discrete valuation ring R with fraction fieldK of characteristic 0 and residue
field k of characteristic p > 0. Let Wn be the scheme of Witt vectors of
length n and Gm the multiplicative group scheme. The work of Sekiguchi
and Suwa provides an explicit construction of an isogeny Wn −→ Vn of
smooth affine n-dimensional group schemes over R with special fibre iso-
morphic to the Artin-Schreier-Witt isogeny

℘ : Wn,k −→Wn,k , x 7→ xp − x,

and generic fibre isomorphic to the Kummer-type isogeny

Θ : (Gm,K)n −→ (Gm,K)n , (x1, . . . , xn) 7→ (xp1, x
p
2x
−1
1 , . . . , xpnx

−1
n−1),

such that any pn-cyclic finite étale extension of local flat R-algebras is
obtained by base change from Wn −→ Vn. The isogeny Θ is essentially
equivalent to the usual one-dimensional isogeny x 7→ xp

n for the purposes
of Kummer theory, and is of course best-suited to the unification with
the Artin-Schreier-Witt theory. In the strategy of Sekiguchi and Suwa to
complete this goal, let us single out three steps:
(A) Describe a family of smooth n-dimensional group schemes that are
good candidates to be the domain and target of the sought-for isogeny
(this is done in Sections 3, 4, 5 of [SS3]). These are called filtered group
schemes.
(B) Choose suitably the parameters in the previous constructions so as to
produce a group scheme Wn (Section 8 of [SS3]) with a finite flat subgroup
scheme (Z/pnZ)R. This step requires R to contain the pn-th roots of unity.
(C) Compute the group Vn = Wn/(Z/pnZ) and the isogeny Wn → Vn
(Section 9 of [SS3]).
We will now present these steps in a little more detail.
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2.2. Filtered group schemes. Let us briefly describe Step (A), the de-
scription of the family of smooth group schemes relevant to the problem.
The groups are constructed with two guiding principles: firstly they are
models of (Gm,K)n, and secondly they are extensions of a group of the
same type in dimension one less by a 1-dimensional group, in the same
way as Wn,k is an extension of Wn−1,k by Ga,k. For n = 1, the smooth
models of Gm,K with connected fibres are known as some group schemes
Gλ = Spec(R[X, 1/(1 + λX)]), where λ ∈ R is a parameter (see the pa-
pers [WW] and [SOS]). Thus we are led to consider filtered group schemes
of type (λ1, . . . , λn) for various n-tuples of elements λi ∈ R, defined recur-
sively as the extensions of a group E of type (λ1, . . . , λn−1) by the group Gλn .
We see that in order to obtain the n-dimensional group schemes, we have
to describe the group Ext1(E ,Gλ) classifying such extensions. This is easy
when λ is invertible i.e. Gλ ' Gm,R, since one can prove easily by dévissage
that Ext1(E ,Gm,R) = 0. Therefore, in order to understand Ext1(E ,Gλ) we
must measure the difference between Gλ and Gm,R. This is done with an
exact sequence of sheaves on the small flat site

0 −→ Gλ −→ Gm,R
ρ−→ i∗Gm,R/λ −→ 0

where i : Spec(R/λR) −→ Spec(R) is the closed immersion (we make
the convention that all sheaves supported on the empty set are 0, e.g.
i∗Gm,R/λ = 0 if λ is invertible). The long exact sequence for the functor
Hom(E , ·) gives

. . . −→ Hom(E , i∗Gm,R/λ) −→ Hom(ER/λ,Gm,R/λ) −→ Ext1(E ,Gλ)
↓

. . .←− Ext1(E ,Gm)

Moreover we observe that we have an adjunction

Hom(E , i∗Gm,R/λ) ' Hom(i∗E ,Gm,R/λ)

in the small site. Since E is flat of finite presentation, and hence repre-
sentable in the small fppf site, then i∗E is representable by the group E|R/λ.
Therefore:

Hom(E , i∗Gm,R/λ) ' Hom(ER/λ,Gm,R/λ).
We want to underline a subtle point here. The groups of homomorphisms
and the groups of extensions Ext1 involved are calculated, a priori, in the
small fppf site. But, as showed in the Appendix A, it does not change
anything if we calculate the same groups in the big fppf site, which is the
case we are interested in.

Finally, since Ext1(E ,Gm,R) = 0 ([SS4, Example 2.7]), then

Ext1(E ,Gλ) ' Hom(ER/λ,Gm,R/λ)/ρ∗Hom(E ,Gm,R)
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(and Hom(ER/λ,Gm,R/λ) = 0 if λ is invertible, according to our previous
convention).

At this point, the problem becomes to describe the group
Hom(ER/λ,Gm,R/λ).

Technically, this is one of the key points of Sekiguchi and Suwa’s work.
This group of homomorphisms is parameterized by a suitable generaliza-
tion of the classical Artin-Hasse exponential series. It is therefore really in
the formal world that the crucial objects live, as formal power series sat-
isfying the important identities. Accordingly, the formal theory (the con-
struction of filtered formal groups) precedes, and is the inspiration for, the
algebraic theory (the construction of filtered group schemes). Here, it is
worth pointing out that the construction of extensions in the formal case
takes a slightly different turn, because no analogue of the exact sequence
0→ Gλ → Gm → i∗Gm → 0 is available. Instead one considers the compo-
sition

∂ : Hom(Ê , Ĝm) −→ H2
0 (Ê , Ĝλ) −→ Ext1(Ê , Ĝλ)

that associates to a morphism a Hochschild 2-cocycle and then the exten-
sion it gives rise to. The point is that in the algebraic case, the map ∂
is obtained as the connecting homorphism of a long exact cohomology se-
quence which is not available in the formal case, while in the formal case
the map ∂ is obtained using the surjective map H2

0 (Ê , Ĝλ) → Ext1(Ê , Ĝλ)
which tends to be zero in the algebraic case.

2.3. Finite flat subgroup schemes. Let us now make some comments
on Steps (B) and (C). Filtered group schemes E have filtered subgroup
schemes, obtained by successive extensions of subgroups. We will see that
their construction provides natural morphisms α : E → (Gm)n that are
model maps, that is to say, isomorphisms on the generic fibre. On the
generic fibre, these morphisms provide natural filtered subgroup schemes
of EK isomorphic to µpn,K : one just has to pullback via α the kernel of the
Kummer isogeny ΘK : (Gm,K)n → (Gm,K)n. By taking the closure in E ,
one produces interesting candidates to be finite flat models of µpn,K . If R
contains the pn-roots of unity, and for suitable choices of the parameters of
the extensions, one obtains a filtered group scheme E = Wn and a model
of µpn,K ' (Z/pnZ)K which turns out to be the constant group (Z/pnZ)R.
Sekiguchi and Suwa specialize to this case and study the quotient isogeny.
They prove that these objects realize the unification of the Kummer and
Artin-Schreier-Witt exact sequences.

2.4. Our presentation of the theory. Our personal interest does not
lie in one single model of µpn,K but in all possible models one can exhibit
(see the article [MRT]). It is therefore very important for us to leave the
parameters as free as possible. We call Kummer subschemes the subschemes
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G obtained by scheme-theoretic closure in the way described in 2.3. Then
the framework of Sekiguchi and Suwa allows to characterize when a Kum-
mer subscheme is finite locally free over the base ring R. In fact, the ’good’
object is the isogeny E → F = E/G itself, and we are able to construct
isogenies between filtered group schemes, whose kernels are the finite flat
models of µpn,K we are interested in.

If we incorporate the various choices of parameters into the definitions,
we obtain a notion of framed group scheme whose moduli problem is (tau-
tologically) representable by a scheme. This scheme is a nice parameter
space for filtered group schemes. It has a formal and an algebraic version.
We formulate things with this vocabulary.

Finally, we point out that almost no restriction on the base ring R is
necessary. In particular, it need not be a discrete valuation ring, not even an
integral domain. The only important point is that the parameters λi of the
successive extensions should be nonzerodivisors. Thus we work throughout
with an arbitrary Z(p)-algebra.

3. Witt vectors

The prime number p is fixed. This section is devoted to generalities on the
ring scheme of Witt vectors W . We first recall basic notations concerning
W and some of its endomorphisms. Then we define the formal completion of
W and study its stability under the endomorphisms defined before. Finally
we introduce various objects related to the scheme of Witt vectors over the
affine line. As a general rule, we keep the notations of the papers [SS3] and
[SS1].

3.1. Witt vectors. We briefly indicate our notations for the ring scheme
W of Witt vectors over the integers. The letters X,Y, Z,A denote infinite
vectors of indeterminates, with X = (X0, X1, . . . ), etc.

3.1.1. Ring scheme structure. The scheme of Witt vectors is

W = Spec(Z[Z0, Z1, . . . ]).

Its structure is defined using the Witt polynomials defined for all integers
r > 0 by:

Φr(Z) = Φr(Z0, . . . , Zr) = Zp
r

0 + pZp
r−1

1 + · · ·+ prZr.

The addition and multiplication of the Witt ring scheme are defined re-
spectively, on the function ring level, by the assignments Zr 7→ Sr(X,Y )
and Zr 7→ Pr(X,Y ), where

Sr(X,Y ) = Sr(X0, . . . , Xr, Y0, . . . , Yr),
Pr(X,Y ) = Pr(X0, . . . , Xr, Y0, . . . , Yr)
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are the unique polynomials with integer coefficients satisfying for all r > 0
the identities:

Φr(S0(X,Y ), . . . , Sr(X,Y )) = Φr(X0, . . . , Xr) + Φr(X0, . . . , Yr),
Φr(P0(X,Y ), . . . , Pr(X,Y )) = Φr(X0, . . . , Xr) Φr(X0, . . . , Yr).

3.1.2. Frobenius,Verschiebung,Teichmüller, T map. The ring scheme
endomorphism F : W → W called Frobenius is defined by the assignment
Zr 7→ Fr(X), where the Fr(X) = Fr(X0, . . . , Xr+1) are the unique polyno-
mials satisfying for all r > 0 the identities:

Φr(F0(X), . . . , Fr(X)) = Φr+1(X0, . . . , Xr+1).
The additive group scheme endomorphism

V : W = Spec(Z[X0, X1, . . . ])→W = Spec(Z[Z0, Z1, . . . ])
called Verschiebung is defined by the assignments Z0 7→ 0 and Zr 7→ Xr−1
for r > 1. Let A1 = Spec(Z[X0]) be the affine line over Z. Then the mul-
tiplicative morphism [ · ] : A1 → W called Teichmüller representative is
defined by the assignments Z0 7→ X0 and Zr 7→ 0 if r > 1.

