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Abstract

We provide an equivalence between the category of smooth a�ne group schemes over the ring of generalized

dual numbers k[I], and the category of extensions of the form 1 → Lie(G, I) → E → G → 1 where G is a

smooth a�ne group scheme over k. Here k is an arbitrary commutative ring and k[I] = k ⊕ I with I2 = 0.

The equivalence is given by Weil restriction, and we provide a quasi-inverse which we call Weil extension. It is

compatible with the exact structures and the Ok-module stack structures on both categories. Our constructions

rely on the use of the group algebra scheme of an a�ne group scheme; we introduce this object and establish its

main properties. As an application, we establish a Dieudonné classi�cation for smooth, commutative, unipotent

group schemes over k[I] when k is a perfect �eld.

Résumé

Nous construisons une équivalence entre la catégorie des schémas en groupes a�nes et lisses sur l'anneau des

nombres duaux généralisés k[I], et la catégorie des extensions de la forme 1→ Lie(G, I)→ E → G→ 1 où G est

un schéma en groupes a�ne, lisse sur k. Ici k est un anneau commutatif arbitraire et k[I] = k ⊕ I avec I2 = 0.

L'équivalence est donnée par la restriction de Weil, et nous construisons un foncteur quasi-inverse explicite

que nous appelons extension de Weil. Ces foncteurs sont compatibles avec les structures exactes et avec les

structures de champs en Ok-modules des deux catégories. Nos constructions s'appuient sur le schéma en algèbres

de groupe d'un schéma en groupes a�nes, que nous introduisons et dont nous donnons les propriétés principales.

En application, nous donnons une classi�cation de Dieudonné pour les schémas en groupes commutatifs, lisses,

unipotents sur k[I] lorsque k est un corps parfait.
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1 Introduction

Throughout this article, we �x a commutative ring k and a free k-module I of �nite rank r > 1. We
consider the ring of (generalized) dual numbers k[I] := k ⊕ I with I2 = 0. We write h : Spec(k[I]) →
Spec(k) the structure map and i : Spec(k) → Spec(k[I]) the closed immersion. Also we denote by Ok

the Spec(k)-ring scheme such that if R is a k-algebra then Ok(R) = R with its ring structure.

1.1 Motivation, results, plan of the article

1.1.1 Motivation. The starting point of our work is a relation between deformations and group
extensions. To explain the idea, let G be an a�ne, �at, �nitely presented k-group scheme. It is shown
in Illusie's book [Il72] that the set of isomorphism classes of deformations of G to k[I] is in bijection
with the cohomology group H2(BG, `∨G ⊗ I), see chap. VII, thm 3.2.1 in loc. cit. Here, the coe�cients
of cohomology are the derived dual of the equivariant cotangent complex `G ∈ D(BG), tensored (in the
derived sense) by I viewed as the coherent sheaf it de�nes on the fpqc site of BG, also equal to the vector
bundle V(I∨). If we assume moreover that G is smooth, then the augmentation `G → ω1

G to the sheaf
of invariant di�erential 1-forms is a quasi-isomorphism and it follows that `∨G ' LieG. Since coherent
cohomology of BG is isomorphic to group cohomology of G, the cohomology group of interest ends up
being H2(G,Lie(G, I)) where Lie(G, I) := LieG ⊗ V(I∨). The latter cohomology group is meaningful
also in the theory of group extensions, where it is known to classify isomorphism classes of extensions
of G by Lie(G, I) viewed as a G-module via the adjoint representation, see [DG70, chap. II, � 3, no 3.3
and III, � 6, no 2.1].

In this paper, our aim is to give a direct algebro-geometric construction of this correspondence between
deformations and group extensions. Our main result is that the Weil restriction functor h∗ provides such
a construction. Thereby, we obtain a categori�cation of a link that has been available only as a bijection
between sets of isomorphism classes. This improvement is crucial for a better understanding of k[I]-group
schemes, since in applications most groups occur as kernels or quotients of morphisms. We illustrate this
by giving a Dieudonné-type theory for unipotent group schemes. Natural extensions of our result to
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more general thickenings of the base, or to non-smooth group schemes, would have further interesting
applications. Since we wish to show our main results to the reader without further delay, we postpone
the discussion of these applications to 1.1.4 below.

1.1.2 Results. Our main result is an equivalence between the category of smooth, a�ne k[I]-group
schemes and a certain category of extensions of k-group schemes. However, for reasons that are discussed
below, it is convenient for us to work with group schemes slightly more general than smooth ones. We say
that a morphism of schemes X → S is di�erentially �at if both X and Ω1

X/S are �at over S. Examples of
di�erentially �at group schemes include smooth group schemes, pullbacks from the spectrum of a �eld,
Tate-Oort group schemes with parameter a = 0 in characteristic p, �at vector bundles i.e. V(F ) with F
�at over the base, and truncated Barsotti-Tate groups of level n over a base where pn = 0 ([Il85, 2.2.1]).
If G is a k[I]-group scheme, we call rigidi�cation of G an isomorphism of k[I]-schemes σ : h∗Gk

∼−→ G
that lifts the identity of the scheme Gk := i∗G . Such a map need not be a morphism of group schemes.
We say that G is rigid if it admits a rigidi�cation. Examples of rigid group schemes include smooth
group schemes, pullbacks from Spec(k), and groups of multiplicative type. Finally a deformation of a
�at k-group scheme G to k[I] is a pair composed of a �at k[I]-group scheme G and an isomorphism of
k-group schemes Gk

∼−→ G.
Let Gr/k[I] be the category of a�ne, di�erentially �at, rigid k[I]-group schemes (this includes all

smooth a�ne k[I]-group schemes). The morphisms in this category are the morphisms of k[I]-group
schemes. Let Ext(I)/k be the category of extensions of the form 1→ Lie(G, I)→ E → G→ 1 where G
is an a�ne di�erentially �at k-group scheme, and �extension� means that E → G is an fpqc torsor under
Lie(G, I). The morphisms in this category are the commutative diagrams:

1 // Lie(G, I) //

dψ
��

E //

ϕ

��

G //

ψ
��

1

1 // Lie(G′, I) // E′ // G′ // 1

where dψ = Lie(ψ) is the di�erential of ψ. Usually such a morphism will be denoted simply ϕ : E → E′.
The categories Gr/k[I] and Ext(I)/k are exact categories. They are also fpqc stacks over Spec(k)

equipped with the structure of Ok-module stacks �bred in groupoids over Gr /k. This means that there
exist notions of sum and scalar multiple for objects of Gr/k[I] and Ext(I)/k (for extensions, the sum is
the Baer sum); these structures are described in 1.2. We can now state our main result.

Theorem A (See 5.0.1) (1) The Weil restriction functor provides an equivalence:

h∗ : Gr/k[I] ∼−→ Ext(I)/k.

This equivalence commutes with base changes on Spec(k).

(2) If 1→ G ′ → G → G ′′ → 1 is an exact sequence in Gr/k[I], then 1→ h∗G ′ → h∗G → h∗G ′′ is exact in
Ext(I)/k. If moreover G ′ is smooth then 1→ h∗G ′ → h∗G → h∗G ′′ → 1 is exact. In particular, h∗ is an
exact equivalence between the subcategories of smooth objects endowed with their natural exact structure.

(3) The equivalence h∗ is a morphism of Ok-module stacks �bred over Gr/k, i.e. it transforms the addition
and scalar multiplication of deformations of a �xed G ∈ Gr/k into the Baer sum and scalar multiplication
of extensions.

(4) Let P be one of the properties of group schemes over a �eld: of �nite type, smooth, connected,
unipotent, split unipotent, solvable, commutative. Say that a group scheme over an arbitrary ring has
property P if it is �at and its �bres have P . Then G ∈ Gr/k[I] has property P if and only if the k-group
scheme E = h∗G has P .
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In order to show that h∗ is an equivalence, we build a quasi-inverse h+ which we call Weil extension.
The construction and study of this functor is the hardest part of the proof.

As an application of the Theorem, we prove a Dieudonné classi�cation for smooth, commutative,
unipotent group schemes over the generalized dual numbers of a perfect �eld k. This takes the form of
an exact equivalence of categories with a category of extensions of smooth, erasable Dieudonné modules.
Here is the precise statement (we refer to Section 6 for the de�nition of all unde�ned terms).

Theorem B (see 6.2.6) Let SCU /k[I] be the category of smooth, commutative, unipotent k[I]-group
schemes. Let D-I-Mod be the category of I-extensions of smooth erasable Dieudonné modules. Then the
Dieudonné functor M : CU /k −→ D-Mod induces a contravariant equivalence of categories:

M : SCU /k[I] −→ D-I-Mod

that sends U to the extension 0→M(Uk)→M(h∗U ))→M(Lie(Uk, I))→ 0.

1.1.3 Comments. An important tool in many of our arguments is the group algebra scheme. It provides
a common framework to conduct computations in the groups and their tangent bundles simultaneously.
It allows us to describe conveniently the Weil restriction of a group scheme, and is essential in the proof
of Theorem A. Since we are not aware of any treatment of the group algebra scheme in the literature,
we give a detailed treatment in Section 2. We point out that this concept is useful in other situations;
in particular it allows to work out easily the deformation theory of smooth a�ne group schemes, as we
show in Subsection A.3.

Let us say a word on the assumptions. The choice to work with di�erentially �at group schemes
instead of simply smooth ones is not just motivated by the search for maximal generality or aesthetic
reasons. It is also extremely useful because when working with an a�ne, smooth group scheme G, we use
our results also for the group algebra Ok[G] in the course of proving the main theorem; and the group
algebra Ok[G] is di�erentially �at and rigid, but usually in�nite-dimensional and hence not smooth.

There are at least two advantages to work over generalized dual numbers k[I] rather than simply the
usual ring k[ε] with ε2 = 0. The �rst is that in order to prove that our equivalence of categories respects
the Ok-module stack structure, we have to introduce the ring k[I] with the two-dimensional k-module
I = kε+ kε′. Indeed, this is needed to describe the sum of deformations and the Baer sum of extensions.
The other advantage is that since arbitrary local Artin k-algebras are �ltered by Artin k-algebras whose
maximal ideal has square zero, our results may be useful in handling deformations along more general
thickenings.

1.1.4 Further developments. Our results have several desirable generalizations. Here are the two
most natural directions. First, one may wish to relax the assumptions on the group schemes and consider
non-a�ne or non-smooth group schemes; second one may wish to consider more general thickenings than
that given by the dual numbers. Let us explain how our personal work indicates a speci�c axis for
research. In previous work of the authors with Ariane Mézard [MRT13], we studied models of the group
schemes of roots of unity µpn over p-adic rings. As a result, we raised a conjecture which says in essence
that every such model can be equipped with a cohomological theory that generalizes the Kummer theory
available on the generic �bre. In the process of trying to prove the conjecture, we encountered various
character groups of smooth and �nite unipotent group schemes over truncated discrete valuation rings.
In order to compute these, it is therefore desirable to obtain a statement similar to Theorem A in this
context. The present paper can be seen as the �rst part of this programme, carried out in the simplest
case; we plan to realize the second part of the programme by using the derived Weil restriction or derived
Greenberg functor in place of the usual Weil restriction.
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1.1.5 Plan of the article. The present Section 1 ends with material of preliminary nature on
the description of the Ok-module stack structure of the categories Gr/k[I] and Ext(I)/k and on Weil
restriction. In Section 2 we introduce group algebra schemes. In Section 3 we describe the functor
h∗ : Gr/k[I] → Ext(I)/k, in Section 4 we construct a functor h+ : Ext(I)/k → Gr/k[I], while in
Section 5 we prove that these functors are quasi-inverse and we complete the proof of Theorem A. Finally,
in Section 6 we derive the Dieudonné classi�cation for smooth commutative unipotent group schemes over
the dual numbers. In the Appendices, we review notions from di�erential calculus (tangent bundle, Lie
algebra and exponentials) and module categories (Picard categories with scalar multiplication) in the
level of generality needed in the paper.

1.1.6 Acknowledgements. For various discussions and remarks, we thank Sylvain Brochard, Xavier
Caruso, Brian Conrad, Bernard Le Stum, Brian Osserman, and Tobias Schmidt. We acknowledge the
help of the referee to make the article much more incisive. We are also grateful to the CIRM in Luminy
where part of this research was done. Finally, the �rst author would like to thank the executive and
administrative sta� of IRMAR and of the Centre Henri Lebesgue ANR-11-LABX-0020-01 for creating
an attractive mathematical environment.

1.2 The Ok-module stack structure of Gr/k[I] and Ext(I)/k

Both categories Gr/k[I] and Ext(I)/k are endowed with the structure of Ok-module stacks in groupoids
over Gr/k. The reader who wishes to see the full-�edged de�nition is invited to read Appendix B. In rough
terms, once a k-group scheme G is �xed, the Ok-module category structure boils down to an addition
law by which one can add deformations (resp. extensions) of G, and an external law by which one can
multiply a deformation (resp. an extension) by scalars of the ring scheme Ok. Here is a description of
these structures.

1.2.1 The Ok-module stack Gr/k[I] → Gr/k. Let G ∈ Gr/k be �xed. Let G1,G2 ∈ Gr/k[I] with
identi�cations i∗G1 ' G ' i∗G2. The addition is obtained by a two-step process. First we glue these
group schemes along their common closed subscheme G:

G ′ := G1 qG G2.

This lives over the scheme Spec(k[I])×Spec(k) Spec(k[I]) = Spec(k[I⊕ I]). The properties of gluing along
in�nitesimal thickenings are studied in the Stacks Project [SP]. We point out some statements relevant
to our situation: existence of the coproduct in Tag 07RV, a list of properties preserved by gluing in
Tag 07RX, gluing of modules in Tag 08KU and preservation of �atness of modules in Tag 07RW. It
follows from these results that G ′ is an object of Gr/k[I ⊕ I]. Then we form the desired sum

G1 + G2 := j∗(G ′) = j∗(G1 qG G2)

by pullback along the closed immersion

j : Spec(k[I]) ↪−→ Spec(k[I ⊕ I])

induced by the addition morphism I ⊕ I → I, i1 ⊕ i2 7→ i1 + i2. The neutral element for this addition is
the group scheme h∗G. The scalar multiple

λG := s∗λG

is given by rescaling using the scheme map sλ : Spec(k[I]) → Spec(k[I]) induced by the k-algebra map
k[I] → k[I] which is multiplication by λ in I. The axioms of Ok-module stacks can be checked but we
leave the details to the courageous reader.
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1.2.2 The Ok-module stack Ext(I)/k → Gr/k. Again let G ∈ Gr/k be �xed and set L := Lie(G, I).
Let E1, E2 ∈ Ext(G,L) be two extensions. Their addition is given by Baer sum; here again this is a
two-step process. Namely, we �rst form the �bre product E′ = E1 ×G E2 which is an extension of G by
L× L. Then the Baer sum is the pushforward of this extension along the addition map + : L× L→ L.
All in all, we have the following diagram which serves as a de�nition of E1 + E2:

1 // L× L //

+

��
p

E′ //

��

G // 1

1 // L // E1 + E2
// G // 1.

Explicitly, the underlying group scheme of the Baer sum is given by E1 + E2 = E′/M where M =
ker(L × L → L) = {(x,−x), x ∈ L}. The neutral element for this addition is the trivial extension
E = L o G. Even though this is not emphasized in the literature, the usual proofs of the fact that the
set of extensions endowed with the Baer sum operation is an abelian group provide explicit associativity
and commutativity constraints proving that Ext(G,L) is a Picard category. The associativity constraint
is obtained by expressing (E1 +E2) +E3 and E1 + (E2 +E3) as isomorphic quotients of E1×GE2×GE3,
and the commutativity constraint is obtained from the �ipping morphism in E1 ×G E2. The scalar
multiplication by λ ∈ k is given by pushforward along the multiplication-by-λ morphism in the module
scheme L = Lie(G, I). All in all, we have the following diagram which serves as a de�nition of λE:

1 // L //

λ
��
p

E //

��

G // 1

1 // L // λE // G // 1.

Again, the veri�cation of the axioms of an Ok-module stack is tedious but not di�cult.

1.3 Weil restriction generalities

We brie�y give the main de�nitions and notations related to Weil restriction; we refer to [BLR90, � 7.6] for
more details. Let h : Spec(k′)→ Spec(k) be a �nite, locally free morphism of a�ne schemes. Let (Sch /k)
be the category of k-schemes and (Fun /k) the category of functors (Sch /k)◦ → (Sets). The Yoneda
functor embeds the former category into the latter. By sending a morphism of functors f : X ′ → Spec(k′)
to the morphism h ◦ f : X ′ → Spec(k) we obtain a functor h! : (Fun /k′) → (Fun /k). Sometimes we
will refer to h!X

′ as the k′-functor X ′ viewed as a k-functor and the notation h! will be omitted. The
pullback functor h∗ : (Fun /k)→ (Fun /k′) is right adjoint to h!, in particular (h∗X)(S′) = X(h!S

′) for all
k′-schemes S′. The Weil restriction functor h∗ : (Fun /k′)→ (Fun /k) is right adjoint to h∗, in particular
we have (h∗X

′)(S) = X ′(h∗S) for all k-schemes S. Thus we have a sequence of adjoint functors:

h!, h
∗, h∗.