An important role in Sekiguchi-Suwa theory is played by the morphism
T : W × W → W called (by us) the T map, defined by the assignment
Zr 7→ Tr(Y,X), where the Tr(Y,X) are the unique polynomials satisfying
for all r > 0 the identities:

Φr(T0(Y,X), . . . , Tr(Y,X))

= Y pr

0 Φr(X) + pY pr−1

1 Φr−1(X) + · · ·+ prYrΦ0(X).
Existence and uniqueness of the sequence

T (Y,X) = (T0(Y,X), T1(Y,X), . . . )
are granted by Bourbaki [B], § 1, no. 2, Prop. 2, applied to the ring Z[Y,X]
endowed with the endomorphism σ raising each variable to the p-th power.
Note that in [SS3] the notation for T (Y,X) is TYX, a notation that we will
also use. The morphism T is additive in the second variable i.e. gives rise
to a morphism T : W → End(W,+).

Some of these definitions are really more pleasant in terms of functors
of points. This is typically the case for the morphisms V , T and [ · ]. Let
us indicate them: given a ring A and Witt vectors a = (a0, a1, . . . ), x =
(x0, x1, . . . ) ∈ W (A), we have V (x) = (0, x0, x1, . . . ), [x0] = (x0, 0, 0, . . . )
and Tax =

∑
r>0 V

r([ar]x), see [SS3], Lemma 4.2.

3.2. Formal completion. The formal completion of the group scheme of
Witt vectors along the zero section is the subfunctor Ŵ ⊂W defined by:

Ŵ (A) df=
{

a = (a0, a1, a2, . . . ) ∈W (A),
ai nilpotent for all i, ai = 0 for i� 0

}
.
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This is the completion in Cartier’s sense (see [Ca]); note that in infinite
dimension, several reasonable definitions of completion exist (a different
one may be found for example in [Ya], example 3.24).

Lemma 3.1. The formal completion Ŵ is an ideal of W .

Proof. We introduce a filtration of Ŵ by subfunctors ŴM,N (M,N > 1
integers) with

ŴM,N (A) =
{
a ∈W (A), ai = 0 for i >M and (ai)N = 0 for i > 0

}
.

It is clear that this filtration is exhaustive. Hence it is enough to prove that
for all M,N there exist M ′, N ′ such that ŴM,N + ŴM,N ⊂ ŴM ′,N ′ and
W ×ŴM,N ⊂ ŴM ′,N ′ . The proof in the two cases is very similar, so we will
treat only the case of the sum.
Step 1: we may assume that p is invertible in the base ring. Indeed, ŴM,N

is a closed subfunctor of Ŵ which is representable by a finite flat Z-scheme.
So if the addition map on ŴM,N factors over Z[1/p] through some ŴM ′,N ′ ,
then by taking scheme-theoretic closures one finds that it factors through
ŴM ′,N ′ over Z as well.
Step 2: let (X,Y ) be the universal point of WM,N × WM,N , where X =
(X0, X1, . . . ) and Y = (Y0, Y1, . . . ). Then the coefficients of the sum S =
X + Y are nilpotent. This is clear, since for each i the coefficient Si is a
polynomial in the Xj , Yj .
Step 3: for all i > r := M − 1 + logp(N), we have Φi(S) = 0. Indeed, we
have

Φi(X) =
i∑

j=0
pj(Xj)p

i−j =
M−1∑
j=0

pj(Xj)p
i−j = 0

since j 6 M − 1 implies that pi−j > pi−M+1 > pr−M+1 > N . Similarly we
have Φi(Y ) = 0 and hence Φi(S) = Φi(X) + Φi(Y ) = 0.
Step 4: by Step 2, let P be such that (S0)P = · · · = (Sr−1)P = 0. Then
Si = 0 for all i > logp((P − 1)(1 + p + · · · + pr−1)). For the weight w
such that w(Xi) = w(Yi) = pi, the element Si is homogeneous of weight
pi. Since p is invertible, using Step 3 and induction we see that for all
i > r, the element Si is a polynomial in S0, . . . , Sr−1. By the choice of
P , a monomial (S0)j0 . . . (Sr−1)jr−1 will be nonzero only if all exponents
j0, . . . , jr−1 are less than P−1, hence the weight is j0+pj1+· · ·+pr−1jr−1 6
(P − 1)(1 + p+ · · ·+ pr−1). We get the claim by contraposition.
Step 5: conclusion. By Step 4, we can take M ′ = logp((P − 1)(1 + p+ · · ·+
pr−1)) and the existence of N ′ is given by Step 2. �

Remark 3.1. In Sections 5 and 6, we try to give a presentation of Sekiguchi-
Suwa theory adapted to computations. In particular, in Lemma 5.1 we give
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an explicit degree of truncation for the Artin-Hasse exponentials that is
sufficient to compute filtered group schemes. It is equally desirable to have
explicit bounds for the number of nonzero terms of the Witt vectors that
appear, but this desire is in fact limited by the difficulty to give a reason-
ably explicit bound for the number of nonzero coefficients of the sum of
two Witt vectors, as we saw in the proof of Lemma 3.1.

Lemma 3.3. The formal completion Ŵ is stable under F and V .

Proof. For V there is nothing to say, and for F the strategy of the proof of
Lemma 3.1 works almost unchanged. �

Lemma 3.4. LetW f be the subfunctor ofW composed of Witt vectors with
finitely many nonzero coefficients. Then T induces a morphism W f ×Ŵ →
Ŵ .

We point out that W f has no (additive or whatever) structure.

Proof. Using the formulas Tax =
∑
r>0 V

r([ar]x) and

[a]x = (ax0, a
px1, a

p2
x2, . . . ),

this is obvious. �

3.3. Witt vectors over the affine line. Let A1 = Spec(Z[Λ]) be the
affine line over the integers, and let i : Spec(Z) ↪→ A1 be the closed im-
mersion of the origin, given by Λ = 0. In the paper [SOS], the study of the
multiplicative group scheme over the affine line leads to introduce a certain
group scheme GΛ (the notation in loc. cit. is G(λ)). In this section, follow-
ing Sekiguchi and Suwa (see especially [SS2], sections 1.15, 1.21 and 4.4),
we expand the idea behind the introduction of this group scheme, because
when we consider a group scheme over A1 (favourite examples are Gm or
W ), the groups of elements vanishing at the origin and those supported at
the origin are especially important. In this way, we introduce a W -module
scheme WΛ. We recall the definition of GΛ which fits in the same frame-
work. Note that we simplify the notations F (Λ), G(Λ), α(Λ), W (Λ) from the
papers [SOS], [SS2], [SS3] to FΛ, GΛ, αΛ, WΛ.

In the proposition below and throughout the paper, what we call the
small flat site Xfl of a scheme X is the category of flat locally finitely
presented X-schemes endowed with the topology generated by the families
{Ui → U}i∈I such that qUi → U is faithfully flat and locally finitely
presented. A discussion of the comparison with the big flat site can be
found in Appendix A.

Proposition 3.1. Let A1 = Spec(Z[Λ]) be the affine line over the integers,
and let i : Spec(Z) ↪→ A1 be the closed immersion given by Λ = 0. Let A1

fl
denote the small flat site of A1.
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(1) The canonical morphism Gm → i∗Gm fits into an exact sequence

0 −→ GΛ αΛ
−→ Gm −→ i∗Gm −→ 0

of abelian sheaves on A1
fl, where GΛ is a flat commutative group scheme.

(2) The canonical morphism W → i∗W fits into an exact sequence

0 −→WΛ Λ−→W −→ i∗W −→ 0
of abelian sheaves on A1

fl, where WΛ is a flat W -module scheme. Here, the
scheme WΛ has the same underlying scheme as W and the first map is

x = (x0, x1, x2, . . . ) 7→ Λ.x := (Λx0,Λx1,Λx2, . . . ).

An algebra R and an element λ ∈ R define an R-point Spec(R) → A1.
The pullbacks of αΛ and Λ : WΛ →W along this point give a morphism of
R-group schemes which we will denote αλ : Gλ → Gm and a morphism of
R-schemes in W -modules which we will denote λ : W λ →W .

Proof. We treat only case (2), since case (1) is similar and even simpler.
The scheme WΛ and the map Λ : WΛ → W are defined in the statement.
These fit into an exact sequence, functorial in the flat Z[Λ]-algebra R:

0 −→WΛ(R) Λ−→W (R) −→ (i∗W )(R) = W (R/ΛR) −→ 0.
Thus the map Λ identifies WΛ(R) with the ideal of W (R) of vectors all
whose components are multiples of Λ. It follows that for all u, v ∈ WΛ(R)
and a ∈ W (R), the sum u + v and the product au, computed in W (R),
again lie in this ideal. By taking for R the function ring of WΛ, we see that
the universal polynomials giving Witt vector addition and multiplication

S0(Λ.u,Λ.v), S1(Λ.u,Λ.v), S2(Λ.u,Λ.v), . . .
P0(Λ.a,Λ.v), P1(Λ.a,Λ.v), P2(Λ.a,Λ.v), . . .

are divisible by Λ, that is Si(Λ.u,Λ.v) = ΛS′i(u, v) and Pi(Λ.a,Λ.u) =
ΛP ′i (a, u). By flatness, the polynomials S′i and P ′i are uniquely determined
and they define the W -module structure on the scheme WΛ. �

Remark 3.2. We could also define WΛ and GΛ as dilatations of W and
Gm along the respective unit sections of the special fibre Λ = 0. When
the base ring is a discrete valuation ring R, the dilatation of an R-scheme
X along a closed subscheme of the special fibre is defined in Chapter 3 of
[BLR]. The same construction works in the following more general setting.
Consider a base scheme S, a Cartier divisor S0 = V (I), an S-scheme X,
and a closed subscheme Y0 of X0 = X×S S0. Then there exists a morphism
of S-schemes u : X ′ → X where X ′ is an S-scheme without I-torsion such
that u(X ′0) ⊂ Y0, and which is universal with these properties. The scheme
X ′ is called the dilatation of X along Y0.
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We close the section with a lemma that plays a key role in the develop-
ment of the theory.

Lemma 3.7. Let W be the ring scheme of Witt vectors over the affine line
A1 = Spec(Z[Λ]). Then, the additive endomorphism FΛ := F − [Λp−1] :
W →W is faithfully flat.

Of course, here again, for an algebra R and an element λ ∈ R we obtain
a faithfully flat endomorphism F λ : WR →WR.

Proof. See [SS1], Prop. 1.6 and Cor. 1.7-1.8, and [SS3], Lemma 4.5. �

4. Formal theory

In Subsection 4.1, we introduce the deformed Artin-Hasse exponentials
studied by Sekiguchi and Suwa. These power series satisfy important iden-
tities that allow to construct formal filtered group schemes by successive
extensions. This is explained in 4.2, with Theorem 4.2 summarizing the
main properties of the construction.

4.1. Deformed Artin-Hasse exponentials. In order to describe the
homomorphisms from formal filtered group schemes (introduced in Subsec-
tion 5.3) to the formal multiplicative group Ĝm, we will need some deforma-
tions of Artin-Hasse exponentials. For simplicity, we will call them deformed
exponentials. In the non-formal case, we will also need some truncations of
these series. We introduce all these objects here.

Given indeterminates Λ, U and T , we define a formal power series in T
with coefficients in Q[Λ, U ] by

Ep(U,Λ, T ) = (1 + ΛT )
U
Λ

∞∏
k=1

(1 + ΛpkT pk)
1
pk

(
(UΛ )p

k

−(UΛ )p
k−1)

.

It satisfies basic properties such as Ep(0,Λ, T ) = 1 and Ep(MU,MΛ, T ) =
Ep(U,Λ,MT ), whereM is another indeterminate. It is a deformation of the
classical Artin-Hasse exponential Ep(T ) =

∏∞
k=0 exp(T pk/pk) in the sense

that Ep(1, 0, T ) = Ep(T ). Given a vector of indeterminates
U = (U0, U1, . . . ),

we define a power series in T with coefficients in Q[Λ, U0, U1, . . . ] by

(4.1) Ep(U,Λ, T ) =
∞∏
`=0

Ep(U`,Λp
`
, T p

`).

It is proven in [SS1], Cor. 2.5 that the series Ep(U,Λ, T ) and Ep(U,Λ, T )
are integral at p, that is, they have their coefficients in Z(p)[Λ, U ] and
Z(p)[Λ, U0, U1, . . . ] respectively. It follows that given a Z(p)-algebra A, el-
ements λ, a ∈ A and a = (a0, a1, . . . ) ∈ AN, we have specializations
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Ep(a, λ, T ) and Ep(a, λ, T ) which are power series in T with coefficients
in A. We usually consider a as a Witt vector, i.e. as an element in W (A).
One must however be aware that since W (A) has the extra structure of a
ring, this introduces the slight ambiguity that Ep(a, λ, T ) might be inter-
preted as the result of specializing U to a in the series Ep(U,Λ, T ), resulting
in a series with coefficients in W (A) (note that if A is a Z(p)-algebra then
so is W (A)). However, in Sekiguchi-Suwa theory the symbol Ep(a, λ, T ) al-
ways denotes a specialization of Ep(U,Λ, T ) so that no confusion can come
up.

Now we borrow some terminology from Fourier analysis.

Definition. Let A be a Z(p)-algebra, λ ∈ A an element and k > 1 a prime-
to-p integer. A series of the form Ep(a, λ, T k) is called a k-th harmonic and
a 1-st harmonic is also called a fundamental. A morphism Ĝλ → Ĝm defined
by a fundamental is called a fundamental morphism.

The significance of this terminology is explained by the following easy
lemma, which is stated as Remark 2.10 in [SS1] without proof. We give a
proof for the reader’s convenience.

Lemma 4.2. Let A be a Z(p)-algebra and λ ∈ A. Then every formal power
series G ∈ A[[T ]] such that G(0) = 1 may be decomposed uniquely as a
product of harmonics. More precisely, there exist unique vectors

ak = (ak0, ak1, . . . ) ∈W (A)
for all prime-to-p integers k, such that G(T ) =

∏
p-k Ep(ak, λ, T k).

Proof. The claim will follow simply from the fact that Ep(U,Λ, T ) ≡ 1+UT
mod T 2. Write G(T ) = 1 + g1T + g2T

2 + . . . and let v : N \ {0} → N be the
p-adic valuation. We prove by induction on n > 1 that there exist unique
elements b1, . . . , bn in A such that

G(T )Ep(b1, λp
v(1)

, T )−1Ep(b2, λp
v(2)

, T 2)−1 . . . Ep(bn, λp
v(n)

, Tn)−1

≡ 1 mod Tn+1.

For n = 1 we have G(T ) ≡ 1 + g1T mod T 2 and then it is necessary and
sufficient to put b1 = g1. If the claim is proven for n > 1, then we have

G(T )
n∏
i=1

Ep(bi, λv(i), T i)−1 ≡ 1 + cn+1T
n+1 mod Tn+2

for some cn+1 ∈ A, and it is necessary and sufficient to put bn+1 = cn+1.
Finally we obtain

G(T ) =
∞∏
i=1

Ep(bi, λp
v(i)
, T i)

and the claim follows by defining ak := (bk, bkp, bkp2 , . . . ). �
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Let A1 = Spec(Z(p)[Λ]) be the affine line over the p-integers. We finally
remark that, generalizing what happens for the classical Artin-Hasse ex-
ponential (see [SS1], Corollary 2.9.1), the exponential Ep(U,Λ, T ) gives a
homomorphism

WA1 −→ ΛA1 ,

where ΛA1 = Spec(Z(p)[Λ, X1, . . . , Xn, . . . ]) is the A1-group scheme whose
group of R-points, for any Z(p)[Λ]-algebra R, is the abelian multiplicative
group 1+TR[[T ]]. The above homomorphism is in fact a closed immersion,
and by the above lemma there is an isomorphism∏

p-k
WA1

∼−→ ΛA1 .

4.2. Construction of framed formal groups. Let R be a Z(p)-algebra
and let λ1, λ2, . . . be elements of R.

Definition. A filtered formal R-group of type (λ1, . . . , λn) is a sequence

Ê0 = 0, Ê1, . . . , Ên
of affine smooth commutative formal group schemes such that for each
i = 1, . . . , n the formal group Êi is an extension of Êi−1 by Ĝλi .

We now indicate a procedure due to Sekiguchi and Suwa for constructing
filtered formal groups. It works under the following:

Assumption 4.1. The elements λ1, λ2, . . . are not zero divisors in R.

The procedure involves some choices which we take into account by in-
troducing notions of frames and framed formal groups. In this way, the
refined procedure becomes universal. We adapt the construction of [SS3]
accordingly.

LetW be the R-group scheme of infinite Witt vectors. For each λ ∈ R, we
have the morphisms of R-group schemes αλ : Gλ → Gm and λ : W λ → W
introduced in Subsection 3.3. For each integer n > 1, we have a product
morphism λ × · · · × λ : (W λ)n → Wn which by abuse we again denote by
the symbol λ.

4.2.1. Description of the procedure. Before we define all the objects
more precisely, it may help the reader to have a loose description of the
construction. We will define by induction a sequence of quadruples

(en, Dn−1, Ên, Un)
for n > 1, where:

• en = (an, bn) is a frame, that is, a point of a certain fibred product
Frn−1, a closed subscheme of Wn−1 × (W λ)n−1. Frames are the
parameters of the construction, to be chosen at each step.
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• Dn−1 : Ên−1 → Ĝm is a morphism of formal R-schemes which mod
λn induces a morphism of formal (R/λnR)-groups.
• Ên is a commutative formal group extension of Ên−1 by Ĝλn such
that the map αÊn : Ên → (Ĝm)n defined on the points by

(x1, . . . , xn) 7→ (D0 + λ1x1, D1 + λ2x2, . . . , Dn−1 + λnxn)
is a morphism of formal groups, where Di = Di(x1, . . . , xi) for the
natural coordinates x1, . . . , xi on Êi.
• Un : Wn →Wn is a morphism of R-group schemes.

4.2.2. Initialization. The induction is initialized at n = 1. Let W 0 = 0
and Ê0 = 0. We set e1 = (0, 0), D0 : Ê0 → Ĝm equal to 1, Ê1 = Ĝλ1 and
U1 = F λ1 : W →W (see Lemma 3.7).

4.2.3. Induction. For the inductive step of the construction, we assume
that (ei, Di−1, Êi, U i) has been constructed for 1 6 i 6 n and we explain
how to produce (en+1, Dn, Ên+1, U

n+1). For this, we introduce frames. Let
λ ∈ R be a nonzerodivisor and consider the morphism

Un − λ : Wn × (W λ)n →Wn

taking an element (an+1, bn+1) ∈Wn × (W λ)n to Un(an+1)− λ.bn+1.

Definition. A λ-frame (relative to En) is an R-point en+1 = (an+1, bn+1)
of the kernel of Un − λ. The scheme of frames of dimension n is Frn =
ker(Un − λ).

Now the induction goes in four steps A-B-C-D.

A. Choose a λn+1-frame en+1 = (an+1, bn+1) ∈ Frn(R).

B. The main input of Sekiguchi-Suwa theory lies in the definition and
properties of Dn. Let A be an R-algebra. Let us extend the terminology
of Definition 4.1 by calling a morphism of formal A-schemes Ên,A → Ĝm,A

fundamental if it is a product of Artin-Hasse exponentials
Ep(an+1

1 , λ1, X1/D0)Ep(an+1
2 , λ2, X2/D1) . . . Ep(an+1

n , λn, Xn/Dn−1)

for some n-tuple of Witt vectors an+1 = (an+1
1 , . . . ,an+1

n ) ∈W (A)n. Then,
we have:

Theorem 4.1. Denote by FS/R the category of formal R-schemes and by
FG/R the category of formal R-groups. Then with the above notation we
have:
(1) The deformed Artin-Hasse exponentials define a monomorphism of R-
group functors

Fund : Wn −→ HomFS/R(Ên, Ĝm)
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taking an n-tuple of Witt vectors an+1 = (an+1
1 , . . . ,an+1

n ) ∈W (A)n to the
corresponding fundamental morphism

∏n
i=1 Ep(an+1

i , λi, Xi/Di−1). Here,
the group law on the target is induced by the group law of Ĝm.
(2) The map Fund induces an isomorphism of R-group functors

ker(Un : Wn →Wn) ∼−→ HomFG/R(Ên, Ĝm).

In particular, any morphism of formal R-groups Ên → Ĝm is fundamental.

Proof. Point (1) is [SS1], Corollary 2.9 and point (2) is [SS3], Theorem 5.1.
�

It follows from the definition of a frame and from point (2) of the the-
orem that if we take for an+1 the first component of the frame en+1 =
(an+1, bn+1) chosen in Step A, then an+1 lies in the kernel of Un modulo
λn+1 and the fundamental morphism of formal R-schemes

Dn =
n∏
i=1

Ep(an+1
i , λi, Xi/Di−1)

induces modulo λn+1 a morphism of formal (R/λn+1R)-groups.

C. We now build Ên+1. Since Dn gives a morphism of formal (R/λn+1R)-
groups, then the expression Dn(X)Dn(Y )Dn(X ? Y )−1 − 1 vanishes mod
λn+1, where X ?Y denotes the group law in Ên. Since λn+1 is a nonzerodi-
visor, this implies that

Hn(X,Y ) = 1
λn+1

(
Dn(X)Dn(Y )
Dn(X ? Y ) − 1

)
is well-defined. It is a symmetric 2-cocycle Ên × Ên → Ĝλ i.e. an element
of the Hochschild cohomology group H2

0(Ên, Ĝλ) of symmetric 2-cocycles.
From a 2-cocycle we can construct an extension of Ên by Ĝλ in the usual
way: this is Ên+1.