The functors h! and h∗ preserve the subcategories of schemes. The same is true for h∗ if h is radicial, a
case which covers our needs (see [BLR90, � 7.6] for re�ned representability results). We write

α : 1 −→ h∗h
∗ and β : h∗h∗ −→ 1

for the unit and counit of the (h∗, h∗)-adjunction. If X is a separated k-scheme then αX : X → h∗h
∗X is

a closed immersion. If X ′ is a k′-group (resp. algebra) functor (resp. scheme), then also h∗X ′ is a k-group
(resp. algebra) functor (resp. scheme). If moreover X ′ → Spec(k′) is smooth of relative dimension n,
then h∗X ′ → Spec(k) is smooth of relative dimension n[k′ : k] where [k′ : k] is the locally constant rank
of h. Quite often, it is simpler to consider functors de�ned on the subcategory of a�ne schemes; the
functors h!, h∗, h∗ are de�ned similarly in this context.
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2 Group algebras of group schemes

Let G be an a�ne k-group scheme. In this subsection, we explain the construction of the group algebra
Ok[G], which is the analogue in the setting of algebraic geometry of the usual group algebra of abstract
discrete groups. Note that for a �nite constant group scheme, the set Ok[G](k) of k-rational points
of the group algebra and the usual group algebra k[G] are isomorphic, but for other groups they do
not have much in common in general; this will be emphasized below. Since we are not aware of any
appearance of the group algebra in the literature, we give a somewhat detailed treatment, including
examples (2.2.4�2.2.6), basic properties (2.3.1) and the universal property (2.3.2).

2.1 Linear algebra schemes

2.1.1 Vector bundles. Let S = Spec(k). As in [EGA1new], we call vector bundle an Ok-module scheme
of the form V(F ) = Spec S(F ) where F is a quasi-coherent OS-module and S(F ) is its symmetric
algebra. We say smooth vector bundle if F is locally free of �nite rank. If f : X → S is quasi-compact
and quasi-separated, we set V(X/S) := V(f∗OX) so V(X/S)(T ) = HomOT -Mod((f∗OX)T ,OT ) for all S-
schemes T . There is a canonical S-morphism νX : X −→ V(X/S) which is initial among all S-morphisms
from X to a vector bundle. We call it the vector bundle envelope of X/S. If X is a�ne over S, the map
νX is a closed immersion because it is induced by the surjective morphism of algebras S(f∗OX) −→ f∗OX
induced by the identity f∗OX −→ f∗OX .

2.1.2 Base change and ring scheme. If h : Spec(k′)→ Spec(k) is a morphism of a�ne schemes, there
is a morphism of k′-ring schemes h∗Ok → Ok′ which is the identity on points, hence an isomorphism of
ring schemes. However, whereas the target has a natural structure of Ok′-algebra, the source does not. For
this reason, the pullback of module functors or module schemes along h is de�ned asM 7→ h∗M⊗h∗OkOk′ ,
as is familiar for the pullback of modules on ringed spaces. Usually we will write simply h∗M .

For later use, we give some complements on the case where k′ = k[I] is the ring of generalized dual
numbers, for some �nite free k-module I. We will identify I and its dual I∨ = Homk(I, k) with the
coherent OSpec(k)-modules they de�ne, thus we have the vector bundle V(I∨). For each k-algebra R, we
have R[I] = R⊕ I ⊗k R where IR ' I ⊗k R has square 0. This decomposition functorial in R gives rise
to a direct sum decomposition of Ok-module schemes:

h∗Ok[I] = Ok ⊕ V(I∨).

It is natural to use the notation Ok[V(I∨)] for the Ok-algebra scheme on the right-hand side, however we
will write more simply Ok[I]. Now we move up on Spec(k[I]), where there is a morphism of Ok[I]-module
schemes h∗V(I∨)→ Ok[I] de�ned for all k[I]-algebras R as the morphism I⊗kR→ R, i⊗x 7→ iRx where
iR := i1R. According to what we said before, the pullback h∗V(I∨) has the module structure such that
a section a ∈ Ok[I] acts by a · i⊗ x := i⊗ ax. The image of h∗V(I∨)→ Ok[I] is the ideal I ·Ok[I] de�ned
by (I ·Ok[I])(R) = IR for all k[I]-algebras R. There is an exact sequence of Ok[I]-module schemes:

0 −→ I ·Ok[I] −→ Ok[I] −→ i∗Ok −→ 0.

2.1.3 Ok-Algebra schemes. Here we de�ne a category (Ok-Alg) of linear Ok-algebra schemes and
give a summary of elementary properties. For us an Ok-algebra scheme is a k-scheme D endowed with
two internal composition laws +,× : D ×D → D called addition and multiplication possessing neutral
sections 0, 1 : Spec(k)→ D, and an external law · : Ok×D → D, such that for each k-algebra R the tuple
(D(R),+,×, 0, 1, ·) is an associative unitary R-algebra. In particular (D,+, 0) is a commutative group
scheme, and (D(R),×, 1) is a (possibly noncommutative) monoid. We say that D is a linear Ok-algebra
scheme if its underlying Ok-module scheme is a vector bundle. In this case F can be recovered as the
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�dual bundle� sheaf F = HomOk-Mod(D,Ok), the Zariski sheaf over S whose sections over an open U
are the morphisms of Ok |U -modules D|U → Ok |U (read [EGA1new, 9.4.9] between the lines). For an
a�ne Ok-algebra scheme in our sense, the comultiplication is a map ∆ : S(F )→ S(F )⊗ S(F ) and the
bilinearity of m implies that this map is induced from a map ∆0 : F → F ⊗F . Finally we point out two
constructions on linear Ok-algebra schemes. The �rst is the tensor product D⊗Ok D

′, which as a functor
is de�ned as R 7→ D(R)⊗RD′(R). If D = V(F ) and D′ = V(F ′) with F ,F ′ locally free of �nite ranks,
then D ⊗Ok D

′ ' V(F ⊗F ′). The second construction is the group of units. We observe that for any
linear Ok-algebra scheme D, the subfunctor D× ⊂ D of (multiplicative) units is the preimage under the
multiplication D×D → D of the unit section 1 : Spec(k)→ D and is therefore representable by an a�ne
scheme. This gives rise to the group of units functor (Ok-Alg)→ (k-Gr), D 7→ D× where (k-Gr) is the
category of a�ne k-group schemes.

2.1.4 Remark. We do not know if an Ok-algebra scheme whose underlying scheme is a�ne over S is
always of the form V(F ).

2.2 Group algebra: construction and examples

Let G = Spec(A) be an a�ne k-group scheme. We write (u, v) 7→ u ? v or sometimes simply (u, v) 7→ uv
the multiplication of G. This operation extends to the vector bundle envelope V(G/k), as follows. Let
∆ : A→ A⊗k A be the comultiplication. For each k-algebra R, we have V(G/k)(R) = Homk-Mod(A,R).
If u, v : A→ R are morphisms of k-modules, we consider the composition u ? v := (u⊗ v) ◦∆:

u ? v : A
∆−−−→ A⊗k A

u⊗v−−−→ R.

Here the map u⊗ v : A⊗k A→ R is a⊗ b 7→ u(a)v(b).

2.2.1 De�nition. The group algebra of the k-group scheme G:

Ok[G] := (V(G/k),+, ?),

is the vector bundle V(G/k) endowed with the product just de�ned. We write νG : G ↪→ Ok[G] for the
closed immersion as in paragraph 2.1.1.

We check below that Ok[G] is a linear Ok-algebra scheme. Apart from G(R), there is another notewor-
thy subset inside Ok[G](R), namely the set DerG(R) of k-module maps d : A→ R which are u-derivations
for some k-algebra map u : A→ R (which need not be determined by d); a more accurate notation would
be Der(OG,Ok)(R) but we favour lightness. Here are the �rst basic properties coming out of the con-
struction.

2.2.2 Proposition. Let G be an a�ne k-group scheme. Let Ok[G] and DerG be as described above.

(1) The tuple Ok[G] := (V(G/k),+, ?) is a linear Ok-algebra scheme.

(2) As a k-scheme, Ok[G] is k-�at (resp. has k-projective function ring) i� G has the same property.

(3) The composition G ↪→ Ok[G]× ↪→ Ok[G] is a closed embedding, hence also G ↪→ Ok[G]×.

(4) The subfunctor DerG ⊂ Ok[G] is stable by multiplication by G on the left and on the right, so it
acquires left and right G-actions. More precisely, if u, v : A → R are maps of algebras, d : A → R is a
u-derivation and d′ : A→ R is a v-derivation, then d ? v and u ? d′ are (u ? v)-derivations.

8



Proof : (1) We must check that ? is associative, unitary and bilinear. For associativity:

(u ? v) ? w = [((u⊗ v) ◦∆)⊗ w] ◦∆

= (u⊗ v ⊗ w) ◦ (∆⊗ id) ◦∆

= (u⊗ v ⊗ w) ◦ (id⊗∆) ◦∆ by coassociativity of ∆,

= [u⊗ ((v ⊗ w) ◦∆)] ◦∆

= u ? (v ? w).

Now we prove that if s : k → R is the structure map then eR := s ◦ e : A → k → R is a two-sided unit
for ?. This follows from the fact that because eR factors through k, for any k-linear map u : A→ R, the
map u⊗ eR : A⊗k A→ R is the composition of id⊗e : A⊗k A→ A with u. Thus:

u ? eR = (u⊗ eR) ◦∆

= u ◦ (id⊗e) ◦∆

= u ◦ id by the property of the counit,

= u.

The fact that eR ?u = u is proved in a similar way. The fact that ? is bilinear follows from the bilinearity
of ⊗. This �nishes the proof of (1).
(2) This is because the symmetric algebra of A is �at (resp. projective) if and only if A is.

(3) From the de�nitions, the morphism νG : G ↪→ Ok[G] factors through Ok[G]×. Since νG is a closed
embedding as noticed in paragraph 2.1.1, then G ↪→ Ok[G]× is also a closed embedding.

(4) Using the fact that multiplication in A⊗k A is given by linear extension of the rule a1⊗ a2 · b1⊗ b2 =
a1b1⊗a2b2, one computes that d⊗v is a (u⊗v)-derivation. The claim for d?v follows by precomposition
with ∆. The claim for u ? d′ is proven similarly. �

2.2.3 Remark on Hopf algebra structure. If G is a �nite, locally free commutative k-group scheme,
then the multiplication of its function ring induces a comultiplication on Ok[G] making it a Hopf Ok-
algebra scheme. Moreover the k-algebra Ok[G](k) is the ring of functions of the Cartier dual G∨. This
Hopf algebra structure highlights Examples 2.2.5 and 2.2.6 below.

2.2.4 Example 1: �nite locally free groups. If G is a �nite locally free k-group scheme, the algebra
Ok[G] is a smooth vector bundle of rank [G : Spec(k)] and its group of units is the complement in Ok[G]
of the Cartier divisor equal to the zero locus of the determinant of the left regular representation:

Ok[G]
L
↪−→ EndOk-Mod(Ok[G])

det−−−→ A1.

If moreover G is the �nite constant k-group scheme de�ned by a �nite abstract group Γ, then Ok[G] is
isomorphic to the algebra scheme de�ned by the abstract group algebra k[Γ], that is to say Ok[G](R) '
R[Γ] functorially in R.

2.2.5 Example 2: the additive group. Let G = Ga = Spec(k[x]). For a k-algebra R, let

R〈〈t〉〉 = R[[t, t[2], t[3], . . . ]]

be the R-algebra of divided power formal power series in one variable t, with t[i]t[j] =
(
i+j
i

)
t[i+j] for all

i, j > 0. Setting O〈〈t〉〉(R) = R〈〈t〉〉, we have an isomorphism Ok[G] ∼−→ O〈〈t〉〉 given by:

Ok[G](R) ∼−→ R〈〈t〉〉 , (k[x]
u−→ R) 7−→

∑
i>0

u(xi)ti.
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If k is a ring of characteristic p > 0, let H = αp be the kernel of Frobenius. The algebra Ok[H](R)
is identi�ed with the R-subalgebra of R〈〈t〉〉 generated by t, which is isomorphic to R[t]/(tp) because
tp = pt[p] = 0.

2.2.6 Example 3: the multiplicative group. Let G = Gm = Spec(k[x, 1/x]). Let RZ be the product
algebra, whose elements are sequences with componentwise addition and multiplication. We have an
isomorphism Ok[G] ∼−→

∏
i∈ZOk given by:

Ok[G](R) ∼−→ RZ , (k[x]
u−→ R) 7−→ {u(xi)}i∈Z.

More generally, for any torus T with character group X(T ), we have Ok[T ] ∼−→
∏
i∈X(T ) Ok. Let H = µn

be the subgroup of n-th roots of unity. The algebra Ok[H](R) is identi�ed with the R-subalgebra of
Z/nZ-invariants Ok[G](R)Z/nZ, composed of sequences {ri}i∈Z such that ri+nj = ri for all i, j ∈ Z.

2.3 Properties: functoriality and adjointness

Here are some functoriality properties of the group algebra.

2.3.1 Proposition. Let G be an a�ne k-group scheme. The formation of the group algebra Ok[G]:

(1) is functorial in G and faithful;

(2) commutes with base change k′/k;

(3) is compatible with products: there is a canonical isomorphism Ok[G]⊗Ok Ok[H] ∼−→ Ok[G×H];

(4) is compatible with Weil restriction: if h : Spec(k′) → Spec(k) is a �nite locally free morphism of
schemes, there is an isomorphism of Ok-algebra schemes Ok[G]⊗Ok h∗Ok′

∼−→ h∗h
∗Ok[G].

Proof : (1) Any map of a�ne k-group schemes G = Spec(A) → H = Spec(B) gives rise to a map of
k-Hopf algebras B → A and then by precomposition to a map of R-algebras Ok[G](R) → Ok[H](R)
which is functorial in R. Faithfulness follows from the fact that G ↪→ Ok[G] is a closed immersion.

(2) The isomorphism Homk′-Mod(A⊗k k′, R′) ∼−→ Homk-Mod(A,R′), functorial in the k′-algebra R′, gives
an isomorphism Ok′ [Gk′ ]

∼−→ Ok[G]×Spec(k) Spec(k′).

(3) Write G = Spec(A) and H = Spec(B). To a pair of k-module maps u : A → R and v : B → R we
attach the map u⊗ v : A⊗k B → R, a⊗ b 7→ u(a)v(b). This de�nes an isomorphism

Homk-Mod(A,R)⊗R Homk-Mod(B,R) ∼−→ Homk-Mod(A⊗k B,R)

which is functorial in R. The result follows.

(4) If D is an Ok-algebra scheme, the functorial R-algebra maps

D(R)⊗R (R⊗k k′) −→ D(R⊗k k′)
d⊗ r′ 7−→ r′d

�t together to give a morphism D⊗Ok h∗Ok′ → h∗h
∗D. In case D = Ok[G] and h �nite locally free, this

is none other than the isomorphism Homk-Mod(A,R)⊗k k′ ∼−→ Homk-Mod(A,R⊗k k′). �

Finally we prove the adjointness property. We recall from paragraph 2.1.3 (see also Remark 2.1.4)
that (Ok-Alg) is the category of Ok-algebra schemes whose underlying Ok-module scheme is of the form
V(F ) = Spec S(F ) for some quasi-coherent OSpec(k)-module F , and that (k-Gr) is the category of a�ne
k-group schemes.
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2.3.2 Theorem (Adjointness property of the group algebra). The group algebra functor is left
adjoint to the group of units functor. In other words, for all a�ne k-group schemes G and all linear Ok-
algebra schemes D, the map that sends a morphism of algebra schemes Ok[G] → D to the composition
G ⊂ Ok[G]× → D× gives a bifunctorial bijection:

HomOk-Alg(Ok[G], D) ∼−→ Homk-Gr(G,D
×).

Proof : We describe a map in the other direction and we leave to the reader the proof that it is an inverse.
Let f : G→ D× be a morphism of k-group schemes. We will construct a map of functors f ′ : Ok[G]→ D.
We know from paragraph 2.1.3 that D = V(F ) where F is a k-module, and that the comultiplication
∆D : S(F ) → S(F ) ⊗ S(F ) is induced by a morphism ∆0 : F → F ⊗ F . Consider the composition
G → D× ⊂ D and let g : S(F ) → A be the corresponding map of algebras. For each k-algebra R we
have Ok[G](R) = Homk-Mod(A,R) and D(R) = Homk-Mod(F,R). We de�ne f ′ as follows:

Ok[G](R) −→ D(R)
(u : A→ R) 7−→ (u ◦ g ◦ i : F → R)

where i : F ↪→ S(F ) is the inclusion as the degree 1 piece in the symmetric algebra. The map f ′ is a map
of modules, and we only have to check that it respects the multiplication. Let u, v : A → R be module
homomorphisms. We have the following commutative diagram:

A
∆G // A⊗A u⊗v

// R

S(F )
∆D //

g

OO

S(F )⊗ S(F )

g⊗g

OO

F
∆0 //

i

OO

F ⊗ F

i⊗i
OO

With the ? notation as in Subsection 2.2, we compute:

(u ?G v) ◦ g ◦ i = (u⊗ v) ◦∆G ◦ g ◦ i
= (ugi⊗ vgi) ◦∆0

= ugi ?D vgi.

Thus f ′ : Ok[G]→ D is a map of algebra schemes and this ends the construction. �

2.3.3 Remark. It follows from this result that a smooth vector bundle with action of G is the same
as a (smooth) Ok[G]-module scheme. Indeed, the endomorphism algebra of such a vector bundle is
representable by a linear Ok-algebra scheme D. For example, if G is an a�ne, �nite type, di�erentially
�at k-group scheme, then the adjoint action on LieG makes it an Ok[G]-module scheme.

3 Weil restriction

We keep the notations from the previous sections. In this section, we describe the Weil restriction
E = h∗G of a k[I]-group scheme G ∈ Gr/k[I] and show how it carries the structure of an object of
the category of extensions Ext(I)/k. The necessary notions of di�erential calculus (tangent bundle, Lie
algebra, exponential) are recalled in Appendix A.
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3.1 Weil restriction of the group algebra

If G is an a�ne k[I]-group scheme, its Weil restriction h∗G embeds in the pushforward algebra h∗Ok[I][G ].
(It also embeds in the algebra Ok[h∗G ] which however is less interesting in that it does not re�ect the
Weil restriction structure.) Our aim in this subsection is to give a description of h∗Ok[I][G ] suited to the
computation of the adjunction map βG .

The starting point is the following de�nition and lemma. Let A be a k[I]-algebra and R a k-algebra.
Let v : A→ I⊗kR be a k-linear map such that there is a k-linear map v̄ : A→ R satisfying v(ix) = iv̄(x)
for all i ∈ I and x ∈ A. Then v̄ is uniquely determined by v; in fact it is already determined by the
identity v(ix) = iv̄(x) for any �xed i belonging to a basis of I as a k-module.

3.1.1 De�nition. Let A be a k[I]-algebra and R a k-algebra. We say that a k-linear map v : A→ I⊗kR
is I-compatible if there is a k-linear map v̄ : A→ R such that v(ix) = iv̄(x) for all i ∈ I and x ∈ A. We
denote by Homck(A, I⊗kR) the R-module of I-compatible maps and Homck(A, I⊗kR)→ Homk(A,R),
v 7→ v̄ the R-module map that sends v to the unique map v̄ with the properties above.

Note that since I2 = 0 in R[I], if v is I-compatible then v̄ vanishes on IA. In other words, the map
v 7→ v̄ factors through Homk(A/IA,R).

3.1.2 Lemma. Let A be a k[I]-algebra and R a k-algebra.

(1) Each morphism of k[I]-modules f : A → R[I] is of the form f = v̄ + v for a unique I-compatible
k-linear map v : A→ I ⊗k R, and conversely.

(2) Each morphism of k[I]-algebras f : A → R[I] is of the form f = v̄ + v as above with v satisfying
moreover v(i) = i for all i ∈ I and v(xy) = v̄(x)v(y) + v̄(y)v(x) for all x, y ∈ A, and conversely. In
particular v̄ : A→ R is a k-algebra homomorphism and v : A→ I ⊗k R is a v̄-derivation.

Proof : (1) Using the decomposition R[I] = R ⊕ I ⊗k R, we can write f(x) = u(x) + v(x) for some
unique k-linear maps u : A → R and v : A → I ⊗k R. Then f is k[I]-linear if and only if f(ix) = if(x)
for all i ∈ I and x ∈ A. Taking into account that I2 = 0, this means that v is I-compatible and u = v̄.

(2) The condition f(1) = 1 means that v̄(1) = 1, that is v(i) = i for all i ∈ I, and v(1) = 0. The
condition of multiplicativity of f means that v̄ is multiplicative and v is a v̄-derivation, i.e. v(xy) =
v̄(x)v(y) + v̄(y)v(x). In the presence of the derivation property, the multiplicativity of v̄ is automatic
(computing v(ixy) in two di�erent ways) as well as the condition v(1) = 0 (setting x = y = 1). Conversely
if v is I-compatible with v(i) = i and v(xy) = v̄(x)v(y) + v̄(y)v(x), one sees that v̄ is a morphism of rings
and f = v̄ + v is a morphism of k[I]-algebras. �

Now let G be an a�ne k[I]-group scheme. Lemma 3.1.2 shows that the Weil restriction h∗V(G /k[I])
can be described in terms of the scheme of I-compatible maps, de�ned as a functor on k-algebras by:

Oc(G )(R) := Homck(A, I ⊗k R).

We know that h∗V(G /k[I]) supports the algebra scheme structure h∗Ok[I][G ], and we will now identify
the multiplication induced on Oc(G ) by means of this isomorphism.

3.1.3 Proposition. Let G = Spec(A) be an a�ne k[I]-group scheme with comultiplication ∆ : A →
A⊗k[I] A and counit e : A→ k[I], with e = d̄+ d for a unique I-compatible k-linear map d : A→ I.

(1) Let R be a k-algebra and let v, w : A → I ⊗k R be I-compatible k-linear maps. Then the morphism
v̄ ⊗k w + v ⊗k w̄ : A⊗k A→ R factors through a well-de�ned k-linear morphism

v̄ ⊗k w + v ⊗k w̄ : A⊗k[I] A→ R.
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(2) For v, w as before let:

v � w := (v̄ ⊗k w + v ⊗k w̄) ◦∆.

Then (Oc(G ),+, �) is an associative unitary Ok-algebra with multiplicative unit d, and the map

θG : Oc(G ) ∼−→ h∗Ok[I][G ], v 7−→ v̄ + v

is an isomorphism of associative unitary Ok-algebras.

Proof : (1) The k-linear morphism v̄⊗k w+ v⊗k w̄ takes the same value iv̄(a)w̄(b) on the tensors ia⊗ b
and a⊗ ib for all i ∈ I, a, b ∈ A. Therefore it vanishes on tensors of the form (a⊗ b)(i⊗ 1− 1⊗ i). Since
these tensors generate the kernel of the ring map A⊗k A→ A⊗k[I] A, we obtain an induced morphism
v̄ ⊗k w + v ⊗k w̄ : A⊗k[I] A→ R.

(2) According to (1) the de�nition of v�w makes sense. For the rest it is enough to prove that θG (v�w) =
θG (v) ? θG (w) because if this is the case then all the known properties of the product ? in h∗Ok[I][G ] are
transferred to � by the isomorphism θG . On one hand, using the expression v �w = (v̄⊗kw+ v⊗k w̄)◦∆
and the fact that ∆ is k[I]-linear, we �nd v � w = (v̄ ⊗k w̄) ◦∆ hence:

θG (v � w) =
(
v̄ ⊗k w̄

)
◦∆ +

(
v̄ ⊗k w + v ⊗k w̄

)
◦∆

=
[
v̄ ⊗k w̄ + (v̄ ⊗k w + v ⊗k w̄)

]
◦∆.

On the other hand, we have:

θG (v) ? θG (w) =
[
(v̄ + v)⊗k (w̄ + w)

]
◦∆.

The maps in the brackets are equal, whence θG (v � w) = θG (v) ? θG (w) as desired. �

3.1.4 Remark. If (ε1, . . . , εr) is a basis of I we have a concrete description as follows. A k-linear map
v : A→ I ⊗k R can be written v = ε1v1 + · · ·+ εrvr for some maps vj : A→ R. Then v is I-compatible
if and only if vjεi = δi,j v̄ for all i, j. If this is the case, vj induces a k-linear morphism A⊗k[I] k[εj ]→ R
and v̄ = vjεj for each j. Now write Gj = G ⊗k[I] k[εj ] and hj : Spec(k[εj ])→ Spec(k) the structure map.
Also let Gk = G ⊗k[I] k so we have maps V(hj,!Gj/k) → V(Gk/k), vj 7→ v̄ := vjεj . Then we have an
isomorphism:

V(h1,!G1/k) ×
V(Gk/k)

. . . ×
V(Gk/k)

V(hr,!Gr/k) ∼−→ Oc(G )

given by (v1, . . . , vr) 7→ v = ε1v1 + · · ·+ εrvr.

3.2 Kernel of the adjunction β : h∗h∗G → G

Again let G = Spec(A) be an a�ne k[I]-group scheme. Denote by ∆ : A→ A⊗k[I]A the comultiplication
and e : A → k[I] the counit, of the form e = d̄ + d for a unique I-compatible k-linear map d : A → I.
The purpose of this subsection is to prove the following proposition.

3.2.1 Proposition. Let G be an a�ne k[I]-group scheme and Gk = i∗G . Let β = βG : h∗h∗G → G be
the adjunction, and L(G ) := ker(β).

(1) Functoriality. The formation of L(G ) is functorial for morphisms of pointed k[I]-schemes, and for
morphisms of k[I]-group schemes.
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(2) Explicit description. We have embeddings of monoids L(G ) ⊂ h∗h∗G ⊂ (h∗Oc(G ), �) under which,
functorially in the k[I]-algebra R:

(h∗h∗G )(R) =

{
v ∈ (h∗Oc(G ))(R)

∣∣∣∣ v(i) = i for all i ∈ I
v(xy) = v̄(x)v(y) + v̄(y)v(x) for all x, y ∈ A

}
and if vR : A→ R denotes the composition A

v−→ I ⊗k R
i⊗r 7→ir−−−→ R:

L(G )(R) =
{
v ∈ (h∗h∗G )(R) : v̄ + vR = eR

}
.

(3) Special �bre. There is a functorial isomorphism i∗L(G ) ∼−→ Lie(Gk, I), v 7→ v − d. Under this
isomorphism, the action by conjugation of h∗G = i∗h∗h∗G on i∗L(G ) is given by the morphism:

h∗G
i∗β−−−→ Gk

Ad−−−→ GL(Lie(Gk, I)).

(4) Case of trivial deformation groups. If G = h∗G for some a�ne k-group scheme G, there is a canonical
and functorial isomorphism L(G ) ∼−→ h∗ Lie(G, I). More precisely, let expG,I : h∗ Lie(G, I)→ h∗G be the
exponential morphism as de�ned in A.2.1. Then under the isomorphism (see A.1)

%G : Lie(G, I)×G ∼−→ T(G, I),

the subgroup L(G ) ⊂ h∗T(G, I) has for points the pairs (x, g) ∈ h∗ Lie(G, I)×h∗G such that g = exp(−x),
and the isomorphism is given by (x, g) 7→ x.

Proof : (1) If ϕ : G → G ′ is a morphism of pointed schemes, then by functoriality of β the morphism
h∗h

∗ϕ takes the kernel of βG into the kernel of βG ′ . If moreover ϕ is a map of group schemes then the
restriction of h∗h∗ϕ to L(G ) also.

(2) In the rest of the proof we use the possibility to compute in the group algebra (Oc(G ),+, �), see
Proposition 3.1.3. The description of h∗h∗G as a submonoid of the multiplicative monoid of Oc(G )
is copied from Lemma 3.1.2. The description of L(G ) follows from the fact that for f ∈ G (R[I]),
f = v̄ + v : A→ R[I], the image β(f) ∈ G (R), β(f) : A→ R is the map v̄ + vR.

(3) � �rst claim. The pullback i∗ is the restriction to the category of those k[I]-algebras R such that
IR = 0. For such an R, an element v ∈ (i∗L(G ))(R) is a k-linear map v : A → R such that v(i) = i,
v(xy) = v̄(x)v(y) + v̄(y)v(x) and v̄ = eR. In particular we see that v is an eR-derivation. Since also
dR is an eR-derivation with dR(i) = i for all i ∈ I, the di�erence δ := v − dR induces an eR-derivation
δ : A→ I⊗kR vanishing on IA, i.e. anR-point of Lie(Gk, I). Conversely, any eR-derivation δ : A→ I⊗kR
vanishing on IA gives rise to a k-linear map v : A → I ⊗k R de�ned by v := dR + δ and satisfying the
properties required to be a point of (i∗L(G ))(R). Finally let δ1, δ2 ∈ Lie(Gk, I)(R). Since δ1, δ2 vanish
on IA, we have d∗R + δ∗1 = d∗R + δ∗2 = eR and then:

(dR + δ1) � (dR + δ2) =
[
eR ⊗ (dR + δ2) + (dR + δ1)⊗ eR

]
◦∆

=
[
(eR ⊗ dR + dR ⊗ eR) + (eR ⊗ δ2 + δ1 ⊗ eR)

]
◦∆.

All three morphisms eR⊗dR+dR⊗eR, eR⊗δ2 and δ1⊗eR factor through A⊗k[I]A, so the precomposition
with ∆ is distributive for them. Since also dR is the neutral element for the law � and eR is the neutral
element for the law ?, we obtain:

(dR + δ1) � (dR + δ2) =
[
eR ⊗ dR + dR ⊗ eR

]
◦∆ +

[
eR ⊗ δ2

]
◦∆ +

[
δ1 ⊗ eR

]
◦∆

= dR + δ1 + δ2.
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This shows that the isomorphism i∗L(G ) ∼−→ Lie(Gk), v 7→ v − dR is a morphism of groups.

(3) � second claim. Let R be a k[I]-algebra such that IR = 0. The action of an element u ∈ (h∗h∗G )(R)
on an element v = dR + δ ∈ L(G )(R) by conjugation can be computed in the algebra h∗Oc(G ):

u � v � u−1 = u � (dR + δ) � u−1 = u � dR � u−1 + u � δ � u−1 = dR + u � δ � u−1.

We see that u is acting on δ by conjugation in the group algebra. This is the adjoint action, as explained
in Proposition A.3.1.

(4) When G = h∗G, the adjunction map is the in�nitesimal translation as in Proposition A.2.2(3). The
R-points of L(G ) are the pairs (x, g) such that exp(x)g = 1 in G(R). This amounts to g = exp(−x)
which proves (4). �

3.3 Extension structure of the Weil restriction

Let G be a k[I]-group scheme. The notion of rigidi�cation for G and the property that G be rigid are
de�ned in 1.1.2. Here are some remarks.

(1) If σ : h∗Gk
∼−→ G is a rigidi�cation, then σ(1)−1 · σ is another. Therefore if there exists a rigidi�ca-

tion σ, we may always assume moreover that σ(1) = 1.

(2) By the in�nitesimal lifting criterion, all smooth a�ne k[I]-group schemes are rigid. By Cartier
duality, k[I]-group schemes of multiplicative type are rigid.

(3) If α : G → G ′ is a morphism between rigid k[I]-group schemes, it is not always possible to choose
rigidi�cations for G and G ′ that are compatible in the sense that σ′ ◦h∗α = α◦σ. For instance let I = kε
and let α : Ga → Ga be the morphism de�ned by α(x) = εx. Then G and G ′ are rigid but since h∗α = 0,
there do not exist compatible rigidi�cations.

3.3.1 Lemma. Let G be a k[I]-group scheme such that the restriction Gk = i∗G is k-�at. Let π :=
i∗βG : h∗G → Gk. Then the adjunction HomSch /k[I](h

∗Gk,G ) = HomSch /k(Gk, h∗G ) induces a bijection
between rigidi�cations of G and sections of π.

Proof : Let σ : h∗Gk
∼−→ G be a rigidi�cation and s := h∗σ ◦ αGk . Then we have σ = βG ◦ h∗s and by

applying i∗ we �nd idGk = i∗σ = π ◦ s hence s is a section of π. Conversely let s be a section of π and
σ := βG ◦h∗s. Then i∗σ = i∗βG ◦ i∗h∗s = π◦s = idGk hence σ lifts the identity. In particular σ is an a�ne
morphism. Since moreover h∗Gk is �at, we conclude that σ is an isomorphism, hence a rigidi�cation. �

3.3.2 Lemma. Let G be an a�ne, di�erentially �at and rigid k[I]-group scheme. Then β : h∗h∗G → G
is faithfully �at and we have an exact sequence:

1 −→ L(G ) −→ h∗h∗G
β−→ G −→ 1.

If G is of �nite type over k[I], then β is smooth.