D. Define Un+1 : Wn+1 →Wn+1 by the matrix

Un+1 =


−Tbn+1

1

Un
...

−Tbn+1
n

0 . . . 0 F λn+1

 .
With the following definition and theorem, we point out that this con-

struction is universal:
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Definition. A framed formal R-group of type (λ1, . . . , λn) is a sequence

Ê0 = 0, (Ê1, e1), . . . , (Ên, en)

of pairs composed of an affine smooth commutative formal group scheme
and a frame, such that for each i = 1, . . . , n the formal group scheme Êi is
the extension of Êi−1 by Ĝλi determined by the λi-frame ei. We often write
Ên as a shortcut for this data.

Theorem 4.2. Let An = Spec(Z(p)[Λ1, . . . ,Λn]) be affine n-space over Z(p).
Then there exists an affine flat An-scheme Sn = Spec(Rn) and a framed
formal Rn-group Ên of type (Λ1, . . . ,Λn) with the following universal prop-
erty : for any Z(p)-algebra R, any nonzerodivisors λ1, . . . , λn ∈ R and any
framed formal R-group Ên of type (λ1, . . . , λn), there exists a unique map
Rn → R taking Λi to λi such that Ên ' Ên ⊗Rn R.

Proof. The proof is almost tautological, because framed formal groups are
more or less by construction pullback of a universal one. Let us however
sketch it. What we have to do is to carry out the induction as before, in a
universal way. Let W 0 = 0 and Ê0 = 0.

For n = 1 we put R1 = Z(p)[Λ1], e1 = (0, 0), D0 = 1, Ê1 = ĜΛ1 and
U1 = FΛ1 : W →W .

Once Si, ei, Di−1, Êi and U i have been constructed for 1 6 i 6 n, we
find Sn+1, en+1, Dn, Ên+1 and Un+1 as follows. We take as a base ring
the ring R′ := Rn ⊗ Z(p)[Λn+1]. We define Sn+1 as the scheme of frames
Frn = ker(Un − Λn+1), and we set en+1 equal to the universal point of
S n+1. Note that since Un is given by a triangular matrix whose diagonal
entries are flat morphisms by Lemma 3.7, it follows immediately that it is
a flat morphism. By the definition of Sn+1 as the fibred product

Sn+1 //

��

(WΛn+1)n

Λn+1
��

Wn Un // Wn

we see that it is flat over (WΛn+1)n, hence flat over An+1. It follows that
Λn+1 is not a zerodivisor in the function ring Rn+1 of Sn+1. Now the
coefficient an+1 of the frame en+1 determines a fundamental morphism

Dn =
n∏
i=1

Ep(an+1
i ,Λi, Xi/Di−1),

a 2-cocycle

Hn(X,Y ) = 1
Λn+1

(
Dn(X)Dn(Y )
Dn(X ? Y ) − 1

)
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and then an extension Ên+1 in the same way as before. The coefficient bn+1

of the frame determines a matrix Un+1 by the same formula as in Step D of
the induction. Once the construction is over, the verification of the universal
property is immediate. �

5. Algebraic theory

In this section, we show how to adapt the formal constructions in order
to provide (algebraic) filtered group schemes. This is done by truncating the
power series and the Witt vector coefficient in a suitable way. We give some
preliminaries on truncations in Subsections 5.1 and 5.2. Then we proceed
to construct filtered group schemes in 5.3, with Theorem 5.1 as the final
point.

5.1. Truncation of deformed Artin-Hasse exponentials. In order to
produce non-formal group schemes, we will need the deformed exponentials
to be polynomials. We can achieve this either by letting enough coefficients
specialize to nilpotent elements, or by truncating. We know from [SS3],
Prop. 2.11 that if Λ, U0, U1, . . . specialize to nilpotent elements, only finitely
many of them nonzero, then Ep(U,Λ, T ) specializes to a polynomial. In the
following lemma, we give an exact bound for the degree of this polynomial,
in terms of bounds on the number of nonzero coefficients and the nilpotency
indices.

Lemma 5.1. Let L,M,N > 1 be integers. Then if we reduce the coefficients
of the deformed exponential Ep(U,Λ, T ) modulo the ideal generated by

ΛL, (U0)N , (U1)N , . . . , (UM−1)N , UM , UM+1, . . .

then the series Ep(U,Λ, T ) is a polynomial in T of degree at most

(N − 1)p
M − 1
p− 1 + (L− 1).

Proof. For each `, we have Ep(U`,Λp
`
, T p

`) = Ep(U`T p
`
,Λp`T p` , 1). It fol-

lows that the latter series is a sum of monomials of the form
(U`T p

`)i(Λp`T p`)j

for varying i, j. Now let us take images in the indicated quotient ring. There,
for all ` >M we have U` = 0 and Ep(U`,Λp

`
, T p

`) = 1. It follows that only
the first M factors show up in the product defining Ep(U,Λ, T ). A typical
monomial in this series is obtained by picking a monomial of index i`, j` in
each factor; the result is the product of

(U0)i0(U1)i1 . . . (UM−1)iM−1 × T i0+i1p+···+iM−1p
M−1

by
Λj0+j1p+···+jM−1p

M−1 × T j0+j1p+···+jM−1p
M−1

.
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For this to be nonzero, we must have i` 6 N − 1 for each ` and
j0 + j1p+ · · ·+ jM−1p

M−1 6 L− 1
for each (j0, . . . , jM−1). Thereby the T -degree of the monomial is less than

(N − 1)(1 + p+ · · ·+ pM−1) + (L− 1),
which is what the lemma claims. �

Definition. Let L,M,N > 1 be integers and let τL,M,N be the truncation
map of power series in degrees > (N − 1)p

M−1
p−1 + (L − 1) + 1. Then the

polynomial

EL,M,N
p (U,Λ, T ) df= τL,M,NEp(U,Λ, T ) ∈ Z(p)[Λ, U0, U1, . . . ][T ]

is called the truncated (deformed) exponential of level (L,M,N).

5.2. Truncation of Witt vectors. We will make big use of the functor
Ŵ and its pushforward i∗Ŵ by the closed immersion i : Spec(Z) ↪→ A1 =
Spec(Z[Λ]). Since Ŵ is naturally filtered, this leads to consider various
truncations of W and Ŵ , over Spec(Z) and over A1. In order to define
them, we fix integers M,N > 1.

5.2.1. Truncation by the length.
(1) WM is the Z-subfunctor of W defined by WM (A) = {a ∈ W (A), ai =
0 for i >M}. We emphasize that it is of course not a subgroup functor; it
should not be confused with the quotient ring of Witt vectors of length N ,
which will not appear in the present paper.
(2) WΛ

M is the A1-subfunctor of WΛ defined by

WΛ
M (A) = {a ∈WΛ(A), ai = 0 for i >M}.

(3) ŴM = Ŵ ∩WM is a Z-subfunctor of Ŵ .

5.2.2. Truncation by the nilpotency index.
(4) WM,N,Λ ⊂WM is the A1-subfunctor defined by

WM,N,Λ(A) = {a ∈WM (A), (ai)N ≡ 0 mod Λ for all i}.

(5) ŴM,N = WM,N,0 ⊂ ŴM is the Z-subfunctor of ŴM introduced in the
proof of Lemma 3.1.

We view all these functors as sheaves over the small flat sites Spec(Z)fl
and A1

fl. Then WM and WΛ
M are representable by M -dimensional affine

spaces over Spec(Z), ŴM,N is representable by a finite flat Z-scheme, and
WM,N,Λ is representable by a scheme which is a finite flat NM -sheeted cover
of an M -dimensional affine space over A1. Of these statements, only the
last deserves a comment. The basic observation is that the sheaf F on A1

fl
defined by F (A) = {a ∈ A, aN ≡ 0 mod Λ} is represented by the scheme
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Spec(Z[Λ][u, v]/(uN − Λv)), and then WM,N,Λ is obviously represented by
the M -fold product of F .

5.3. Construction of framed group schemes. Here, we build framed
group schemes. The precise argument developed in the 2-dimensional case
in [SS2] explains how to proceed in higher dimensions.

Let R be a Z(p)-algebra and λ1, λ2, . . . elements of R. Filtered R-group
schemes are defined just like their formal analogues in Definition 4.2.

Definition. A filtered R-group scheme of type (λ1, . . . , λn) is a sequence
E0 = 0, E1, . . . , En

of affine smooth commutative group schemes such that for each i = 1, . . . , n
the group scheme Ei is an extension of Ei−1 by Gλi .

Assumption 5.1. The elements λ1, λ2, . . . are not zero divisors in R, and
λi is nilpotent modulo λi+1 for each i > 1.

We will see that under this assumption, and provided we make suitable
truncations, the procedure described in Subsection 4.2 in the formal case
gives filtered group schemes. In order to carry out the construction, we fix
positive integers L1, L2, . . . such that (λi)Li ∈ λi+1R for all i > 1. We also
fix a pair of positive integers (M,N) serving as a truncation level.

5.3.1. Description of the procedure. Contrary to the formal situation,
here the polynomials giving the fundamental morphisms Di will not be
invertible over R but only over R/λi+1. Because the inductive definition
of the Di requires lifts of the inverses, we have to consider such lifts to be
part of the data that we need to produce. So this time, the n-th step of
the induction will produce 5-tuples (en, Dn−1, D

−1
n−1, En, Un) where, more

precisely:
• en = (an, bn) is a frame, that is, a point of a certain fibred prod-
uct Frn−1, a closed subscheme of the product of (WM,N,λn)n−1 by
(W λn

Mn
)n−1, where Mn is an integer used below. Frames are the pa-

rameters of the construction, to be chosen at each step.
• Dn−1, D

−1
n−1 : En−1 → A1 are truncated deformed exponentials, that

is morphisms of R-schemes which mod λn induce mutually inverse
morphisms of (R/λnR)-group schemes En−1 → Gm.
• En is a commutative R-group scheme extension of En−1 by Gλn , with
underlying scheme

En = Spec
(
R

[
X1, . . . , Xn,

1
D0 + λ1X1

, . . . ,
1

Dn−1 + λnXn

])
,

such that the map αEn : En → (Gm)n defined on the points by
(x1, . . . , xn) 7→ (D0 + λ1x1, D1 + λ2x2, . . . , Dn−1 + λnxn)
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is a morphism of R-group schemes.
• Un : (WM,N,λn+1)n → (WMn,Nn,λn+1)n is a morphism of R-schemes
represented by a square matrix of size n, whereMn, Nn are integers.