Proof : Again we put π = i∗β : h∗G → Gk. Let σ : h∗Gk
∼−→ G be a rigidi�cation and s : Gk → h∗G the

corresponding section of π, see Lemma 3.3.1. By Proposition 3.2.1(3) the kernel of π is Lie(Gk) which is
k-�at. The section s provides an isomorphism of k-schemes Lie(Gk)×Gk ' h∗G which shows that h∗G is
k-�at so that h∗h∗G is k[I]-�at. It follows also that π : h∗G → Gk is faithfully �at and by the �critère de
platitude par �bres� in the nilpotent case ([SP, Tag 06A5]) we deduce that the morphism β is faithfully
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�at. Finally if G is of �nite type over k[I], then the special �bre of L(G ) is the smooth vector group
Lie(Gk), hence L(G ) is smooth and so is β. �

3.3.3 Example. Here is an example where the result above fails, for a non-rigid group. Assume k is a
�eld of characteristic p > 0. Let I = kε be free of rank 1. Let G be the kernel of the endomorphism Ga →
Ga, x 7→ xp−εx. Then (h∗h∗G )(R) is the set of elements a⊕ bε ∈ R⊕Rε such that (a⊕ bε)p = ε(a⊕ bε).
This equation is equivalent to ap = εa, hence a = 0. Thus (a, b) 7→ b is an isomorphism h∗h∗G ∼−→ Ga,k[ε].
The map (h∗h∗G )(R) → G (R) sends b to bεR. In other words, if we let Kε ' Spec(k[ε][x]/(εx)) denote
the kernel of ε : Ga,k[ε] → Ga,k[ε], then the sequence of the lemma is 1→ Kε → Ga,k[ε]

ε−→ G → 1. Here,
the map ε : Ga,k[ε] → G is not �at so this is not an exact sequence of �at group schemes. �

3.3.4 Proposition. For each G ∈ Gr/k[I], the restriction via i∗ of the exact sequence of Lemma 3.3.2
gives E := h∗G the structure of an object of Ext(I)/k. Hence Weil restriction gives a functor:

h∗ : Gr/k[I]→ Ext(I)/k.

Proof : From Lemma 3.3.2 we have an exact sequence 1 → L(G ) → h∗h∗G → G → 1. It follows from
point (2) in Proposition 3.2.1 that when we restrict to the closed �bre, we obtain an exact sequence:

1 −→ Lie(Gk, I) −→ E −→ Gk −→ 1

where the Gk-action on Lie(Gk) induced by the extension is the adjoint representation. The same reference
proves that this extension is functorial in G . More precisely, if u : G → G ′ is a morphism of a�ne,
di�erentially �at, rigid k[I]-group schemes, then we obtain a morphism between the extensions E = h∗G
and E′ = h∗G ′ as follows:

1 // Lie(Gk, I) //

dψ
��

E //

ϕ

��

Gk //

ψ
��

1

1 // Lie(G ′k, I) // E′ // G ′k
// 1

where ϕ = h∗u and ψ = uk = i∗u, the restriction of u along i : Spec(k) ↪→ Spec(k[I]). �

We draw a corollary that will be useful in Section 5.

3.3.5 Corollary. Let Y be an a�ne, �at, rigid k[I]-scheme and V(Y ) = V(Y/k[I]), V(Yk) = V(Yk/k)
the vector bundle envelopes. Then we have a split exact sequence of �at k-group schemes:

0 −→ V(Yk)⊗Ok V(I∨) −→ h∗V(Y )
π−→ V(Yk) −→ 0.

Moreover h∗V(Y ) is �at as an Ok[I]-module scheme and the surjection π is isomorphic to the reduction-
modulo-I map.

Proof : Recall from paragraph 2.1.2 that Ok[I] := h∗Ok[I]. By the assumptions on Y , the vector bundle
V(Y ) is a�ne, di�erentially �at and rigid over k[I]. Thus Proposition 3.3.4 yields the displayed exact
sequence. Using a rigidi�cation for Y and base change for the functor V, we have h∗V(Y ) ' h∗V(h∗Yk) '
h∗h

∗V(Yk). Like in Proposition 2.3.1(4), we have an isomorphism of Ok-modules V(Yk) ⊗Ok Ok[I] ∼−→
h∗h

∗V(Yk), x⊗ a 7→ ax. Given that V(Yk) is Ok-�at, this proves that h∗V(Y ) is Ok[I]-�at. Even more,
we have an isomorphism h∗V(Y ) ' V(Yk) ⊕ (V(Yk) ⊗Ok V(I∨)) and π is the projection onto the �rst
factor, i.e. the reduction-modulo-I map. �
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4 Weil extension

In this section, we construct a functor h+ called Weil extension which is a quasi-inverse to the functor h∗
of Weil restriction described in the previous section. The idea behind the construction is that one can
recover a k[I]-group scheme G from the extension E = h∗G by looking at the target of the adjunction
βG : h∗E = h∗h∗G → G . In turn, in order to reconstruct the faithfully �at morphism βG it is enough
to know its kernel K. In the case where G is a constant group h∗G, which in other words is the case
where E is a tangent bundle T(G, I), Proposition 3.2.1(4) hints the correct expression K = {(x, g) ∈
h∗E; g = exp(−x)}. The de�nition of K for general extensions 1 → Lie(G, I) → E → G → 1 where G
is an a�ne, di�erentially �at k-group scheme, builds on this intuition.

4.1 Hochschild extensions

The construction of an extension from a 2-cocycle is well-known; we recall it to set up the notations.
Recall from [DG70, chap. II, � 3, no 2] that if G is a k-group functor and M is a k-G-module functor,
then a Hochschild extension or simply H-extension of G by M is an exact sequence of group functors

1 −→M
i−→ E

π−→ G

such that π has a section (which is not required to be a morphism of groups). From a given section
s : G→ E, we can produce a unique morphism c : G×G→M such that i(c(g, g′)) := s(g)s(g′)s(gg′)−1.
This is a 2-cocycle, i.e. it satis�es the identity

c(g, g′) + c(gg′, g′′) = g · c(g′, g′′) + c(g, g′g′′).

Note that we may always replace s by the section G→ E, g 7→ s(1)−1s(g) to obtain a section such that
s(1) = 1. When this is the case, we have c(g, 1) = c(1, g′) = 0 for all g, g′ and we say that c is normalized.
Conversely, starting from a cocycle c, the functor Ec = M ×G with multiplication de�ned by

(x, g) · (x′, g′) :=
(
x+ g · x′ + c(g, g′), gg′

)
is an H-extension. The map s : G→ Ec, g 7→ (0, g) is a possible choice of section for π. It follows from
the previous comments that we may always change the cocycle into a normalized cocycle.

4.2 Kernel of the adjunction, reprise

In this subsection, we prepare the construction of the kernel of the adjunction map βh+E of the (yet to
be produced) Weil extension h+E. The end result is in Proposition 4.3.1 of the next subsection. Note
that in spite of the similarity of titles, the viewpoint is di�erent from that of Subsection 3.2.

Let G be an a�ne k-group scheme, and Lie(G, I) its Lie algebra relative to I, viewed as an a�ne
k-group scheme with the adjoint action of G. To any 2-cocycle c : G × G −→ Lie(G, I) we attach as
before an H-extension Ec = Lie(G, I)×G with multiplication:

(x, g) · (x′, g′) :=
(
x+ Ad(g)x′ + c(g, g′), gg′

)
.

Our group Ec has a structure of H-extension:

1 // Lie(G, I)
x 7→(x,1)

// Ec
(x,g)7→g

// G // 1.

The following result is the heart of the construction of the Weil extension functor h+. We point out
that among the groups Kλ(Ec) introduced here, it is especially K−1(Ec) that will be relevant in the
sequel, as Proposition 3.2.1(4) shows. However, we include the whole family Kλ(Ec) since it comes with
no extra cost and brings interesting insight, in the sense that it ultimately provides an explicit linear
path in the Ok-module stack Gr /k[I].
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4.2.1 Proposition. Let h : Spec(k[I])→ Spec(k) be the k-scheme of dual numbers. Fix λ ∈ k.

(1) Let G be an a�ne k-group scheme and Ec the H-extension constructed out of a normalized 2-cocycle
c : G×G −→ Lie(G, I). Let Kλ(Ec) ⊂ h∗Ec be the subfunctor de�ned by:

Kλ(Ec) = {(x, g) ∈ h∗Ec ; g = exp(λx)}.

Then Kλ(Ec) is a closed normal sub-k[I]-group scheme of h∗Ec.

(2) Let G,G′ be a�ne k-group schemes and Ec, Ec′ be the H-extensions constructed out of some chosen
normalized 2-cocycles c, c′. Let f : Ec → Ec′ be a morphism of extensions:

1 // Lie(G, I) //

Lie(α)
��

Ec //

f

��

G //

α

��

1

1 // Lie(G′, I) // Ec′ // G′ // 1

Then (h∗f)(Kλ(Ec)) ⊂ Kλ(Ec′), with equality if f is an isomorphism.

When the extension Ec is clear from context, we writeKλ instead ofKλ(Ec). We will prove the propo-
sition after a few preliminaries. First of all, for the convenience of the reader, we recall the description
of morphisms of extensions, in the abstract group setting for simplicity.

4.2.2 Lemma. Let α : G→ G′ be a morphism of groups and δ : L→ L′ be a morphism from a G-module
to a G′-module which is α-equivariant. Let E ∈ Ext(G,L) and E′ ∈ Ext(G′, L′) be two extensions.

(1) There exists a morphism of extensions f : E → E′, i.e. a diagram

1 // L //

δ
��

E //

f
��

G //

α
��

1

1 // L′ // E′ // G′ // 1,

if and only if α∗[E′] = δ∗[E] in H2(G,L′), and if this condition holds then the set of morphisms is
a principal homogeneous space under the set of 1-cocycles Z1(G,L′). More precisely, assume that we
describe E with a normalized cocycle c : G×G→ L so that E ' L×G with multiplication (x, g) ·(x′, g′) =
(x+ g · x′ + c(g, g′), gg′), and we describe E′ similarly with a normalized cocycle c′. Then all morphisms
f : E → E′ are of the form f(x, g) = (δ(x) + ϕ(g), α(g)) for a unique 1-cochain ϕ : G → L′ such that
∂ϕ = c′ ◦ α− δ ◦ c.

(2) If E,E′ are two extensions of G by L, then the set of morphisms of extensions E → E′ is a principal
homogeneous space under the group Z1(G,L), more precisely all morphisms are of the form f(x, g) =
(x+ ϕ(g), g) for a unique ϕ ∈ Z1(G,L). All of them are isomorphisms.

(3) Assume that the extension is trivial, so that [E] = 0 ∈ H2(G,L). Then all group sections G→ E of
the extension are of the form s(x, g) = (ϕ(g), g) for a unique ϕ ∈ Z1(G,L) such that ∂ϕ = c.

Proof : We can write a morphism of extensions as f : L × G → L′ × G′, (x, g) 7→ (u(x, g), α(g)) with
u(x, 1) = δ(x). The property that f is a morphism of groups translates into the identity:

u(x1 + g1 · x2 + c(g1, g2), g1g2) = u(x1, g1) + α(g1) · u(x2, g2) + c′(αg1, αg2).
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Setting x1 = x, x2 = 0, g1 = 1, g2 = g, and ϕ(g) := u(0, g) we �nd u(x, g) = δ(x) + ϕ(g) for all x, g.
The above identity implies ϕ(g1g2)−ϕ(g1)− α(g1) ·ϕ(g2) = c′(αg1, αg2)− δ(c(g1, g2)). This means that
∂ϕ = c′ ◦ α− δ ◦ c as claimed in (1). Considering the particular case of morphisms

1 // L //

id
��

E //

��

G //

id
��

1

1 // L // E′ // G // 1

we get (2), and considering the case of morphisms

1 // 0 //

0
��

G
id //

��

G //

id
��

1

1 // L // E // G // 1

we get (3). �

We come back to the extension Ec. The lemma tells us that the group Autext(Ec) of automorphisms
of Ec as an extension is isomorphic to the group of 1-cocycles Z1(G,Lie(G, I)). Item (2) of Proposi-
tion 4.2.1 says in particular that Kλ(Ec) is stable under these particular automorphisms.

Now we record a few technical properties concerning the exponential and the cocycles. For simplicity
we write exp instead of expG.

4.2.3 Lemma. Let G be an a�ne k-group scheme and c : G×G −→ Lie(G, I) a normalized 2-cocycle.
Let exp : h∗ Lie(G, I) → h∗G be the exponential morphism as de�ned in Subsection A.2. Let R be a
k[I]-algebra and g, g′, g′′ ∈ G(R). Assume that g is an exponential i.e. an element in the image of exp.
Then, we have:

(1) exp(c(g, g′)) = exp(c(g′, g)) = 1,

(2) exp(c(gg′, g′′)) = exp(c(g′g, g′′)) = exp(c(g′, gg′′)) = exp(c(g′, g′′g)) = exp(c(g′, g′′)).

The same statements hold with c replaced by λc, for each λ ∈ k.

Proof : (1) Applying Lemma A.2.3 to the morphism of pointed schemes φ = c(−, g′) : G ⊗k R →
(Lie(G, I))⊗k R, we obtain exp(c(g, g′)) = 1. Similarly exp(c(g′, g)) = 1.

(2) Write g = exp(x). Since Lie(G, I) = Lie(G)⊗V(I∨) we can write x as a sum of tensors y⊗ i. Working
inductively on the number of tensors in the sum, we can assume that x = y ⊗ i. We prove successively
that each of the �rst four terms equals exp(c(g′, g′′)).

a. The cocycle identity c(g, g′) + c(gg′, g′′) = Ad(g)c(g′, g′′) + c(g, g′g′′) together with (1) imply
exp(c(gg′, g′′)) = exp(Ad(g)c(g′, g′′)). Since g is an exponential, according to Proposition A.2.2(4)
its adjoint action is given by Ad(g)c(g′, g′′) = c(g′, g′′) + i[x, c(g′, g′′)]. Since multiples of i lie in the
kernel of exp, see Proposition A.2.2(6), we deduce exp(Ad(g)c(g′, g′′)) = exp(c(g′, g′′)).

b. Since γ := g′g(g′)−1 is an exponential, exp(c(g′g, g′′)) = exp(c(γg′, g′′)) = exp(c(g′, g′′)) by a.

c. The cocycle identity with g and g′ exchanged reads c(g′, g)+c(g′g, g′′) = Ad(g′)c(g, g′′)+c(g′, gg′′).
We deduce exp(c(g′g, g′′)) = exp(c(g′, gg′′)). We conclude with b.

d. Again this follows from the fact that g′′g(g′′)−1 is an exponential.
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The �nal claim of the lemma holds because λc is again a normalized cocycle. �

Proof of Proposition 4.2.1 : Let us write K = Kλ(Ec) for simplicity. Obviously K is a closed
subfunctor of h∗Ec which is isomorphic to h∗ Lie(G, I) as a k[I]-scheme. For the veri�cation of points
(1) and (2) we let R be an arbitrary k[I]-algebra.

(1) First, let us prove that K is a subgroup scheme. Let (x, g) and (x′, g′) be two R-valued points
of K so we have g = exp(λx) and g′ = exp(λx′). On one hand, by Proposition A.2.2(4) we see that
Ad(g)x′ = x′ + ε[x, x′] and by Proposition A.2.2(6) we deduce exp(λAd(g)x′) = exp(λx′). On the other
hand, by Lemma 4.2.3(1) we have exp(λc(g, g′)) = 1. Putting all this together we get:

exp
(
λx+ λAd(g)x′ + λc(g, g′)

)
= exp(λx) exp(λAd(g)x′) exp(λc(g, g′))

= exp(λx) exp(λx′)

= gg′.

This proves that the product (x, g) · (x′, g′) is a point of K. Using the same arguments we prove that the
inverse (x, g)−1 = (−Ad(g−1)x− c(g−1, g), g−1) is a point of K. Hence K is a subgroup scheme.

Second, let us prove that K is stable by inner automorphisms. Let (x, g) and (x′, g′) be R-valued
points of h∗Ec and K respectively. We must prove that (x′′, g′′) := (x, g) · (x′, g′) · (x, g)−1 lies in K.
Writing x′ as a sum of tensors xs = ys ⊗ is and setting gs = exp(λxs), we have (xs, gs) ∈ K(R) and
since K is a subgroup scheme, it is enough to prove that (x, g) · (xs, gs) · (x, g)−1 lies in K. In other
words, we may and do assume in the sequel that x′ = y⊗ i. We �rst consider (x1, g1) := (x′, g′) · (x, g)−1.
Using the fact that g′ = exp(λx′) and Proposition A.2.2(4), we �nd

Ad(g′)
(
−Ad(g−1)x− c(g−1, g)

)
= −Ad(g−1)x− c(g−1, g) + b

where b ∈ I ·Lie(G, I)(R) is a certain bracket, and hence:

(x1, g1) = (x′, g′) · (−Ad(g−1)x− c(g−1, g), g−1)

=
(
x′ −Ad(g−1)x− c(g−1, g) + b+ c(g′, g−1), g′g−1

)
.

Now (x′′, g′′) = (x, g) · (x1, g1) = (x+ Ad(g)x1 + c(g, g1), gg1) and our task is to check that

exp
(
λx+ λAd(g)x1 + λc(g, g1)

)
= gg1.

We note the following:

a. We have: λx + λAd(g)x1 = λAd(g)x′ − λAd(g)c(g−1, g) + b + λAd(g)c(g′, g−1). By Proposi-
tion A.2.2(6), the term b will disappear upon taking exponentials, so we may disregard it. Similarly,
by Lemma 4.2.3(1) the exponential of λAd(g)c(g′, g−1) equals 1. Also, using the cocycle relation
we see that Ad(g)c(g−1, g) = c(g, g−1). Hence:

exp(λx+ λAd(g)x1) = exp
(
λAd(g)x′ − λc(g, g−1)

)
.

b. By Lemma 4.2.3(2) we have exp(λc(g, g1)) = exp(λc(g, g′g−1)) = exp(λc(g, g−1)).

c. Using Proposition A.2.2(3) we have gg1 = gg′g−1 = g exp(λx′)g−1 = exp(λAd(g)x′).
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Putting a-b-c together we get exp
(
λx+ λAd(g)x1 + λc(g, g1)

)
= exp(λAd(g)x′) = gg1 as desired.

(2) Let us write K = Kλ(Ec) and K ′ = Kλ(Ec′) for simplicity. According to Lemma 4.2.2, any morphism
of extensions f : Ec → Ec′ is of the form f(x, g) = (Lie(α)(x) + ϕ(g), α(g)) for a unique ϕ : G→ LieG′

satisfying ϕ(gg′)−ϕ(g)−Ad(g)ϕ(g′) = c′(αg, αg′)−Lie(α)(c(g, g′)). Setting g = g′ = 1 we see that such
a ϕ, hence also λϕ, is a map of pointed schemes. This being said, if (x, g) is an R-valued point of K, the
following computation shows that f(x, g) is a point of K ′:

expG′(λLie(α)(x) + λϕ(g)) = expG′(λLie(α)(x)) expG′(λϕ(g))

= expG′(λLie(α)(x)) by Lemma A.2.3,

= expG′(Lie(α)(λx))

= α(expG(λx)) by functoriality of exp,

= α(g) because g = expG(λx).

When f is an isomorphism, applying the statement to f−1, we �nd (h∗f)(K) = K ′. �

4.3 Weil extension functor

Now let G be an a�ne and di�erentially �at k-group scheme. Thus G as well as the adjoint representation
Lie(G, I) are k-�at. We consider an arbitrary extension:

1 −→ Lie(G, I)
i−→ E

π−→ G −→ 1.

Then E → G is an fpqc torsor under Lie(G, I). It has a cohomology class in H1(G,Lie(G, I)) which
vanishes, being quasi-coherent cohomology of an a�ne scheme. It follows that π has a section s : G→ E,
and the extension becomes an H-extension. We may and do replace s by s(1)−1 · s in order to ensure
that s(1) = 1. From s we build a normalized cocycle c : G×G −→ Lie(G, I) as follows:

i(c(g, g′)) := s(g)s(g′)s(gg′)−1.

These data give rise to the group Ec as de�ned in Subsection 4.2.

4.3.1 Proposition. Let 1 → Lie(G, I) → E → G → 1 be an object of the category Ext(I)/k. Let
s : G→ E, with s(1) = 1, be as chosen above, and c the normalized cocycle derived from it. Let λ ∈ k.

(1) The map τs : Ec → E, (x, g) 7→ i(x)s(g) is an isomorphism of extensions.

(2) The closed normal subgroup scheme Kλ(E) := (h∗τs)(Kλ(Ec)) ⊂ h∗E does not depend on the choice
of s.

(3) For all morphisms f : E → E′ in Ext(I)/k we have (h∗f)(Kλ(E)) ⊂ Kλ(E′) with equality if f is an
isomorphism.

If the extension E is clear from context, we write Kλ instead of Kλ(E). Note that if E is the trivial
extension and s = α, the map τα is the map %G de�ned in paragraph A.1.

Proof : (1) follows from the constructions of c and Ec.

For the proof of (2) and (3) we will rely on the following basic remark. Let f : E → E′ be a morphism
in Ext(I)/k. Let τs : Ec → E and τs′ : Ec′ → E′ be the isomorphisms associated to choices of sections
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s, s′ preserving 1 and corresponding normalized cocycles c, c′. Let Kλ,s(E) := (h∗τs)(Kλ(Ec)) ⊂ h∗E and
similarly Kλ,s′(E

′) := (h∗τs′)(Kλ(Ec′)) ⊂ h∗E′. We have a morphism of extensions:

ρ = τ−1
s′ ◦ f ◦ τs : Ec −→ Ec′ .

According to Proposition 4.2.1(2) we have (h∗ρ)(Kλ(Ec)) ⊂ Kλ(Ec′). It follows that:

(h∗f)(Kλ,s(E)) = (h∗f)((h∗τs)(Kλ(Ec))) = (h∗τs′)((h
∗ρ)(Kλ(Ec))) ⊂ (h∗τs′)(Kλ(Ec′)) = Kλ,s′(E

′).

When f is an isomorphism, applying the statement to f−1 gives equality.

(2) Applying the basic remark to E = E′ and f = id : E → E proves that Kλ,s(E) = Kλ,s′(E), that is,
the subgroup Kλ,s(E) does not depend on the choice of s. Since τs is an isomorphism of groups, the fact
that Kλ(E) is a closed normal subgroup scheme follows from Proposition 4.2.1(1).

(3) Applying the basic remark to a general f gives the statement. �

For an extension 1 → Lie(G) → E → G → 1, we let Kλ := Kλ(E) be the subgroup de�ned in the
proposition. Point (4) in Proposition 3.2.1 gives motivation to consider K−1. The fpqc quotient sheaf
h+E := h∗E/K−1 is representable by an a�ne �at k[I]-scheme (see Perrin [Per76]).

4.3.2 De�nition. We call Weil extension the quotient h+E := h∗E/K−1.

4.3.3 Lemma. Weil extension is a functor Ext(I)/k → Gr/k[I].

Proof : The k[I]-group scheme G := h∗E/K−1 is a�ne and �at. Let s : G→ E be a section of E → G
such that s(1) = 1. By pullback, this induces a morphism h∗G→ h∗E → G which is the identity on the
special �bre, hence an isomorphism, hence a rigidi�cation. This proves that the functor of the statement
is well-de�ned on objets. Proposition 4.3.1 proves that the functor is well-de�ned on morphisms. �

5 The equivalence of categories

This section is devoted to the proof of Theorem A, which we recall below for ease of reading. The plan
is as follows. In Subsection 5.1 we prove a preliminary result used in the proof of (1). In Subsection 5.2
we prove (1), (2), (4). Finally in Subsection 5.3 we prove (3).

5.0.1 Theorem. (1) The Weil restriction/extension functors provide quasi-inverse equivalences:

Gr/k[I]
h∗ //

Ext(I)/k.
h+

oo

These equivalences commute with base changes Spec(k′)→ Spec(k).

(2) If 1→ G ′ → G → G ′′ → 1 is an exact sequence in Gr/k[I], then 1→ h∗G ′ → h∗G → h∗G ′′ is exact in
Ext(I)/k. If moreover G ′ is smooth then 1→ h∗G ′ → h∗G → h∗G ′′ → 1 is exact. In particular, h∗ is an
exact equivalence between the subcategories of smooth objects endowed with their natural exact structure.

(3) The equivalence h∗ is a morphism of Ok-module stacks �bred over Gr/k, i.e. it transforms the addition
and scalar multiplication of deformations of a �xed G ∈ Gr/k into the Baer sum and scalar multiplication
of extensions of G by Lie(G, I).

(4) Let P be one of the properties: of �nite type, smooth, connected, unipotent, split unipotent, solvable,
commutative. Then G ∈ Gr/k[I] has the property P if and only if the k-group scheme E = h∗G has P .
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5.1 Equivariance of rigidi�cations under Lie algebra translation

Let G be an a�ne, di�erentially �at, rigid k[I]-group scheme. Let σ : h∗Gk
∼−→ G be a rigidi�cation such

that σ(1) = 1. We consider the morphism of k-schemes:

h∗σ : h∗h
∗Gk −→ h∗G .

This is not a morphism of group schemes, because source and target are not isomorphic groups in general.
However, it satis�es an important equivariance property. To state it, note that source and target are
extensions of Gk by Lie(Gk, I); in particular both carry an action of Lie(Gk, I) by left translation.

5.1.1 Proposition. With notation as above, the morphism of k-schemes

h∗σ : h∗h
∗Gk −→ h∗G

is Lie(Gk, I)-equivariant.

Proof : We write simply O instead of Ok or Ok[I] when the base is clear from context. Consider the
extension of σ to the group algebras:

σ′ := h∗O[σ] : h∗O[h∗Gk]→ h∗O[G ].

Note that by compatibility of O[−] with base change and Weil restriction (see Proposition 2.3.1, (2)-(4)),
we have h∗O[h∗Gk]

∼−→ h∗h
∗O[Gk]

∼−→ O[Gk][I]. We obtain a commutative diagram:

h∗h
∗Gk

h∗σ //

� _

��

h∗G
� _

��

O[Gk][I]
σ′ // h∗O[G ].

We identify I · O[Gk] := O[Gk] ⊗Ok V(I∨) as the ideal generated by I inside both algebras O[Gk][I] and
h∗O[G ], see Corollary 3.3.5. With this convention we formulate:

Claim. We have σ′(y + x) = σ′(y) + x for all points y ∈ O[Gk][I] and x ∈ I ·O[Gk].

To prove this, we introduce another copy J = I of our square-zero ideal as follows:

h∗h
∗h∗h

∗Gk
h∗h∗h∗σ //

��

h∗h
∗h∗G

��

O[Gk][I][J ]
σ′′ // h∗O[G ][J ]

where we have set σ′′ = h∗h
∗σ′ for brevity. Let s, t : O[Gk][I]×J ·O[Gk][I][J ]→ h∗O[G ][J ] be de�ned by

s(y, x) = σ′′(y + x) and t(y, x) = σ′′(y) + x.

Then s and t are equal modulo I because of the fact that σ is the identity modulo I. Clearly they are
also equal modulo J . Since h∗O[G ][J ] is �at as an Ok[I][J ]-module, we deduce that s− t takes its values
in the ideal IJ · h∗O[G ][I]. Setting J = I, that is composing with the morphism h∗O[G ][J ] → h∗O[G ]
that takes a section of J to the corresponding section of I, we obtain the Claim.
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We now conclude the proof of the proposition. We write ?1 and ?2 the multiplications of h∗h∗Gk and
h∗G respectively, extended to h∗O[h∗Gk] and h∗O[G ]. It is enough to show more generally that

h∗σ : h∗O[h∗Gk] −→ h∗O[G ]

is (1 + I ·O[Gk])-equivariant. We take points x ∈ I ·O[Gk] and y ∈ h∗O[h∗Gk] and compute:

(h∗σ)((1 + x) ?1 y) = (h∗σ)(y + x ?1 y)
= (h∗σ)(y) + x ?1 y by the Claim above,
= (h∗σ)(y) + x ?2 y by Corollary 3.3.5 since ?1 = ?2 modulo I,
= (h∗σ)(y) + x ?2 (h∗σ)(y) by Corollary 3.3.5 since σ = id modulo I,
= (1 + x) ?2 (h∗σ)(y).

This proves that h∗σ is Lie(Gk, I)-equivariant. �

5.2 Proof of the main theorem: equivalence and exactness

5.2.1 Proof of 5.0.1(1). We shall prove that the functors

Gr/k[I]
h∗ //

Ext(I)/k
h+

oo

provide quasi-inverse equivalences that commute with base changes Spec(k′) → Spec(k). Firstly, we
prove that h+ ◦ h∗ is isomorphic to the identity. Let G → Spec(k[I]) be an a�ne, di�erentially �at, rigid
k[I]-group scheme. Let E = h∗G be the associated extension:

1 −→ Lie(Gk, I) −→ E −→ Gk −→ 1.

We �x a rigidi�cation σ : h∗Gk
∼−→ G such that σ(1) = 1. We know from Proposition 5.1.1 that

h∗σ : h∗h
∗Gk −→ h∗G is Lie(Gk, I)-equivariant. If we use the letter γ to denote the inclusions of

Lie(Gk, I) into the relevant extensions, this can be written:

(h∗σ)(γh∗h∗Gk(x) · y) = γh∗G (x) · (h∗σ)(y), all x ∈ Lie(Gk, I), y ∈ h∗h∗Gk.

Restricting to y in the image of α = αGk : Gk ↪→ h∗h
∗Gk, so τα = %Gk , we obtain:

h∗σ ◦ τα = τs.

Using functoriality of β and the fact that σ(1) = 1, we build a commutative diagram:

h∗F = h∗(Lie(Gk, I)× Gk)
h∗τα //

id
��

h∗h∗h
∗Gk

βh∗Gk //

h∗h∗σ

��

h∗Gk

σ

��

// 1

h∗Ec = h∗(Lie(Gk, I)× Gk)
h∗τs // h∗h∗G

βG // G // 1

Here the horizontal maps are morphisms of groups and the vertical maps are not morphisms of groups
(not even the leftmost map id : h∗F → h∗Ec). Note also that F is E0 = T(Gk, I), that is, the extension
Ec with the zero cocycle c = 0. Now we consider K−1(E) as de�ned in Proposition 4.3.1. According to
Proposition 3.2.1(4), the group K−1(E0) ⊂ E0 is the kernel of βh∗Gk ◦ h∗τα. On one hand the identity
takes K−1(E0) to K−1(Ec), and on the other hand the map h∗σ takes ker(βh∗Gk) onto ker(βG ) since
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it takes 1 to 1. By commutativity of the left-hand square, we �nd K−1(E) = ker(βG ) and thefore βG

induces an isomorphism h+E = h∗E/K−1(E) ' G which is visibly functorial.

Secondly, we prove that h∗ ◦ h+ is isomorphic to the identity. Let 1 → Lie(G, I) → E → G → 1 be
an extension. We �x a section s : G → E such that s(1) = 1 and we let c be the normalized cocycle
de�ned by s. Let K−1 = K−1(E) ⊂ h∗E be the closed normal subgroup de�ned in Proposition 4.3.1,
and let G := h+E = h∗E/K−1 with quotient map π : h∗E → G . De�ne σ = π ◦ h∗s : h∗G → G . Since
i∗K−1 = Lie(G, I) as a subgroup of E, we see that i∗G ' G and i∗σ is the identity of G. Since G is
k-�at, it follows that σ is an isomorphism. From the construction of K−1, we see that after we compose
with the isomorphisms

h∗τs : h∗h∗h
∗G ∼−→ h∗E and σ : h∗G ∼−→ G ,

the �at surjection π : h∗E → G is identi�ed with the counit of the adjunction:

βh∗G : h∗h∗h
∗G −→ h∗G.

We apply h∗ and obtain the commutative diagram:

h∗h
∗G

αh∗h∗G //

∼

��

τs

��

h∗h
∗h∗h

∗G
h∗βh∗G //

∼
��

h∗h∗τs

��

h∗h
∗G

∼

��

h∗σ

��

E
αE // h∗h

∗E
h∗π // h∗G

Since the top row is the identity, we see that the bottom row is an isomorphism, i.e. E ∼−→ h∗G . Again,
it is clear that this isomorphism is functorial.

Finally, we consider the commutation with base changes. For Weil restriction, this is a standard fact.
For Weil extension, this follows from base change commutation for pullbacks and for quotients by �at
subgroups.

5.2.2 Proof of 5.0.1(2). Let 1 → G ′ → G → G ′′ → 1 be an exact sequence in Gr/k[I]. Then the
exact sequences with solid arrows are exact:

1 −→ G ′k −→ Gk −→ G ′′k −→ 1

1 // Lie(G ′k, I) // Lie(Gk, I) // Lie(G ′′k , I) // 1

Moreover, if G ′ is smooth then the second sequence is exact also if we include the dotted arrow. By an
easy diagram chase, we �nd that the commutative diagram below has exact rows (again including dotted
arrows if G ′ is smooth):

1

��

1

��

1

��

1 // Lie(G ′k, I) //

��

Lie(Gk, I) //

��

Lie(G ′′k , I) //

��

1

1 // h∗G ′k
//

��

h∗Gk //

��

h∗G ′′k
//

��

1

1 // G ′k
//

��

Gk //

��

G ′′k
//

��

1

1 1 1

This proves the claim.
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5.2.3 Proof of 5.0.1(4). If G is of �nite type, or smooth, or connected, or unipotent, or split unipotent,
or solvable, then G = i∗G as well as Lie(G, I) have the same property. It follows that E = h∗G has the
property. Moreover, if G is commutative then E also.