5.3.2. Initialization. We setW 0 = (WM,N )0 = 0 and E0 = 0. The induc-
tion is initialized at n = 1 by setting e1 = (0, 0),D0 = D−1

0 : E0 → Gm ⊂ A1

equal to 1, and E1 = Gλ1 . It follows from Lemmas 3.1 and 3.3 that the en-
domorphism F λ1 : W ⊗ (R/λ2) → W ⊗ (R/λ2) leaves Ŵ ⊗ (R/λ2) stable,
so it maps ŴM,N ⊗ (R/λ2) into ŴM1,N1 ⊗ (R/λ2) for some integers M1,
N1. It follows that the composition of F λ1 : WM,N,λ2 → W with the trun-
cation map τ>M1 : W → WM1 factors through WM1,N1,λ2 . The result is a
morphism U1 = F λ1 : WM,N,λ2 →WM1,N1,λ2 .

5.3.3. Induction. For the inductive step of the construction, we assume
that

(ei, Di−1, D
−1
i−1, Ei, U

i)
has been constructed for 1 6 i 6 n and we explain how to produce
(en+1, Dn, D

−1
n , En+1, U

n+1). We do this in four steps A-B-C-D.
A. To start with, we choose en+1 = (an+1, bn+1) such that Un(an+1) =
λn+1.bn+1. To be more formal, this is a section over R of the scheme of
frames Frn defined as the fibred product of the morphisms

Un : (WM,N,λn+1)n → (WMn,Nn,λn+1)n ⊂ (WMn)n

and
λn+1 : (W λn+1

Mn
)n → (WMn)n,

that is:
Frn = (WM,N,λn+1)n ×(WMn )n (W λn+1

Mn
)n.

The choice of en+1 will determine the other four objects in the 5-tuple.
B. Using the first component an+1 of the frame, we define:

Dn =
∏n
i=1 E

Li,Mi,Ni
p (an+1

i , λi, D
−1
i−1Xi)

D−1
n =

∏n
i=1 E

Li,Mi,Ni
p (−an+1

i , λi, D
−1
i−1Xi).

Note that this is where the D−1
i are useful, since they are involved in the

definition of the Di. It follows from the choice of the truncations (involved
in the choice of an+1 and in the truncated exponentials, see Lemma 5.1
and Definition 5.1) and from Theorem 5.1 of [SS3] (in the case of nilpo-
tent coefficients), that Dn and D−1

n induce morphisms of (R/λn+1R)-group
schemes En → Gm inverse to each other.
C. Now we define En+1. At this step, the strategy differs from the formal
case because the truncated deformed exponentials are not invertible and do
not give rise to 2-cocycles like in the formal case. In fact, the Hochschild
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cohomology group H2
0(En,Gλn+1) is usually very small. Instead, we use the

exact sequence of sheaves on the small flat site of Spec(R):

0 −→ Gλn+1 −→ Gm −→ i∗Gm −→ 0

where i : Spec(R/λn+1R) ↪→ Spec(R) is the closed immersion. There is
a connecting homomorphism Hom(En, i∗Gm) → Ext1(En,Gλn+1). In the
groups involved here, the cohomology groups are understood on the small
flat site of Spec(R) but note that the sheaves that appear are restrictions of
sheaves on the big flat site. In Appendix A we prove that these groups are
canonically isomorphic to the same cohomology groups on the big flat site,
see in particular Lemma A.1 and Lemma A.2. This is not trivial, because
the obvious candidate to be a morphism from the big flat site to the small
flat site is not a morphism of sites, see Corollary A.1. Using the adjunction
(i∗, i∗) in the big site, we have an isomorphism:

Hom(En, i∗Gm) −→ Hom(i∗En,Gm)

where now the right-hand group is computed on the big flat site of the
scheme Spec(R/λn+1). Notice that because we are on the big flat site, i∗En
is simply the sheaf defined by the R/λn+1-scheme En⊗RR/λn+1. Therefore
the reduction mod λn+1 ofDn defines an element of Hom(En, i∗Gm). We can
finally define En+1 as the extension obtained by pulling back the extension
0 → Gλn+1 → Gm → i∗Gm → 0 along Dn. In particular for each flat
R-algebra A, we have:
En+1(A) = {(v, w) ∈ En(A)×A× , Dn(v) ≡ w mod λn+1}

= {(v, w) ∈ En(A)×A× , Dn(v) + λn+1x = w for some x ∈ A}
= {(v, x) ∈ En(A)×A , Dn(v) + λn+1x ∈ A×}.

This sheaf is represented by the scheme

En+1 = Spec
(
R[En][Xn,

1
Dn + λn+1Xn+1

]
)
.

As far as the group law is concerned, note that by the assumption on
Dn there exists a unique function K = K(X,Y ) on En × En such that
Dn(X)Dn(Y ) = Dn(X ? Y ) + λn+1K(X,Y ), where X ? Y denotes the
group law in En. Then it is easy to see that the group law in En+1 is given
on the points by:

(v1, x1) ?′ (v2, x2) =
(
v1 ? v2, x1Dn(v2) +x2Dn(v1) +λn+1x1x2 +K(v1, v2)

)
.

Equivalently, the group law is the only one such that the map

αEn+1 : En+1 → (Gm)n+1

(x1, . . . , xn+1) 7→ (D0 + λ1x1, D1 + λ2x2, . . . , Dn + λn+1xn+1)
is a morphism of R-group schemes.
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D. Finally, using the second component bn+1 of the frame, we consider the
matrix:

Un+1 =


−Tbn+1

1

Un
...

−Tbn+1
n

0 . . . 0 F λn+1

 .
Let λ ∈ R be a nonzerodivisor such that λn+1 is nilpotent modulo λ. If we
reduce modulo λ, then according to Lemmas 3.1, 3.3, 3.4, the endomorphism

Un+1 ⊗ (R/λR) : Wn+1 ⊗ (R/λR)→Wn+1 ⊗ (R/λR)

leaves Ŵn+1 ⊗ (R/λR) stable. It follows that there exist integers Mn+1,
Nn+1 such that Un+1 ⊗ (R/λR) maps (ŴM,N )n+1 into (ŴMn+1,Nn+1)n+1.
Therefore the composition of

Un+1 : (WM,N,λ)n+1 ⊂Wn+1 →Wn+1

with the truncation map Wn+1 → (WMn+1)n+1 factors through the functor
(WMn+1,Nn+1,λ)n+1. Fixing λ = λn+2, the result is a morphism of R-schemes

Un+1 : (WM,N,λn+2)n+1 → (WMn+1,Nn+1,λn+2)n+1

This is the last object in our sought-for 5-tuple.

Remark 5.1. A priori, the integers Mn, Nn depend on the particular
frames involved in the matrices Un. However, considering the universal
case (see Theorem 5.1), it is seen that in fact, once (M,N) is fixed then
(Mn, Nn) may be chosen uniform, minimal and hence completely deter-
mined by M1, N1 and n.

Definition. A framed R-group scheme of type (λ1, . . . , λn) is a sequence

E0 = 0, (E1, e1), . . . , (En, en)
of pairs composed of an affine smooth commutative group scheme and a
frame, such that for each i = 1, . . . , n the group scheme Ei is the extension
of Ei−1 by Gλi determined by the frame ei. We often write En as a shortcut
for this data.

In order to state the analogue of Theorem 4.2 in the algebraic context,
we must make sure that the coefficients λi satisfy Assumption 5.1. This
means that for some integer ν > 1 they are points of the space

Bnν = Spec
(

Z(p)[Λ1, . . . ,Λn,M2, . . . ,Mn]
Λν1 −M2Λ2, . . . ,Λνn−1 −MnΛn

)
.

This is a finite flat cover of the affine space
An = Spec(Z(p)[M2, . . . ,Mn,Λn]).
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Moreover, there are obvious projections Bn+1
ν → Bnν given by the inclusion

of function rings. Below, we denote by Λ the product of the Λi.

Theorem 5.1. Let Bnν be the finite flat covers of affine space An defined
above. Then there exists a sequence indexed by ν > 1 of affine Bnν -schemes
S ν
n = Spec(Rν

n) of finite type, without Λ-torsion, and framed Rν
n-group

schemes E ν
n of type (Λ1, . . . ,Λn) with the following universal property : for

any Z(p)-algebra R, any nonzerodivisors λ1, . . . , λn ∈ R such that λi is
nilpotent modulo λi+1 for each i, and any framed R-group scheme En of
type (λ1, . . . , λn), there exists ν and a unique map Rν

n → R taking Λi to λi
such that En ' E ν

n ⊗Rν
n
R.

Proof. For a fixed ν > 1, we first give S ν
n → Bnν and E ν

n → S ν
n . The

construction is by induction on n and follows the proof of Theorem 4.2,
with minor differences which we indicate. The main difference is that in
the present case, the function ring of the schemes of frames in dimension
n is bound to play the role of the coefficient ring in dimensions > n + 1
and so needs to be free of Λ-torsion. Thus we have to kill torsion in the
adequate fibred product.

We set L = M = N = ν. In order to keep the notation light, we will
sometimes omit the symbol ν in the indices and exponents. We initialize
by E0 = 0, S1 = B1, e1 = (0, 0), D0 = D−1

0 = 1, E1 = GΛ1 over S1,
and U1 = FΛ1 : WM,N,Λ2 → WM1,N1,Λ2 is the morphism of B2-schemes
constructed like in 5.3.2. Now assuming that for 1 6 i 6 n we have objects
Si, ei, Di−1, D

−1
i−1,Ei, U

i, here is how to construct

Sn+1, en+1, Dn, D
−1
n ,En+1, U

n+1.

Consider the morphisms of Sn ×Bn Bn+1-schemes

Un : (Wν,ν,Λn+1)n → (WMn,Nn,Λn+1)n ⊂ (WMn)n

and
Λn+1 : (WΛn+1

Mn
)n → (WMn)n.

Call Sn+1 the closed subscheme of the fibred product of Un and Λn+1
defined by the ideal of Λ-torsion, where Λ = Λ1 . . .Λn+1. Let en+1 =
(an+1, bn+1) be the universal point of Sn+1. Then Dn, D

−1
n ,En+1, U

n+1

are constructed as in steps B, C, D of 5.3.3 and we do not repeat the
details.

If En is a framed group scheme of type (λ1, . . . , λn) over a ring R, then
there exists L such that (λi)L ∈ λi+1R. Moreover En is described by Witt
vectors with a number of nonzero coefficients bounded by some M and
nilpotency indices bounded by some N . For ν = max(L,M,N) it is clear
that En is uniquely a pullback of E ν

n . This proves the universality property
of the statement of the theorem. �
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Proposition 5.1. Let R be a Z(p)-algebra which is a unique factoriza-
tion domain. Then, any filtered group scheme is induced by a framed group
scheme.