Conversely, if E is of �nite type, or smooth, or connected, or unipotent, or split unipotent, or solvable,
or commutative, then h∗E has the same property. Therefore the quotient h+E := h∗E/K−1 has the same
property.

5.3 Proof of the main theorem: isomorphism of Ok-module stacks

In this paragraph, we prove 5.0.1(3), i.e. that the Weil restriction functor h∗ : Gr/k[I] → Ext(I)/k
exchanges the addition and the scalar multiplication on both sides. Before we start, we point out that
these properties will imply that the image of a trivial deformation group scheme G = h∗G under Weil
restriction is the tangent bundle (i.e. trivial) extension T(G, I), a fact which can be shown directly using
Proposition 3.2.1(4).

We work in the �bre category over a �xed G ∈ Gr/k and we set L := Lie(G, I). Let G1,G2 ∈ Gr/k[I]
with identi�cations i∗G1 ' G ' i∗G2. For clarity, we introduce three copies I1 = I2 = I of the same �nite
free k-module. For c = 1, 2 we have obvious maps:

Spec(k[Ic])
jc

//

hc %%

Spec(k[I1 ⊕ I2])

`
xx

Spec(k)

Set G ′ = G1qG G2 ∈ Gr/k[I1⊕ I2], so G1 + G2 = j∗G ′ where j : Spec(k[I]) ↪→ Spec(k[I ⊕ I]) is the closed
immersion induced by the addition morphism I ⊕ I → I. We have a morphism

ξ : `∗G
′ −→ h1,∗G1 ×G h2,∗G2

whose component ξc : `∗G ′ → hc,∗Gc is the `∗-pushforward of the adjunction G ′ → jc,∗j
∗
cG
′ = jc,∗Gc.

Besides, we have a morphism
ω : `∗G

′ −→ h∗(G1 + G2)

obtained as the `∗-pushforward of the adjunction G ′ → j∗j
∗G ′ = j∗(G1 + G2).

5.3.1 Lemma. The morphism ξ is an isomorphism and it induces an isomorphism of extensions on the
bottom row of the following commutative square:

`∗G ′

ω
����

ξ∼ // h1,∗G1 ×G h2,∗G2

����

h∗(G1 + G2)
∼ // h1,∗G1 + h2,∗G2

Proof : Write G = Spec(A) and Gc = Spec(Ac) so G ′ = Spec(A1 ×A A2). There is a morphism of
algebra schemes ξ′ : `∗O[G ′] → h1,∗O[G1] ×Ok[G] h2,∗O[G2] contructed in the same way as ξ. It order to
describe ξ′ we can express the Weil restrictions in terms of I-compatible maps as in Lemma 3.1.2. For a
k-algebra R, we have:

Homck(A1 ×A A2, I1R⊕ I2R)
ξ′(R)−−−→ Homck(A1, I1R) ×

Homk(A,R)
Homck(A2, I2R)

v 7−→ (v1, v2)
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where v1 (resp. v2) is v modulo I2 (resp. I1). This is a bijection whose inverse sends a pair (v1, v2) with
v∗1 = v∗2 : A→ R to the map v : A1 ×A A2 → I1R⊕ I2R, (a1, a2) 7→ v1(a1) + v2(a2). The morphism ξ is
the bijection obtained by restriction of ξ′ to the subsets of algebra maps as in Lemma 3.1.2(2). Namely,
an algebra map is of the form f = v̄ + v where v is I-compatible, and ω(R) sends f to (f1, f2) while
ω(R)−1 sends (f1 = v̄ + v1, f2 = v̄ + v2) to f = v̄ + v1 + v2.

In order to describe ω note that (h∗(G1 + G2))(R) = Homk[I1⊕I2]-Alg(A1 ×A A2, R[I]) where R[I] is a
k[I1 ⊕ I2]-algebra via the map k[I1 ⊕ I2]→ k[I] induced by addition + : I ⊕ I → I. Then ω(R) sends f
to the composition

A1 ×A A2
f−→ R[I1 ⊕ I2]

+−→ R[I].

Thus ω(R) is surjective because R[I1 ⊕ I2] −→ R[I] has R-algebra sections, i.e. ω is a surjection of
functors. Its kernel is the set of maps f = v̄ + v1 + v2 such that v1 + v2 = d1 + d2 : A1 ×A A2 → R[I],
with ec = d∗c + dc : Ac → k[Ic] the counits of the Hopf algebras. After translation by the derivations as
indicated by Proposition 3.2.1(3), on the side of extensions the kernel is ker(+ : L× L→ L), giving rise
to a quotient isomorphic to the Baer sum extension h1,∗G1 + h2,∗G2. �

It remains to prove that h∗ : Gr/k[I]→ Ext(I)/k exchanges the scalar multiplication on both sides.
Let G ∈ Gr/k[I] with an identi�cation i∗G ' G. We will reduce to a situation similar as that of
Lemma 5.3.1 thanks to the following trick.

5.3.2 Lemma. Let jλ : Spec(k[I]) ↪→ Spec(k[I1 ⊕ I2]) be the closed immersion de�ned by the surjective
k-algebra map I1 ⊕ I2 → I, i1 ⊕ i2 7→ λi1 + i2. Then we have s∗λG

∼−→ j∗λ(G qG h∗G) canonically.

Proof : If we think of Spec k[I1 ⊕ I2] as the coproduct Spec k[I1] qSpec k Spec k[I2], the map jλ is the
composition (sλ q id) ◦ j as follows:

Spec(k[I])
j
// Spec(k[I1 ⊕ I2])

sλqid
// Spec(k[I1 ⊕ I2]).

It follows that:

j∗λ(G qG h∗G) = j∗((sλ q id)∗(G qG h∗G)) = j∗(s∗λG q h∗G) = s∗λG + h∗G = s∗λG ,

because h∗G is the neutral element for the sum in the �bre category of Gr/k[I]→ Gr/k at G. �

Set G1 = G and G2 = h∗G. Recall that L = Lie(G, I). The Weil restrictions are E := E1 = h∗G
and the trivial extension E2 = h∗h

∗G = L o G. As in Lemma 5.3.1, there are morphisms ξ : `∗G ′ →
E1 ×G E2 = E × L.

5.3.3 Lemma. The morphism ξ is an isomorphism which induces an isomorphism of extensions on the
bottom row of the following commutative square:

`∗G ′

ω
����

ξ∼ // h∗G × L

����

h∗(λG )
∼ // λh∗G .

Proof : The proof is the same as that of Lemma 5.3.1 except that in the �nal step we use the map
I ⊕ I → I, i1⊕ i2 7→ λi1 + i2. Again this morphism is surjective and on the side of extensions, the kernel
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corresponds to the kernel of L × L → L, (v1, v2) 7→ λv1 + v2. The quotient of E × L by this kernel is
exactly the extension λE, the pushout of the diagram:

L //

λ
��
p

E

��

L // λE.

This �nishes the proof. �

6 Dieudonné theory for unipotent groups over the dual numbers

In this section, as an application of Theorem A, we give a classi�cation of smooth, unipotent group
schemes over the dual numbers of a perfect �eld k, in terms of extensions of Dieudonné modules. So
throughout the section, the ring k is a perfect �eld of characteristic p > 0.

6.1 Reminder on Dieudonné theory

We denote by W the Witt ring scheme over k and F,V its Frobenius and Verschiebung endomorphisms.
For all n > 1, we write Wn := W/V nW the ring scheme of Witt vectors of length n. We use the same
notation also for these operators over the R-points, with R a k-algebra. We also de�ne Ṽ : Wn −→Wn+1

as the morphism induced on Wn by the composition

W
V //W

πn+1
//Wn+1

where πn+1 is the natural projection.
The Dieudonné ring D is the W (k)-algebra generated by two variables F and V with the relations:

Fx = F(x)F
xV = VF(x)

FV = VF = p,

for varying x ∈W (k). A Dieudonné module is a left D-module. A Dieudonné moduleM is called erasable
if for any m ∈M there exists a positive integer n such that Vnm = 0.

Let R be a k-algebra. Then, for any n > 1, we make Wn(R) a left D-module with the rules:

F · u = F(u)

V · u = V(u)

x · u = F1−n(x)u

for all u ∈ Wn(R) and x ∈ W (k). The twist in the latter de�nition is designed to make Ṽ : Wn(R) →
Wn+1(R) a morphism of D-modules, see Demazure and Gabriel [DG70, chap. V, � 1, no 3.3]. All of this
is functorial in R and gives Wn a structure of D-module scheme. In particular, Endk(Wn) is a D-module.
According to [DG70, chap. V, � 1, no 3.4] the morphism D → Endk(Wn) induces an isomorphism of
D-modules:

D/DV n ∼−→ Endk(Wn).
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If U is a commutative, unipotent k-group scheme, the set Homk(U,Wn) is a Dieudonné module with its
structure given by postcomposition, i.e. for any f : U →Wn:

F · f = F ◦f
V · f = V ◦f
x · f = F1−n(x)f,

all x ∈W (k). We de�ne the Dieudonné module of U as:

M(U) := lim
−→
n

Homk(U,Wn)

where the transition maps of the inductive system are induced by Ṽ : Wn →Wn+1. Since Homk(U,Wn) is
killed by Vn andM(U) is a union of these subgroups, we see thatM(U) is erasable. IfM is a Dieudonné
module, we de�ne its Frobenius twistM (p) as the module with underlying groupM (p) = M and D-module
structure given by:

FM(p) = FM , VM(p) = VM , xM(p) = F−1(x)M for all x ∈W (k).

Then the maps FM : M (p) → M and VM : M → M (p) are visibly D-linear. Moreover, let CU /k be the
category of commutative unipotent k-group schemes; according to [DG70, chap. V, � 1, 4.5] we have a
canonical isomorphism M(U)(p) ∼−→M(U (p)) for all U ∈ CU with Frobenius twist U (p).

6.1.1 Theorem. Let D-Mod be the category of Dieudonné modules. The contravariant functor

M : CU /k −→ D-Mod

is exact, fully faithful with essential image the full subcategory of erasable Dieudonné modules. It trans-
forms the Frobenius (resp. Verschiebung) of U into the Frobenius (resp. Verschiebung) of M(U). More-
over a unipotent group scheme U is of �nite type if and only if M(U) is of �nite type.

Proof : See [DG70, chap. V, � 1, 4.3, 4.4, 4.5]. �

6.2 Dieudonné theory over the dual numbers

Before stating our Dieudonné classi�cation, we need to de�ne the notions of Lie algebra and smoothness
of Dieudonné modules. We let D-Mode ⊂ D-Mod be the subcategory of erasable D-modules.

6.2.1 De�nition. Let M ∈ D-Mod be a Dieudonné module. We de�ne the Lie algebra of M by:

LieM := (M/FM)⊗k k[F].

If I a �nite dimensional k-vector space, the I-Lie algebra of M is Lie(M, I) := LieM ⊗k I∨. This gives
rise to endofunctors Lie(−) and Lie(−, I) of the category D-Mode.

6.2.2 Proposition. We have an isomorphism, functorial in U ∈ CU /k:

Lie(M(U), I) ∼−→M(Lie(U, I)).
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Proof : We start with the case of dimension one I = k, so Lie(U, kε) = Lie(U). Let U ′ be the kernel of
Frobenius in U and M = M(U), M ′ = M(U ′). We have an exact sequence:

0 −→ U ′ −→ U
FU−→ U (p).

We deduce isomorphisms LieU ∼−→ LieU ′ and M ′ = M/FM . In the sequel set LU := (LieU)(k), a
k-vector space. Since U ′ is a �nite commutative group scheme, according to Fontaine [Fo77, chap. III,
4.2] there is a canonical isomorphism:

ηU ′ : M ′/FM ′ ∼−→ L∨U ′ .

We deduce a composed isomorphism ηU as follows:

M/FM ∼−→M ′/FM ′
ηU′∼−→ L∨U ′

∼−→ L∨U .

From the isomorphism of k-group schemes LieU ' V(L∨U ), we deduce

M(LieU) = Homk(V(L∨U ),Ga)
∼−→ L∨U ⊗ k[F].

By tensoring ηU with k[F], we �nd

LieM = (M/FM)⊗k k[F] ∼−→ L∨U ⊗ k[F] ∼−→M(LieU).

The result for general I follows since Lie(U, I) ' LieU ⊗Ok V(I∨) and Lie(M, I) = LieM ⊗k I∨. �

We can characterize the functor Lie on Dieudonné modules by its values on the modules D/DVn.

6.2.3 Proposition. There exists a unique covariant functor L : D-Mode → D-Mode with the following
properties:

(1) L is right exact and commutes with �ltering inductive limits;

(2) L (D/DVn) = k[F]n for all n > 1;

(3) L : End(D/DVn) → End(k[F]n) sends F to 0; V to the endomorphism (a0, a1, . . . , an−1) 7→
(0, a0, a1, . . . , an−2); and multiplication by x = (x0, x1, x2, . . . ) ∈ W (k) to the diagonal endomorphism

with diagonal entries (x0, x
p
0, . . . , x

pn−1

0 ).

Proof : Uniqueness. The key is the fact that D/DVn is a projective generator of the subcategory
Cn := (D-Mode)V

n=0 of objects killed by Vn. More precisely, since any erasable D-module is a �ltering
union of its submodules of �nite type, property (1) implies that L is determined by its restriction to the
subcategory of modules of �nite type. Any �nite type module M is killed by Vn for some n > 1. Since
D/DVn is noetherian, for any M ∈ Cn there exist r, s and an exact sequence:

(D/DVn)s −→ (D/DVn)r −→M −→ 0,

and for any morphism f : M →M ′ in Cn there is a commutative diagram:

(D/DVn)s //

h
��

(D/DVn)r //

g
��

M //

f

��

0

(D/DVn)s
′

// (D/DVn)r
′

//M ′ // 0.
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Since L is right exact, this implies that L (M) is determined by the values of L ((D/DVn)r) for variable r,
and L (f) is determined by the values of L (g) for variable g as above. Again since L is right exact,
it is additive. Hence L ((D/DVn)r) is determined by L (D/DVn) which is prescribed in (2). Similarly
L (g) is determined by the values of L on the various maps D/DVn ↪→ (D/DVn)r � D/DVn. Since
End(D/DVn) = D/DVn is generated by W (k), F and V , the assignment in (3) ensures uniqueness of L .

Existence. Because of Proposition 6.2.2, it is enough to check that the functors L (M(−)) andM(Lie(−))
take the same values on the Witt groups U = Wn and the endomorphisms of these groups. This is a
simple computation which is left to the reader. �

We come to the notion of smoothness. It is known that a k-group scheme of �nite type U is smooth if
and only if its relative Frobenius FU/k : U → U (p) is an epimorphism of k-group schemes. This motivates
the following de�nition.

6.2.4 De�nition. An erasable Dieudonné module M is called smooth if it is of �nite type and its
Frobenius morphism FM : M (p) →M is a monomorphism.

6.2.5 De�nition. An I-extension in D-Mode is an extension of smooth erasable Dieudonné modules of
the form

0 −→M −→M ′ −→ Lie(M, I) −→ 0.

A morphism of I-extensions is a morphism of extensions in the usual sense, that is, a morphism of short
exact sequences of D-modules.

6.2.6 Theorem. Let SCU /k[I] be the category of smooth, commutative, unipotent (i.e. with unipo-
tent special �bre) k[I]-group schemes. Let D-I-Mod be the category of I-extensions of smooth erasable
Dieudonné modules. Then the Dieudonné functor M induces a contravariant equivalence of categories:

M : SCU /k[I] −→ D-I-Mod

that sends U to the extension 0→M(Uk)→M(h∗U ))→M(Lie(Uk, I))→ 0. A quasi-inverse functor
is obtained by sending an extension 0→M →M ′ → Lie(M, I)→ 0 to the Weil extension h+(U(M ′)) of
the extension 0→ Lie(U(M), I)→ U(M ′)→ U(M)→ 0, where U is a quasi-inverse for M .

Proof : It su�ces to put together Theorem A and Theorem 6.1.1. In little more detail, let U be a
smooth, commutative, unipotent group scheme over the ring of dual numbers k[I], and let U = Uk be
its special �bre. By Theorem A this datum is equivalent to an extension

0 −→ Lie(U, I) −→ E −→ U −→ 0

with E = h∗U smooth, commutative, unipotent. By Theorem 6.1.1 this is equivalent to an extension

0 −→M(U) −→M(E) −→M(Lie(U, I)) −→ 0.