Proof. By induction, it is enough to prove that given a filtered group scheme
E of some type (λ1, . . . , λn) and a nonzero element λ ∈ R, any extension of
E by Gλ may be defined by a frame. Consider the long exact sequence

. . . −→ Hom(ER/λ,Gm,R/λ) ∂−→ Ext1(E ,Gλ) −→ Ext1(E ,Gm) −→ . . .

derived from the exact sequence (1) in Proposition 3.1. It is enough to prove
that the connecting homomorphism ∂ is surjective. But since R is a unique
factorization domain, this follows from the fact that Ext1(E ,Gm) = 0,
proven as in the proof of Theorem 3.2 of [S] and Proposition 3.1 of [SS3]. �

6. Kummer subschemes

Let R be a Z(p)-algebra and let (λ1, . . . , λn) be as in Assumption 5.1. We
call λ the product of the λi and we write K = R[1/λ]. For an R-scheme X,
it will be a convenient abuse of terminology to call the restriction XK the
generic fibre of X. Let E be a framed group scheme of type (λ1, . . . , λn). By
construction E comes with a map αE : E → (Gm)n which is an isomorphism
over K. Let Θn : (Gm)n → (Gm)n be the morphism defined by

Θn(t1, . . . , tn) = (tp1, t
p
2t
−1
1 , . . . , tpnt

−1
n−1).

The kernel of Θn is a subgroup isomorphic to µpn,R which we call the
Kummer µpn of Gn

m. Via the map α, we can see the Kummer µpn,K as a
closed subgroup scheme of EK . We define the Kummer subscheme as the
scheme-theoretic closure of µpn,K in E . Note that in general the multiplica-
tion of GK need not extend to G. The main question we want to address
in this section is : when is the Kummer subscheme G finite locally free over
Spec(R) ? When this happens, then the multiplication extends and accord-
ingly, we shall prefer to call G the Kummer subgroup. In order to study this
question, we first study the one-dimensional case in 6.1. Then, we consider
extensions and we sketch the usual inductive procedure producing isogenies
between filtered group schemes, in 6.2.

Before we start, let us make a couple of easy remarks. First, note that G
is the smallest closed subscheme of E with generic fibre isomorphic to µpn,K .
It is also the only closed subscheme of E without λ-torsion with generic fibre
isomorphic to µpn,K . In particular, if there exists a closed subscheme of E
which is finite locally free over R and has generic fibre isomorphic to µpn,K ,
then this subscheme is equal to G.
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6.1. Dimension 1. If λp−1 divides p in R, then the polynomial λ−p((λx+
1)p − 1) has coefficients in R and the morphism ψ : Gλ → Gλp defined by
ψ(x) = λ−p((λx+ 1)p− 1) is an isogeny. Following the notation in [To], we
put Gλ,1 = ker(ψ).

Lemma 6.1. Let λ ∈ R be a nonzerodivisor and E = Gλ.
(1) The Kummer subscheme G is finite locally free over R if and only if
λp−1 divides p in R.
(2) If G is finite locally free, its ideal sheaf in OE is generated by the poly-
nomial λ−p((λx+ 1)p− 1), and the quotient E → E/G is isomorphic to the
isogeny ψ : Gλ → Gλp.
Proof. We begin with a couple of remarks. Let us introduce the polynomial
P = (λx + 1)p − 1. If s := max {t 6 p, λt−1 divides p}, there exists u ∈ R
such that p = uλs−1. Then we can write P = λsQ where:

Q = λp−sxp +
p−1∑
i=1

{p
i

}
uλi−1xi

with
(p
i

)
= {p

i

}
p for 1 6 i 6 p− 1; and Q is not divisible by λ. The ideal of

G is:
I =

{
F ∈ R[x, (λx+ 1)−1], ∃n > 0, ∃F ′ ∈ R[x, (λx+ 1)−1], λnF = QF ′

}
.

Note that because λx + 1 is invertible modulo P and also modulo Q, we
may always choose F ′ ∈ R[x] above. Now let R[x] → R[x, (λx + 1)−1] be
the natural inclusion and let J be the preimage of I. We have J = {F ∈
R[x], ∃n > 0, ∃F ′ ∈ R[x], λnF = QF ′} and it is clear that the natural map
R[x]/J → R[x, (λx+1)−1]/I is an isomorphism. We now prove (1) and (2).
(1) We have to prove that the algebra R[x]/J is finite locally free over
R if and only if λp−1 divides p. If λp−1 divides p, that is if s = p, then
Q is monic and we claim that J = (Q). Consider F ∈ J and n, F ′ such
that λnF = QF ′. We assume n is minimal, i.e. λ does not divide F ′. If
n > 0 then QF ′ ≡ 0 mod λ hence F ′ ≡ 0 mod λ since Q is monic hence
a nonzerodivisor. This is a contradiction, so n = 0 and F ∈ (Q). Thus
J = (Q) and R[x]/J is finite free over R.

Conversely, assume that R[x]/J is finite locally free. We will prove that Q
is monic and generates J . It is enough to prove these properties locally over
Spec(R), hence we may assume that R[x]/J is finite free over R. Then there
is a monic polynomialG that generates J , see Eisenbud [Ei], Prop. 4.1. From
the fact that Q ∈ (G) and λnG ∈ (Q) we see that deg(G) = deg(Q) = p.
Writing λnG = QF ′ we see that F ′ = λn−p+s so that Q = λp−sG. Since λ
does not divide Q this is possible only if s = p, that is λp−1 divides p.
(2) The isogeny ψ : E = Gλ → Gλp is G-invariant and induces a morphism
E/G→ Gλp which is finite flat of degree 1, hence an isomorphism. �
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If E is an n-dimensional framed group scheme, then what we have just
proved gives some one-dimensional necessary conditions for the Kummer
subscheme G to be finite locally free over R, as we shall now see. Indeed
if G is finite locally free over R, then the quotient F = E/G is a smooth
affine n-dimensional R-group scheme and the quotient map ν : E → F
is an isogeny (smoothness follows from [EGA], Chap. 0 (préliminaires),
17.3.3.(i)). Consider the subgroup Gλn ⊂ E , its scheme-theoretic image G
under ν and the restriction ν ′ : Gλn → G of ν. In the fibre over any point
s ∈ Spec(R), the scheme Gs is the quotient of Gλns by the equivalence
relation induced by Gs, that is, it is the quotient of Gλns by the stabilizer

H = {g ∈ Gs, g(Gλns ) ⊂ Gλns }.

In particular Gs is a quotient of a smooth k(s)-group scheme by a finite
flat subgroup scheme, hence it is a smooth k(s)-group scheme and the map
Gλns → Gs is flat. By the criterion of flatness in fibres, it follows that ν ′ is flat
and that G is smooth. Then the kernel Hn = ker(ν ′) is flat of degree p, with
generic fibre equal to the Kummer µp,K inside G. Moreover G is isomorphic
to Gλ

p
n and ν ′ is isomorphic to the isogeny Gλn → Gλ

p
n , by Lemma 6.1. Set

Gn−1 = G/Hn and Fn−1 = F/Gλ
p
n . Then we have exact sequences

0 −→ Hn −→ G −→ Gn−1 −→ 0,

and
0 −→ Gλ

p
n −→ F −→ Fn−1 −→ 0.

By induction we see immediately that G and F have filtrations G0 =
0, G1, . . . , Gn = G and F0 = 0,F1, . . . ,Fn = F where Gi ⊂ Fi is finite
locally free of rank pi and Fi/Fi−1 ' Gλ

p
i . In particular F is a filtered

group scheme of type (λp1, . . . , λpn) and G is a successive extensions of the
groups Gλ1,1, . . . , Gλn,1. Another consequence of our discussion is that the
scheme-theoretic closure of µp,K inside Gλn is Hn and in particular is finite
locally free over R. Similarly, by induction the scheme-theoretic closure of
µp,K inside Gλi is equal to the kernel of Gi → Gi−1 and is finite locally free.
By Lemma 6.1, this proves that the following reinforcement of Assump-
tion 5.1 is satisfied.

Assumption 6.1. For each i > 1 we have: λi is not a zero divisor in R, λi
is nilpotent modulo λi+1, and λp−1

i divides p.

6.2. Construction of Kummer group schemes. From now on, we
work under Assumption 6.1. Because filtered group schemes are defined
by successive extensions, the condition that the Kummer subscheme be
finite locally free is also naturally expressed at each extension step. As-
sume that we have a filtered group scheme En of dimension n with finite
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locally free Kummer subgroup Gn. Then, there is a quotient morphism
Ψn : En → Fn = En/Gn and for each λ ∈ R a pullback

(Ψn)∗ : HomR/λR−Gr(Fn,Gm)→ HomR/λR−Gr(En,Gm).

If En+1 is an extension of En by Gλ determined by a frame en+1, then
we shall see that the condition for the Kummer subscheme Gn+1 to be
finite locally free is expressed in terms of (Ψn)∗ and en+1. This will be
integrated in an inductive construction where we build at the same time the
group schemes En, Fn and the isogeny between them, by making compatible
choices of frames. We explain how to do this, along the same lines as before
but giving a little less detail.

We start with a well-known fact.

Lemma 6.2. If p > 3, then in the Witt ring W (Z) we have

p = (p, 1− pp−1, ε2p
p−1, ε3p

p−1, ε4p
p−1, . . . )

where ε2, ε3, ε4, . . . are principal p-adic units. If p = 2, then in W (Z) we
have

2 = (2,−1, ε222, ε323, ε425, . . . , εn22n−2+1, . . . )
where ε2, ε3, ε4, . . . are 2-adic units.

Proof. We start by proving that for i > 1 we have:

(1− pp−1)pi =

 1− pi+p−1 + pi−1
2 pi+2(p−1) + . . . if p > 2,

1 if p = 2.

If p = 2 this is clear and we assume p > 3. Now

(1− pp−1)pi = 1− x1 + x2 − · · ·+ (−1)pixpi

where xj =
(pi
j

)
pj(p−1) has valuation v(xj) = i − v(j) + j(p − 1) whenever

1 6 j 6 pi. Let us write j = upa with u > 1 prime to p and a > 0. Then
v(xj) = i− a+ upa(p− 1) which is increasing both as a function of a and
as a function of u. If j > 2, then either u > 2 or a > 1. In the first case we
have v(xj) > i+ 2(p−1) and we have equality for j = 2. In the second case
we have v(xj) > i−1+p(p−1) > i+2(p−1) since p > 3. The claim follows.
Now we come to the statement of the lemma itself. The proof for p = 2 is
similar and we focus on the case p > 3. The Witt vector p = (a0, a1, a2, . . . )
is determined by the equalities

ap
n

0 + pap
n−1

1 + · · ·+ pn−1apn−1 + pnan = p

for all n > 0. In particular a0 = p and a1 = 1− pp−1. By the computation
of the p-adic first terms of (1− pp−1)pi which we started with, if n > 2 we
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have
p− pap

n−1

1
pn

= pn−1+p−1 + . . .

pn−1 = pp−1 + . . .