Since Lie(M(U), I) ∼−→M(Lie(U, I)) by Proposition 6.2.2, we obtain an I-extension as desired. �

A Appendix: Di�erential calculus on group schemes

In this appendix we review the notions of tangent bundle and Lie algebra in the required generality. We
introduce the exponential morphism of a k-group scheme and we establish its main properties, including
some special properties needed in the paper. Finally we show how the use of the group algebra allows to
recover easily the deformation theory of smooth a�ne group schemes. Proofs are often omitted, especially
in A.1 and A.2.
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A.1 Tangent bundle and Lie algebra

Let k be a ring and I a free k-module of �nite rank r > 1 with dual I∨ = Homk(I, k). Let k[I] be the
algebra of dual numbers, i.e. k[I] := k ⊕ I with multiplication determined by the condition I2 = 0. Let
h : Spec(k[I])→ Spec(k) be the structure map and i : Spec(k)→ Spec(k[I]) the closed immersion. Basic
structure facts on the ring schemes Ok and Ok[I] are recalled in Paragraph 2.1.2.

Let G be a k-group scheme with unit section e : Spec(k) → G. The tangent bundle of G/k relative
to I is the k-group scheme de�ned by:

T(G, I) := h∗h
∗G.

The (h∗, h∗) adjunction (see Subsection 1.3) provides two morphisms of group schemes:

αG : G −→ T(G, I) , βh∗G : h∗T(G, I) = h∗h∗h
∗G −→ h∗G.

From these we derive πG := i∗βh∗G : T(G, I)→ G and the Lie algebra of G/k relative to I:

Lie(G, I) := ker(πG).

The map T(G, I)→ G is a vector bundle which can be described in terms of derivations. If we identify
the k-module I with the corresponding locally free sheaf on Spec(k), then for all points f : S → G with
values in a k-scheme S we have ([SGA3.1, Exposé II, Prop. 3.3]):

HomG(S,T(G, I)) ∼−→ Derf (OG, f∗OS ⊗k I).

In particular Lie(G, I)→ Spec(k) is an Ok-Lie algebra scheme such that for all S/k we have

Homk(S,Lie(G, I)) ∼−→ Dere(OG, e∗OS ⊗k I).

It supports the adjoint representation, i.e. the action of G by conjugation inside T(G, I):

Ad : G→ GL(Lie(G, I)) , Ad(g)(x) = αG(g)xαG(g)−1

for all points g of G and x of Lie(G, I). Applying the functor Lie, that is di�erentiating at the unit
section of G, we obtain the in�nitesimal adjoint representation of the Lie algebra:

ad : LieG→ End(Lie(G, I))).

When I = kε, from ad we deduce the bilinear form called bracket [−,−] : LieG × LieG → LieG. That
is, we have [x, y] := (adx)(y) for all points x, y of LieG.

The tangent bundle T(G, I) carries a structure of extension as follows. By the triangle identity
of adjunction, h∗αG is a section of βh∗G, hence αG is a section of πG. Letting γG be the inclusion
Lie(G, I) ↪→ T(G, I), we have a split exact sequence:

1 // Lie(G, I)
γG // T(G, I)

πG // G //

αG
oo 1.

This is an exact sequence of functors, hence also an exact sequence of group schemes (i.e. of fppf sheaves).
Let m be the multiplication of T(G, I). The splitting gives rise to an isomorphism of k-schemes:

%G : Lie(G, I)×G γG×αG // T(G, I)× T(G, I)
m // T(G, I),

that is, any point of T(G, I) may be written uniquely as a product γG(x) · αG(g) for some points x ∈
Lie(G, I) and g ∈ G. We will sometimes write brie�y (x, g) = γG(x) · αG(g) to denote this point of
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T(G, I). The conjugation action of G on Lie(G, I) related to the extension structure is given by the
adjoint action, thus the group structure of T(G, I) can be described by:

(x, g) · (x′, g′) = (x+ Ad(g)x′, gg′).

The dependence of T(G, I) and Lie(G, I) on I can be described further. If I = kε so that k[I] = k[ε]
with ε2 = 0, we write simply TG = T(G, kε) and LieG = Lie(G, kε) and we call them the tangent bundle
and the Lie algebra of G. For general I, the isomorphisms Derf (OG, f∗OS)⊗k I ∼−→ Derf (OG, f∗OS⊗k I)
functorial in S/G induce an isomorphism of vector bundles:

TG⊗OGu
∗V(I∨) ∼−→ T(G, I),

with u : G → Spec(k) the structure map. Similarly, the isomorphisms Der(OG, f∗OS) ⊗k I ∼−→
Der(OG, f∗OS ⊗k I) functorial in S/k induce an isomorphism of Ok-Lie algebra schemes:

LieG⊗ V(I∨) ∼−→ Lie(G, I).

With G acting trivially on V(I∨), this isomorphism is G-equivariant.

A.1.1 Idempotence of Lie. An important property for us will be the idempotence of the Lie functor,
namely the existence of an isomorphism d : Lie(G, I) → Lie(Lie(G, I)) as in [SGA3.1, Exposé II, 4.3.2].
To describe it, let I, J be two �nite free k-modules. Note that R[I][J ] = R ⊕ IR ⊕ JR ⊕ IJR. If
G = Spec(A) is a�ne, for a k-algebra R, the elements of the set G(R[I][J ]) are the maps f : A→ R[I][J ]
written f(x) = r(x) + s(x) + t(x) +u(x) where r : A→ R is an algebra map, s : A→ IR and t : A→ JR
are r-derivations, and u : A→ IJR satis�es the identity:

u(xy) = r(x)u(y) + r(y)u(x) + s(x)t(y) + s(y)t(x).

Thus u is an r-derivation if s = 0 or t = 0. Consider the maps p : R[I][J ] → R[I], J 7→ 0 and
q : R[I][J ]→ R[J ], I 7→ 0. Unwinding the de�nition we see that:

(Lie(Lie(G, I), J)(R) = ker
(
G(R[I][J ])

(p,q)−−−→ G(R[I])×G(R[J ])
)
.

For varying R, the maps R[I ⊗k J ] → R[I][J ], i ⊗ j 7→ ij induce a morphism d : Lie(G, I ⊗k J) −→
Lie(Lie(G, I), J).

A.1.2 Lemma. The morphism d : Lie(G, I ⊗k J)→ Lie(Lie(G, I), J) is an isomorphism. �

For simplicity of notation, we will write d as an equality: Lie(G, I ⊗k J) = Lie(Lie(G, I), J). This
will not cause any ambiguity. If I = J = kε this means simply that LieG = Lie(LieG).

A.2 Exponential and in�nitesimal translation

Demazure and Gabriel in [DG70] use an exponential notation which is �exible enough to coincide in some
places with the morphism expG as we de�ne it below (loc. cit. chap. II, � 4, 3.7) and in other places with
the morphism γG (loc. cit. chap. II, � 4, 4.2). The drawback of �exibility is a little loss of precision. We
introduce the exponential in a somehow more formal way, as an actual morphism between functors.

A.2.1 De�nition. The exponential of a k-group scheme G is the composition:

expG,I : h∗ Lie(G, I)
h∗γG // h∗TG

βh∗G // h∗G.
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When I is clear from context, and also when I = kε, we write expG instead of expG,I . The following
proposition collects some elementary properties of the exponential.

A.2.2 Proposition. The exponential expG,I of a k-group scheme G has the following properties.

(1. Functoriality) For all morphisms of group functors f : G→ G′ we have a commutative square:

h∗ Lie(G, I)
expG,I

//

h∗ Lie(f)
��

h∗G

h∗f
��

h∗ Lie(G′, I)
expG′,I

// h∗G′.

(2. Equivariance) The map expG,I is h∗G-equivariant for the adjoint action on h∗ Lie(G, I) and the
conjugation action of h∗G on itself.

(3. In�nitesimal translation) Let x be a point of h∗ Lie(G, I), g a point of h∗G and (x, g) = h∗γG(x) ·
h∗αG(g) the corresponding point of h∗T(G, I). Then we have βh∗G(x, g) = expG,I(x)g.

(4. Adjoint action of exponentials) Using the description Lie(G, I) = LieG⊗ V(I∨), the morphism

h∗Ad ◦ expG,I : h∗ Lie(G, I)→ h∗GL(Lie(G, I))

is equal to x⊗ i 7→ id +i ad(x), that is, Ad(expG,I(x⊗ i))x′ = x′ + i[x, x′].

(5. Exponential of a Lie algebra) Let J be another �nite free k-module. Using the isomorphism

Lie(G, J)⊗ V(I∨) ' Lie(G, J ⊗k I)
d
∼−→ Lie(Lie(G, J), I)

from Lemma A.1.2, the morphism of k[I]-group schemes

h∗ Lie(G, J)⊗Ok[I] h
∗V(I∨) = h∗ Lie(Lie(G, J), I)

expLie(G,J),I
// h∗ Lie(G, J)

is given by the external law of the Ok[I]-module scheme h∗ Lie(G, J). In particular, its image is equal to
I ·h∗ Lie(G, J) and its kernel contains I ·h∗ Lie(Lie(G, J), I). Besides, if I = kε the map expLie(G,J) :

h∗ Lie(G, J)→ h∗ Lie(G, J) is multiplication-by-ε in the module scheme h∗ Lie(G, J).

(6. Kernel) The two maps:

expG,I : h∗ Lie(G, I) −→ h∗G , expLie(G),I : h∗ Lie(G, I)
h∗d' h∗ Lie(Lie(G), I) −→ h∗ Lie(G)

have equal kernels, thus I ·h∗ Lie(G, I) ⊂ ker(expG,I). In particular, in case I = kε, the kernel of
expG : h∗ LieG→ h∗G is equal to the kernel of the multiplication-by-ε map in h∗ LieG.

Proof : (1) This follows from the fact that the morphisms γ and β are functorial.

(2) This follows from the de�nition of Ad.

(3) This is because βh∗G is a morphism of group schemes, so that

βh∗G(x, g) = βh∗G
(
h∗γG(x) · h∗αG(g)

)
= βh∗G(h∗γG(x)) · βh∗G(h∗αG(g)) = expG(x)g.

(4) We have the following diagram with commutative square:

h∗ LieG
h∗γG // h∗h∗h

∗G
βh∗G //

h∗h∗h∗Ad
��

h∗G

h∗Ad

��

h∗h∗h
∗(GL(LieG))

βh∗ GL(LieG)
// h∗(GL(LieG)).
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The composition in the �rst line is expG so the commutativity of the diagram says that

h∗Ad ◦ expG = βh∗GL(LieG) ◦ h∗h∗h∗Ad ◦h∗γG.

Now let x⊗ i be a point of the group Lie(G, I) = LieG⊗V(I∨) (which is generated by such elementary
tensors). By [DG70], chap. II, � 4, 4.2, formula (5) with square-zero element ε := i we have h∗h∗Ad ◦γG =
id +i ad, whence the result.

(5) Let R be a k[I]-algebra and iR := i1R, for each i ∈ I. On the R-valued points, the maps in the
statement are obtained by application of the functor G to some morphisms of algebras, as follows:

• h∗d is deduced from the morphism R[I ⊗k J ]→ R[I][J ], i⊗ j 7→ ij.

• expLie(G,I) is deduced from the morphism R[I][J ]→ R[J ], i 7→ iR, j 7→ j.

The composition is R[I ⊗k J ]→ R[J ], i⊗ j 7→ iRj. This is the external multiplication by scalars of Ok[I]

in (h∗ Lie(G, I))(R), see [DG70], chap. II, � 4, 1.2. The result follows.

(6) Covering G by open a�nes, we reduce to the case where G = Spec(A). Let R be a k[I]-algebra. An
R-valued point of the kernel of expG,I is a morphism of k-algebras f : A → R[I], a 7→ e(a) + v(a) such
that e(a) + vR(a) = e(a) for all a ∈ A were vR : A→ R is the composition

A
v−→ I ⊗k R

i⊗r 7→ir−−−→ R.

As we saw in (5), the e-derivation vR is the image of v under expLie(G,I), hence the claim. �

We �nish this subsection with a corollary of the computation of the exponential of a Lie algebra.

A.2.3 Lemma. Let G,H be two group schemes over k. Let φ : G→ Lie(H, I) be a morphism of pointed
schemes. Let i be a section of the ideal I ·Ok[I] ⊂ Ok[I]. Then the following compositions are both equal
to the trivial morphism:

(1) h∗ Lie(G, I)
expG,I

// h∗G
h∗φ

// h∗ Lie(H, I)
i // h∗ Lie(H, I) .

(2) h∗ Lie(G, I)
expG,I

// h∗G
h∗φ

// h∗ Lie(H, I)
expH,I

// h∗H .

Proof : By functoriality of exp we have a commutative diagram:

h∗ Lie(G, I)
expG,I

//

h∗ dφ
��

h∗G

h∗φ
��

h∗ Lie(Lie(H, I), I)
expLie(H,I),I

// h∗ Lie(H, I).

According to Proposition A.2.2(5), the image of expLie(H,I),I is equal to the subfunctor I · h∗ Lie(G, I).
Since I2 = 0, from this (1) follows. Moreover, by A.2.2(6) the map expH,I has the same kernel as
expLie(H),I which by A.2.2(5) contains I ·h∗ Lie(H, I). Again, since I2 = 0, point (2) follows. �

35



A.3 Deformations of a�ne group schemes

In this subsection, we illustrate the usefulness of the group algebra in two ways. First, in Proposition A.3.1
we show how concepts of di�erential calculus can be handled very conveniently using the group algebra.
We include the examples of the adjoint action and the Lie bracket. The results of Proposition A.2.2) can
be derived painlessly in a similar fashion. Then in Proposition A.3.3 we show how to recover directly the
fact that isomorphism classes of deformations to k[I] of a smooth, a�ne k-group scheme G are classi�ed
by the second cohomology group H2(G,Lie(G, I)).

A.3.1 Proposition. Let G be an a�ne k-group scheme and (Ok[G],+, ?) its group algebra.

(1) The tangent bundle T(Ok[G], I) of the group algebra is canonically isomorphic to the algebra scheme
Ok[G][I] = Ok[G]⊕Ok[G]·I. We have a commutative diagram of a�ne monoid schemes:

1 // LieG⊗ V(I∨) //

� _

��

T(G, I) //

� _

��

G //

� _

��

1

1 // (Ok[G]·I,+) // (Ok[G][I]×, ?) //

� _

��

(Ok[G]×, ?) //

� _

��

1

(Ok[G]·I,+)
a2 7→1+a2 // (Ok[G][I], ?)

a1+a2 7→a1 // (Ok[G], ?)

The �rst two rows are split exact sequences of group schemes. In the last row we have written the points
of Ok[G][I] as a = a1 + a2 with a1 ∈ Ok[G] and a2 ∈ Ok[G]·I. The map LieG⊗ V(I∨) ↪→ (Ok[G]·I,+)
induces an isomorphism between LieG⊗V(I∨) and the subscheme Der1

G ⊂ Ok[G] of e-derivations where
e is the neutral element of G.

(2) The adjoint action Ad : G→ GL(Lie(G, I)) can be expressed as a conjugation inside Ok[G][I]:

1 + Ad(g)x = g(1 + x)g−1 = 1 + gxg−1,

for all x ∈ Lie(G, I) = LieG⊗ V(I∨) and g ∈ G.
(3) The Lie bracket [−,−] : LieG×LieG→ LieG can be expressed as the bracket de�ned by the associative
multiplication of Ok[G]:

[x, y] = xy − yx.

A.3.2 Remark. More generally, for all �nite free k-modules I, J we have an in�nitesimal adjoint action

ad := Lie(Ad, J) : Lie(G, J)→ Hom(Lie(G, I),Lie(G, I ⊗ J))

which can be expressed as the bracket de�ned by the associative multiplication of Ok[G][I][J ], that is,
[x, y] = xy − yx for x ∈ Ok[G]·J and y ∈ Ok[G]·I. The expression in the particular case I = J = kε is
obtained by writing 1 + εx instead of 1 + x.

Proof : (1) By Proposition 2.3.1(4), we have an isomorphism of Ok-algebra schemes:

T(Ok[G], I) = h∗h
∗Ok[G] ∼−→ Ok[G]⊗Ok h∗Ok[I] ' Ok[G][I].

Under this identi�cation, the map T νG : T(G, I) → T(Ok[G], I) = Ok[G][I] is given as follows: for a
k-algebra R, a point f ∈ T(G, I)(R) is a morphism f : A → R[I], f(x) = u(x) + v(x) for some unique
k-module homomorphisms u : A→ R and v : A→ IR, and we have

T νG(f) = u+ v ∈ Ok[G][I](R).
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This is the central vertical map in the pictured diagram. The rest is clear.

(2) Using the inclusions of multiplicative monoids αG : G ↪→ TG and T νG : TG ↪→ Ok[G][ε], we can
view the conjugation action by G inside the tangent bundle or inside the tangent group algebra, as we
wish. The result follows.