For n > 2, by induction using the equality

an = p− pap
n−1

1
pn

− p−n(ap
n

0 + p2ap
n−2

2 + · · ·+ pn−1apn−1),

we see that the p-adic leading term of an is pp−1. �

Corollary 6.1. Let O = Z[C,Λ]/(p−CΛp−1) and let c, λ ∈ O be the images
of C,Λ. There exists a unique d = (d0, d1, d2, . . . ) = (c, 1− pp−1, d2, . . . ) in
W λp(O) such that

p[λ] = λp(d) = (λpd0, λ
pd1, λ

pd2, . . . ).

Proof. If p > 3, then from the lemma we deduce

p[λ] = (cλp, (1− pp−1)λp, ε2pp−1λp
2
, ε3p

p−1λp
3
, . . . ).

The coefficients of this vector are divisible by λp, thus d0, d1, d2, . . . exist.
They are unique since λ is not a zero divisor in O. If p = 2, the proof works
similarly. �

Thus for any Z-algebra R′ and any elements c′, λ′ ∈ R satisfying p =
c′λ′p−1 there is a well-determined d′ ∈W λ′p(R′) such that

p[λ′] = (λ′pd′0, λ′pd′1, λ′pd′2, . . . ).
In particular, our choice of elements λi ∈ R satisfying Assumption 6.1
determines elements di = (di0, di1, . . . ) ∈W λpi (R) such that

p[λi] = (λpi di0, λ
p
i di1, λ

p
i di2, . . . ).

These are the elements denoted pλ̃i/λpi in [SS3] and p[λi]/λpi in [MRT].

6.2.1. Description of the procedure. As in 5.3, we fix positive integers
Li such that (λi)Li ∈ λi+1R for all i > 1 and positive integers M,N . The
n-th step of the induction produces data:

• hn = (an, bn,un, vn, zn) is a big frame including two frames of
definition en = (an, bn) and f n = (un, vn) of filtered group schemes
and a compatibility between them given by zn,
• (en, D−1

n−1, Dn−1, En, Un) is a framed group scheme of type
(λ1, . . . , λn+1),

• (f n, E−1
n−1, En−1,Fn, Un) is a framed group scheme of type

(λp1, . . . , λ
p
n+1),

• Ψn : En → Fn is an isogeny commuting with the morphism Θn,
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• Υn : (WM,N,λn+1)n → (WM,N,λn+1)n is a matrix of operators (made
precise below) describing (Ψn)∗.

The condition that Ψn commutes with Θn involves implicitly the maps αEn :
En → (Gm)n and βFn : Fn → (Gm)n provided by the construction of framed
group schemes, and may be pictured by the commutative diagramme:

En
Ψn //

αEn
��

Fn
βFn

��

(Gm)n Θn // (Gm)n.

Since βFn is an isomorphism on the generic fibre, there is in any case a
rational map En 99K Fn. The morphism Ψn is determined as the unique
morphism extending this rational map. In fact, the choice of the big frame
hn will guarantee that Ψn exists and we may as well remove it from the
list above; we included it for clarity of the picture.

6.2.2. Initialization. We set W 0 = (WM,N )0 = 0, E0 = F0 = 0 and
• h1 = (0, 0, 0, 0, 0),
• D0 = D−1

0 = 1, E1 = Gλ1 ,
• E0 = E−1

0 = 1, F1 = Gλ
p
1 ,

• U1 = F λ1 : WM,N,λ2 →WM1,N1,λ2 ,
• U1 = F λ

p
1 : WM,N,λp2

→WM1,N1,λ
p
2
,

• Υ1 = Td1 : WM,N,λp2
→WM,N,λ2 ,

whereM1, N1 are suitable integers whose existence comes from Lemmas 3.1
and 3.3.

6.2.3. Induction. As usual, we assume that objects in dimension i have
been constructed for 1 6 i 6 n and we explain how to produce hn+1 =
(an+1, bn+1,un+1, vn+1, zn+1) and the related data.

A. In order to define the big scheme of frames, first we introduce an n+ 1-
dimensional vector cn+1 = (an, [λn]). We recall that Assumption 6.1 is
supposed to be satisfied. The fundamental ingredient of the induction is
given by the following result.

Theorem 6.1. Let En+1,Fn+1 be framed group schemes of types

(λ1, . . . , λn+1) and (λp1, . . . , λ
p
n+1).

Let (an+1, bn+1) and (un+1, vn+1) be the defining frames. Assume that the
Kummer subscheme Gn ⊂ En is finite locally free and that the rational
map En 99K Fn extends to an isogeny with kernel Gn. Then, the following
conditions are equivalent:
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(1) the Kummer subscheme Gn+1 ⊂ En+1 is finite locally free and the ra-
tional map En+1 99K Fn+1 extends to an isogeny with kernel Gn+1,
(2) there exists zn+1 ∈ (W λpn+1)n(R) such that pan+1 − cn+1 −Υnun+1 =
λpn+1(zn+1).

Proof. This is proven in [MRT], Theorem 7.1.1 in the case where the ring
R is a discrete valuation ring with uniformizer π, the element λi being
replaced by πli . The proof uses general power series computations and it is
clear while reading it that it works for an arbitrary Z(p)-algebra R satisfying
our assumptions. �

Given this theorem, we can choose a big frame
hn+1 = (an+1, bn+1,un+1, vn+1, zn+1)

living in a big scheme of frames whose heavy but obvious definition we
omit.
B. Using the components an+1 and un+1 of the frame, we define:

Dn =
∏n
i=1 E

Li,Mi,Ni
p (an+1

i , λi, D
−1
i−1Xi)

D−1
n =

∏n
i=1 E

Li,Mi,Ni
p (−an+1

i , λi, D
−1
i−1Xi)

En =
∏n
i=1 E

Li,Mi,Ni
p (un+1

i , λpi , E
−1
i−1Yi)

E−1
n =

∏n
i=1 E

Li,Mi,Ni
p (−un+1

i , λpi , E
−1
i−1Yi).

C. At this step, we define En+1 and Fn+1 in the same way as in 5.3.3,
Step C.
D. At this step, we define morphisms

Un+1, U
n+1 : (WM,N,λn+2)n+1 → (WMn+1,Nn+1,λn+2)n+1

like in 5.3.3, Step D (here Un+1 is attached to the group scheme Fn+1 in the
same way as Un+1 is attached to the group scheme En+1), and the operator
Υn+1 : (WM,N,λn+2)n+1 → (WM,N,λn+2)n+1 by the matrix

Υn+1 =


−Tzn+1

1

Υn
...

−Tzn+1
n

0 . . . 0 Tdn+1

 .
This concludes the inductive construction.

Theorem 6.2. Let Bnν be the finite flat covers of affine space An defined
in 5.1. There exists a sequence indexed by ν > 1 of affine Bnν -schemes K ν

n =
Spec(M ν

n ) of finite type, without Λ-torsion, framed M ν
n -group schemes E ν

n

of type (Λ1, . . . ,Λn) and F ν
n of type (Λp1, . . . ,Λpn), and an isogeny E ν

n → F ν
n
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with finite locally free kernel G ν
n compatible with the maps to (Gm)n. This

isogeny is universal in the same sense as in 5.1.

Proof. Omitted. �

The family Gn = (G ν
n )ν>1 is a finite flat group scheme over the ind-scheme

(K ν
n )ν>1. We call it the universal Kummer group scheme.

Example. Let R = Z(p)[ζn] be the extension of the localization of the ring
of integers at p obtained by adjoining a primitive pn-th root of unity. In
sections 8 and 9 of [SS3], the authors provide an explicit isogeny Wn → Vn
between filtered group schemes over R, with kernel isomorphic to (Z/pnZ)R.
Setting λ := ζ1 − 1, the group W is of type (λ, . . . , λ) and the group Vn is
of type (λp, . . . , λp). It would be very interesting to find explicit values for
the integers Li,Mi, Ni of the construction procedure, but this seems quite
difficult (see the earlier remarks 3.1 and 5.1).

We conclude with a remark on the operator Υn. By construction, it
represents the pullback (Ψn)∗, which implies that modulo λn+1 it maps
the subspace ker(Un) into the subspace ker(Un). In fact, we can do better:
it is possible to include in the induction the construction of a matrix Ωn

such that Un Υn = Ωn Un. This is a reflection of the fact that among
the morphisms from a filtered group to Gm, not only the group morphisms
(represented by ker(Un)) but also the fundamental morphisms (represented
by the ambient Wn) are meaningful. On the diagonal, the entries of the
matrix Ωn should be operators T ′di (see below) satisfying F λi ◦ Tdi = T ′di ◦
F λ

p
i . In fact, these matrices are defined by Ω1 = T ′d1

and

Ωn+1 =


∗

Ωn
...
∗

0 . . . 0 T ′dn+1

 .
We do not want to go into the full details of the construction of Ωn. We sim-
ply note that the essential task is to define the diagonal entries T ′di . We end
the paper with the proof of existence and unicity of these endomorphisms.

Lemma 6.3. Let O = Z[C,Λ]/(p − CΛp−1) and let c, λ ∈ O be the im-
ages of C,Λ. Let d = (c, 1 − pp−1, . . . ) be the unique vector such that
p[λ] = (λpd0, λ

pd1, . . . ), as in Corollary 6.1. Then there exists a unique
endomorphism T ′d : W → W such that F λ ◦ Td = T ′d ◦ F λ

p as endomor-
phisms of the O-group scheme W .

Proof. Since F λp is an epimorphism, then T ′d is unique and we only have to
prove that it exists. Let Φ : W → (Ga)N be the Witt morphism of O-ring
schemes. Given that the schemes Spec(O) and W have no p-torsion, the
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morphism Φ is a monomorphism and it is enough to look for T ′d : W →W

such that Φ ◦ F λ ◦ Td = Φ ◦ T ′d ◦ F λ
p . Let f and td be the endomorphisms

of (Ga)N such that Φ ◦F = f ◦Φ and Φ ◦ Td = td ◦Φ. They are defined by:
• f(x0, x1, x2, . . . ) = (x1, x2, x3, . . . ),
• td(x0, x1, x2, . . . ) = (y0, y1, y2, . . . ) with yn = dp

n

0 xn + pdp
n−1

1 xn−1 +
· · ·+ pndnx0.

We first construct t′d : (Ga)N → (Ga)N such that(
f − Φ([λp−1]) Id

)
◦ td = t′d ◦

(
f − Φ([λ(p−1)p]) Id

)
.

Let y = (y0, y1, y2, . . . ) be a vector of indeterminates (a point of (Ga)N)
and let us write([

f − Φ([λp−1])
]
◦ td

)
(y) = (α0, α1, α2, . . . ),[

f − Φ([λ(p−1)p])
]

(y) = (β0, β1, β2, . . . ).

Given that Φ([a]) = (a, ap, ap2
, . . . ) and that addition and multiplication in

(Ga)N are componentwise, we compute:

αn =
(
dp

n+1

0 yn+1 + pdp
n

1 yn + · · ·+ pndpny1 + pn+1dn+1y0
)

− λpn(p−1)(dpn0 yn + pdp
n−1

1 yn−1 + · · ·+ pn−1dpn−1y1 + pndny0
)

and βn = yn+1 − λp
n+1(p−1)yn for all n > 0. The existence of t′d means that

αn is a polynomial with coefficients in O in the variables β0, β1, β2, . . . for
each n. Since the αn and βn are linear in y, this in turn means that we get
αn = 0 under the specializations

y1 = λp(p−1)y0 , y2 = λp
2(p−1)y1 , . . . , yi+1 = λp

i+1(p−1)yi , . . .

This amounts to yi = λp(p
i−1)y0 for each i. Now

αn
(
y0, λ

p(p−1)y0, λ
p(p2−1)y0, λ

p(p3−1)y0, . . .
)

is equal to y0 times(
dp

n+1

0 λp(p
n+1−1) + pdp

n

1 λp(p
n−1) + · · · + pndpnλ

p(p−1) + pn+1dn+1
)

− λp
n(p−1)(dpn

0 λp(p
n−1) + pdp

n−1

1 λp(p
n−1−1) + · · · + pn−1dpn−1λ

p(p−1) + pndn
)
.

If we recall that pλpi = λp
i+1
dp

i

0 + pλp
i
dp

i−1

1 + · · · + piλpdi for all i by
definition of d, then we indeed find that this quantity vanishes. This proves
the existence of t′d as required. In order to find a morphism T ′d such that Φ◦
T ′d = t′d◦Φ, we use Bourbaki [B], § 1, no. 2, Prop. 2, applied to t′d◦Φ, viewed
as a sequence of elements in the ring H0(W,OW ) = O[Z0, Z1, . . . ] endowed
with the endomorphism raising each variable to the p-th power. �
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Appendix A. Comparison of Ext groups in the small and the
big sites

For more details on the basic facts concerning sites, we refer to [SGA4-1],
Exp. IV, especially § 3 and § 4 but note that our notations may differ
from loc. cit. For a site C we denote by C∧, C∼, Ab(C) the corresponding
categories of presheaves, sheaves and abelian sheaves, respectively. Let C,D
be sites. Recall that a functor u : C → D is continuous if the pullback up :
D∧ → C∧ maps sheaves to sheaves and hence induces a functor us : D∼ →
C∼. In this case, by the general theory us has a left adjoint us : C∼ → D∼. A
morphism of sites f : D → C is by definition a continuous functor u : C → D
such that us is exact. We write f∗ = us and f∗ = us.

Let X be a scheme. The small flat site Xfl is the category Fppf /X of flat
locally finitely presented X-schemes endowed with the topology generated
by the families {Ui → U}i∈I such that qUi → U is faithfully flat and locally
finitely presented. The big flat site XFL is the category ofX-schemes Sch /X
with the same topology as above. The inclusion functor u : Fppf /X →
Sch /X is continuous and the functor on sheaves us is exact. Let us write
f∗ = us and f∗ = us.

We wish to study homomorphisms and extensions between sheaves de-
fined by flat commutative locally finitely presented X-group schemes. It
is in fact better to work with algebraic spaces because they enjoy better
descent properties, so that we obtain statements that not only are slightly
more general but more significantly are easier to apply, even for schemes.
Any X-group algebraic space G defines sheaves on XFL and Xfl, and it is
clear that the image under f∗ (i.e. the restriction) of the sheaf on the big
site is canonically isomorphic to the sheaf on the small site. Thus it will be
notationally convenient to denote the sheaf on the big site by G and the
sheaf on the small site by f∗G, thereby systematically identifying f∗ of the
former with the latter. For these sheaves, we have the following.

Lemma A.1. Let G be a flat commutative locally finitely presented group
algebraic space over X. Then, we have an isomorphism of functors in H ∈
Ab(XFL):

f∗ : HomAb(XFL)(G,H)→ HomAb(Xfl)(f∗G, f∗H).
In particular, the adjunction morphism f∗f∗G→ G is an isomorphism.

Proof. Write G as the quotient of a scheme by an étale equivalence relation
of schemes s, t : R⇒ U . Then U,R are flat and locally of finite presentation,
hence objects of the underlying category of the site Xfl. Applying Yoneda’s
lemma first in the big site and then in the small site, we get a functorial
bijection:

HomX∼FL
(U,H) = H(U) = (f∗H)(U) = HomX∼fl

(f∗U, f∗H)
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and similarly for R. These fit into a commutative diagram:

HomX∼FL
(U,H) ∼ //

��
s∗, t∗

��

HomX∼fl
(f∗U, f∗H)

s∗, t∗
����

HomX∼FL
(R,H) ∼ // HomX∼fl

(f∗R, f∗H)

and we obtain an induced bijection between the equalizers
HomX∼FL

(G,H) = HomX∼fl
(f∗G, f∗H).

We have been dealing here with morphisms of sheaves of sets. The axiom
for a morphism G → H to be a morphism of groups gives a commutative
diagram:

HomX∼FL
(G,H) ∼ //

����

HomX∼fl
(f∗G, f∗H)

����

HomX∼FL
(G×X G,H) ∼ // HomX∼fl

(f∗G× f∗G, f∗H)

where the pairs of vertical arrows are induced by the multiplications of G
and H, and we used the fact that f∗(G×X G) = f∗G× f∗G. We obtain an
induced bijection

HomAb(XFL)(G,H) = HomAb(Xfl)(f∗G, f∗H).
By the adjunction (f∗, f∗) this gives functorial isomorphisms

HomAb(XFL)(G,H) = HomAb(XFL)(f∗f∗G,H)
so by Yoneda’s lemma the adjunction f∗f∗G→ G is an isomorphism. �

In particular, the lemma proves that the functor f∗ from the category
of flat locally finitely presented commutative group schemes over X to
the category of representable abelian sheaves over Xfl is an equivalence of
categories.

For the purposes of the present article, we need to have a similar re-
sult for the first derived functor of Hom, namely, we want an isomorphism
Ext1

Ab(XFL)(G,H) → Ext1
Ab(Xfl)(f∗G, f∗H). More generally, consider the

functors T i = ExtiAb(XFL)(G,−) and U i = ExtiAb(Xfl)(f∗G, f∗(−)) defined
on the category of abelian sheaves Ab(XFL). The sequence {T i} is a uni-
versal cohomological δ-functor. Using the fact that f∗ is exact, one sees that
{U i} has long exact cohomology sequences and hence is a cohomological
δ-functor. If U i did vanish on injectives for i > 0 then the sequence {U i}
also would be a universal cohomological δ-functor and the isomorphism
f∗ : T 0 → U0 of Lemma A.1 would extend to an isomorphism T i → U i,
giving in particular the result we need for i = 1. However, we do not know
if U i vanishes on injectives for i > 0. For example the required vanishing on
injectives for U i would follow rather easily if f∗ had its left adjoint f∗ exact;
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for then f∗ would take injectives to injectives. However this is unfortunately
not always the case:

Corollary A.1. Let X = Spec(R) where R is a discrete valuation ring,
and Xλ = Spec(R/λR) where λ lies in the maximal ideal of R. Consider
the X-group scheme Gλ = Spec(R[T, 1/(1 + λT )]) with multiplication law
given by (t1, t2) 7→ t1 + t2 + λt1t2. Then the image under f∗ of the exact
sequence on the small flat site

0 −→ f∗Gλ −→ f∗Gm,X −→ f∗i∗Gm,Xλ −→ 0

described in 3.1 is not exact on the left. In particular f∗ is not exact and
f : XFL → Xfl is not a morphism of sites.

Proof. Using the adjunction f∗f∗ → id which according to Lemma A.1 is
an isomorphism on the category of flat finitely presented group schemes,
we see that the sequence 0→ f∗f∗Gλ → f∗f∗Gm,X is simply the sequence
of sheaves on the big site 0 → Gλ → Gm,X . This sequence is not exact, as
one sees by evaluating on an X-scheme which has λ-torsion. �

As we will see below, one crucial point here is that the cokernel of f∗Gλ →
f∗Gm,X is not representable.

We shall nevertheless prove that when both sheaves G and H are rep-
resentable, we have an isomorphism for the Ext1’s. The proof of this has
been suggested to us by Jilong Tong.

Lemma A.2. Let G,H be flat locally finitely presented commutative X-
group algebraic spaces. Then the map

f∗ : Ext1
Ab(XFL)(G,H) −→ Ext1

Ab(Xfl)(f∗G, f∗H)

is an isomorphism.

Proof. We show that f∗ gives an inverse to f∗. Start from an extension
0→ f∗H → E → f∗G→ 0 in the small flat site. Then E is representable by
a flat locally finitely presented group algebraic space; this is a standard fact
recalled in Lemma A.3 below. Applying f∗ which is right exact and using
the adjunction isomorphism (Lemma A.1), we obtain an exact sequence
H → f∗E → G → 0 of sheaves on the big site. Since f∗H is the kernel of
E → f∗G, we may write H ' E ×G 0 as group algebraic spaces, where 0 is
the trivial group scheme and 0→ G is the unit section. This isomorphism
remains valid when we view both sides as sheaves on the big sites. This
proves that H is the kernel of the map of sheaves f∗E → G, that is, the
sequence 0 → H → f∗E → G → 0 is exact on the left also. In this way
we have defined a map f∗ : Ext1

Ab(Xfl)(f∗G, f∗H) → Ext1
Ab(XFL)(G,H).

Using the fact that the adjunctions for representable group sheaves are
isomorphisms (Lemma A.1), it is immediate that f∗ is an inverse for f∗. �
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We finish with the lemma that was used in the proof. Here, it is more
convenient to denote by G,H, the sheaves on the small site defined by G
and H.

Lemma A.3. With G and H as above, any extension in the small flat site
of G by H is representable by a flat locally finitely presented group algebraic
space.

Proof. This result is well-known in the big site and in fact the usual proof
works in the small site. Let us write the details. Let 0→ H → E → G→ 0
be such an extension. Since π : E → G is a surjection of sheaves, there exists
a faithfully flat morphism q : Y → G and an element p ∈ E(Y ), viewed as
a morphism Y → E , lifting q:

Y

q

��

p

����
��

��
�

0 // H // E π // G // 0.
Then we have a morphism Y ×G E → Y ×X H given on the sections by
(a, b) 7→ (a, b − p(a)). It is easy to see that this is an isomorphism. This
means that E → G is an H-torsor in the small flat site. The result follows,
because by Artin’s theorem all torsors under a flat locally finitely presented
group algebraic space are again flat locally finitely presentated algebraic
spaces. �
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