(3) In order to compute ad we di�erentiate and hence work in Ok[G][ε, ε′]. That is, the Lie algebra
embedded by y 7→ 1 + εy is acted upon by the Lie algebra embedded by x 7→ 1 + ε′x, via conjugation in
the ambient Ok[G][ε, ε′]. With these notations, the identi�cation End(LieG) ∼−→ Lie(GL(LieG)) goes by
f 7→ 1 + ε′f . All in all, the outcome is that ad(x) is determined by the condition that for all y we have:

(1 + ε′x)(1 + εy)(1− ε′x) = 1 + ε
(
(id +ε′ ad(x))(y)

)
.

Since the left-hand side is equal to 1 + εy + εε′(xy − yx), this proves our claim. �

A.3.3 Proposition. Let k be a base ring and let G be an a�ne k-group scheme.

(1) The set of k[I]-group scheme structures on the scheme h∗G that lift the k-group scheme structure of
G is in bijection with the set of 2-cocycles c : G×G→ LieG.

(2) The set of isomorphism classes of rigid deformations of G to k[I] is in bijection with H2(G,Lie(G, I)),
the second group cohomology of G with coe�cients in the adjoint representation Lie(G, I) ' LieG⊗V(I∨).

Proof : (1) We want to deform the multiplication m : G×G −→ G, (u, v) 7→ uv into a multiplication
m̃ : h∗G× h∗G→ h∗G which by adjunction we can view as a map:

G×G→ h∗h
∗G = T(G, I), (u, v) 7→ u� v.

We use embeddings inside the group algebra as in Proposition A.3.1; thus both targets of m and m̃ are
embedded in Ok[G][I]. The condition that m̃ equals m modulo I is that these morphisms agree after
composition with the projection π : Ok[G][I]→ Ok[G]. In other words the condition is that for all points
u, v ∈ G, the element (u � v)(uv)−1 equals 1 modulo I. Since this is also a point of T(G, I), it belongs
to Lie(G, I). Hence we can write

u� v = (1 + c(u, v))uv

for some c : G×G → Lie(G, I). The associativity constraint for � gives equality between the following
two expressions:

(u� v)� w =
(
1 + εc(uv + c(u, v)uv,w)

)(
1 + c(u, v)

)
uvw

=
(
1 + c(uv,w)

)(
1 + c(u, v)

)
uvw using Lemma A.2.3,

=
(
1 +

(
c(uv,w) + c(u, v)

))
uvw

and

u� (v � w) =
(
1 + c(u, vw + c(v, w)vw)

)
u
(
1 + c(v, w)

)
vw

=
(
1 + c(u, vw)

)
u
(
1 + c(v, w)

)
vw using Lemma A.2.3,

=
(
1 +

(
c(u, vw) + uc(v, w)u−1

))
uvw.

Simplifying by uvw which is invertible in the group algebra, and equating, gives:

c(uv,w) + c(u, v) = c(u, vw) + uc(v, w)u−1.
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This is the cocycle relation. Conversely, if c : G×G→ Lie(G, I) is a 2-cocycle, we de�ne

u� v := (1 + c(u, v))uv.

The cocycle identity gives the associativity of this map. Moreover, inverses for this law exist and are
given by the formula u�−1 = u−1(1− c(u, u−1)). So we obtain a k[I]-group scheme Gc := (Spec(A[I]),�)
which is a deformation of G.

(2) Let G be a rigid deformation of G. Choosing an isomorphism of schemes ϕ1 : G ∼−→ h∗G, the
induced group scheme structure on h∗G gives rise to a cocycle c as explained in (1). Choosing another
isomorphism ϕ2 : G ∼−→ h∗G, we have an automorphism ξ = ϕ2 ◦ ϕ−1

1 : h∗G → h∗G which restricts to
the identity on G. The map G→ h∗h

∗ = T(G, I) obtained by adjunction is of the form u 7→ (1 +ψ(u))u
for some morphism ψ : G → Lie(G, I). This means that ξ(u) = (1 + ψ(u))u. We want to see how the
multiplication is transformed by the change of isomorphism. If u′ = (1 + ψ(u))u then u = (1− ψ(u′))u′,
and we have:

(u′, v′)
ξ−1

7−→ ((1− ψ(u′))u′, (1− ψ(v′))v′)

�7−→ (1 + c(u′, v′))(1− ψ(u′))(1−Ad(u′)ψ(v′))u′v′

= (1 + (c(u′, v′)− ψ(u′)−Ad(u′)ψ(v′)))u′v′

ξ7−→
[
1 + (ψ(u′v′) + c(u′, v′)− ψ(u′)−Ad(u′)ψ(v′))

]
u′v′

We see that c changes by the coboundary ∂ψ and the class [c] ∈ H2(G,Lie(G, I)) does not depend on the
choice of isomorphism G ∼−→ h∗G. To obtain the inverse bijection, one chooses a cocycle c and attaches
the deformation Gc as in (1). The map is well-de�ned because another choice of c in the same cohomology
class gives an isomorphic deformation. �

B Appendix: Module stacks in groupoids

Both categories Gr/k[I] and Ext(I)/k are endowed with the structure of Ok-module stacks in groupoids
over Gr/k and the purpose of this Appendix is to explain what this means. In the two cases this
seems to be a well-known fact, but we were able to locate only very few discussions of this topic in the
literature. In fact, the additive part of the structure, which goes by the name of a �Picard category�, is
well documented, a landmark being Deligne's exposé in [SGA4.3], Exp. XVIII, � 1.4. However, the linear
part of the structure, that is the Ok-scalar multiplication and its interplay with the additive structure, is
almost absent from the literature. Subsections 2.3, 2.4 and 2.5 of Osserman [Os10] are a �rst step, but
the author writes: Although it is possible to [de�ne scalar multiplication maps] on a categorical level as
we did with addition, expressing the proper conditions for associativity and distributivity isomorphisms
becomes substantially more complicated. In this appendix which is an extended version of the published
version, we tackle the question of the de�nition and we establish a few basic results in order to highlight
the nontrivial features of the theory.

We start with the de�nition of Picard categories. The alternative phrase commutative group groupoids
is a more accurate name to refer to them, but we stick with the traditional name. In order to make
the axioms reader-friendly, we adopt a simpli�ed description for the multifunctors involved, e.g. the
associativity isomorphism a : T1 → T2 between the trifunctors T1, T2 : P × P × P → P given by
T1 = +◦(+×id) and T2 = +◦(id×+) is given in the form of isomorphisms ax,y,z : (x+y)+z → x+(y+z)
functorial in x, y, z ∈ P .

B.1 De�nition. Let P be a category and + : P × P → P a bifunctor.
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(1) An associativity constraint for + is an isomorphism of functors ax,y,z : (x + y) + z ∼−→ x + (y + z)
such that the pentagon axiom ([SGA4.3], Exp. XVIII, 1.4.1) is satis�ed. It is called trivial or strict if
ax,y,z = id for all x, y, z ∈ P .
(2) A commutativity constraint for + is an isomorphism of functors cx,y : x+ y ∼−→ y + x which satis�es
cy,x ◦ cx,y = idx+y for all x, y ∈ P . It is called trivial or strict if cx,y = id for all x, y ∈ P .
(3) The associativity and commutativity constraints a and c are compatible if the hexagon axiom ([SGA4.3],
Exp. XVIII, 1.4.1) is satis�ed.

(4) A neutral element for + is an object 0 ∈ P with an isomorphism ϕ : 0 + 0 ∼−→ 0.

In other mathematical contexts, associativity constraints are also called associators and commutativity
constraints are also called symmetric braidings.

B.2 De�nition. Let (P1,+) and (P2,+) be categories endowed with bifunctors. Let F : P1 → P2 be a
functor and ϕF,x,y : F (x+ y) ∼−→ F (x) + F (y) an isomorphism of functors.

(1) Let a1, a2 be associativity constraints on (P1,+) and (P2,+). We say that (F,ϕF ) is compatible with
a1, a2 if the following diagram commutes:

F ((x+ y) + z)
ϕF //

F (a1)

��

F (x+ y) + F (z)
ϕF // (F (x) + F (y)) + F (z)

a2
��

F (x+ (y + z))
ϕF // F (x) + F (y + z)

ϕF // F (x) + (F (y) + F (z)).

(2) Let c1, c2 be commutativity constraints on (P1,+) and (P2,+). We say that (F,ϕF ) is compatible
with c1, c2 if the following diagram commutes:

F (x+ y)
ϕF //

F (c1)

��

F (x) + F (y)

c2
��

F (y + x)
ϕF // F (y) + F (x).

B.3 De�nition. A Picard category is a quadruple (P,+, a, c) composed of a nonempty groupoid P , a
bifunctor + : P ×P → P with compatible associativity and commutativity constraints a and c, such that
for each x ∈ P the functor P → P , y 7→ x+ y is an equivalence.

Any Picard category P has a neutral element 0 which is unique up to a unique isomorphism ([SGA4.3],
Exp. XVIII, 1.4.4). Moreover, for each x, y ∈ P the set of morphisms Hom(x, y) is either empty or a
torsor under the group G := Aut(0). More precisely, the functors +x : P → P and x+ : P → P
induce the same bijection G → Aut(x), ϕ 7→ ϕ + idx. Viewing this bijection as an identi�cation, the
set Hom(x, y) with its right Aut(x)-action and left Aut(y)-action becomes a pseudo-G-bitorsor, i.e. it is
either empty or a G-bitorsor.

B.4 Lemma. The left and right actions of G on the sets Hom(x, y) coincide, that is, ga = ag for all
g ∈ G and a ∈ Hom(x, y). In particular, the group G is abelian.

Proof : The proof is a variation on the Eckmann-Hilton argument. In order to avoid carrying the cum-
bersome isomorphism ϕ attached to the neutral element 0 (see De�nition B.1(4)), we assume notationally
that it is the identity. That is, we consider that the functors 0+ and +0 are identities. Let 1 = id0. For
all a ∈ Hom(x, y) we have:
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(i) a1 = a and 1a = a,

(ii) a+ 1 = 1 + a = a.

Moreover, since + : P × P → P is a functor, it respects composition. Hence for all a, b ∈ Hom(x, y) and
g, h ∈ G we have:

(iii) ga+ hb = (g + h)(a+ b),

(iv) ag + bh = (a+ b)(g + h).

From (iii), we deduce a + h = (1 ◦ a) + (h ◦ 1) = (1 + h) ◦ (a + 1) = h ◦ a. From (iv), we deduce
a+ h = (a ◦ 1) + (1 ◦ h) = (a+ 1) ◦ (1 + h) = a ◦ h. It follows that h ◦ a = a ◦ h, that is, the left and right
actions of G on Hom(x, y) coincide. For x = y = 0 this proves that G is abelian. �

B.5 De�nition. Let P1, P2 be Picard categories.

(2) An additive functor is a pair (F,ϕF ) where F : P1 → P2 is a functor and ϕF,x,y : F (x + y) ∼−→
F (x) + F (y) is an isomorphism of functors that is compatible with associativity and commutativity
constraints.

(3) Let F,G : P1 → P2 be additive functors. A morphism of additive functors is a morphism of functors
u : F → G such that the following diagram is commutative:

F (x+ y)
ux+y

//

ϕF
��

G(x+ y)

ϕG
��

F (x) + F (y)
ux+uy

// G(x) +G(y).

We emphasize that since a Picard category is a groupoid (that is, all its morphisms are isomorphisms),
all morphisms of additive functors u : F → G are isomorphisms.

The category of additive functors Hom(P1, P2) is itself a Picard category ([SGA4.3], Exp. XVIII,
1.4.7). Additive functors can be composed and the identity functors behave as neutral elements. In the
particular case where P1 = P2 = P , along with its addition law, the Picard category End(P ) = Hom(P, P )
enjoys an internal multiplication given by composition. Note that in this case multiplication is strictly
associative, because so is composition of functors in categories.

B.6 Remark. In End(P ), the neutral element 0E is the functor 0E : P → P , x 7→ 0P , (u : x → y) 7→
id0P . Let us describe its automorphism group in the case where P is a small category. An automorphism
is a natural transformation γ : 0E → 0E , that is, for each x ∈ P we have a morphism γx : 0P → 0P such
that for all morphims u : x→ y the following square is commutative:

0P
γx

//

id0P

��

0P

id0P

��

0P
γy

// 0P .

This means that γx = γy whenever x and y are isomorphic. It follows that Aut(0E) is the group of
functions π0(P )→ G where π0(P ) is the set of isomorphism classes of objects of P .

In fact End(P ) is a ring category, but in order to introduce module groupoids, we do not actually
need to de�ne what is such a thing.
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B.7 De�nition. Let Λ be a commutative ring. A Λ-module groupoid is a Picard category P endowed
with a functor F = (F,ϕF , ψF ) : Λ→ End(P ) called scalar multiplication such that:

(1) (F,ϕF ) is an additive functor.

For each λ ∈ Λ, for simplicity we write (λ, ϕλ) for (Fλ, ϕFλ) : P → P . Moreover:

(2) (F,ψF ) is multiplicative, i.e. F (1) = idP and F is compatible with the associativity constraints
of multiplication.

(3) F is compatible with the distributivity of multiplication over addition:

(λ(µ+ ν))x
ψF // λ((µ+ ν)x)

ϕF // λ(µx+ νx)

ϕλ
��

(λµ+ λν)x
ϕF // (λµ)x+ (λν)x

ψF+ψF // λ(µx) + λ(νx)

commutes.

B.8 Remarks. (1) The associativity constraints of multiplication are trivial in both Λ and End(P ),
but this does not mean that the condition of compatibility in (2) is empty. Rather, it means that the
following diagram commutes:

((λµ)ν)x
ψF // (λµ)(νx)

ψF // λ(µ(νx))

(λ(µν))x
ψF // λ((µν)x)

ψF // λ(µ(νx))

The same remark applies for distributivity of multiplication over addition (and the relevant commutative
diagram is spelled out in B.7(3) above.)

(2) Since End(P ) is not endowed with a multiplicative commutativity constraint (for the simple reason
that such a constraint does not exist in general), no corresponding requirement is imposed on (F,ψF ).

In usual set-valued module theory, from the fact that Λ is commutative it would follow that the
functor F : Λ→ End(P ) in De�nition B.7 takes values in a commutative subring of End(P ). However, in
our context commutativity is not a property but an extra datum. Correspondingly, the correct statement
is the following.

B.9 Lemma. Let P be a Λ-module groupoid with structure map F : Λ → End(P ). Then the essen-
tial image of F has a natural commutativity constraint such that for all λ, µ ∈ Λ the commutativity
isomorphisms cλ,µ is the composition:

cλ,µ : λ(µx)
ψ−1
F,λ,µ

// (λµ)x = (µλ)x
ψF,µ,λ

// µ(λx).

Proof : Let G,H be in the essential image of F : Λ → End(P ). Thus there exist λ, µ ∈ Λ and
isomorphisms u : G ∼−→ Fλ and v : H ∼−→ Fµ. There is an induced isomorphism u ? v : GH ∼−→ FλFµ,
described as follows. Since u is a functor, for each x ∈ P we have a commutative square:

GHx
uHx //

Gvx

��

FλHx

Fλvx
��

GFµx
uFµx

// FλFµx.
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Either way de�nes (u ? v)x : GHx→ FλFµx. Now we de�ne:

cG,H = GH
u?v−−−→ FλFµ

cλ,µ−−−→ FµFλ
v−1?u−1

−−−→ HG.

We must prove that this does not depend on the choices of u and v. Let Γ be the automorphism group
of the neutral functor 0End(P ). Another choice of isomorphism u′ is of the form u′ = uγ for some γ ∈ Γ.
Then u′−1 = γ−1u−1 and c′G,H = (v−1 ? γ−1u−1) ◦ cλ,µ ◦ (uγ ? v). But according to Lemma B.4, the
element γ commutes with all morphisms, hence uγ ?v = γ(u?v) and (v−1 ?γ−1u−1) = (v−1 ?u−1)γ−1. It
follows that c′G,H = cG,H . Similarly we prove that another choice v′ = vγ does not change cG,H . Finally
we check that the symmetry condition of a commutativity constraint holds. The computation for cλ,µ
follows from its de�nition, and for cG,H follows from the fact that (u ? v)(u−1 ? v−1) = id. �

B.10 De�nition. Let S be a site. Let Λ be a sheaf of commutative rings on S. A Λ-module stack (in
groupoids) over S is a stack in groupoids P over S endowed with

(1) a functor + : P × P → P ,

(2) isomorphisms of functors ax,y,z : (x+ y) + z ∼−→ x+ (y + z) and cx,y : x+ y ∼−→ y + x,

(3) a functor F = (F,ϕF , ψF ) : Λ→ End(P ),

such that for each U ∈ S the �bre category P (U) is a Λ(U)-module groupoid.

There is an obvious corresponding relative notion of Λ-module stack (in groupoids) over a given S-
stack Q, namely, it is a morphism of stacks P → Q that makes P a stack �bred in groupoids over Q,
with an addition functor + : P ×Q P → P etc. It is the relative notion that is useful in the paper.
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