Exercises BMS Basic Course Algebraic Geometry

Prof. Dr. J. Kramer

Solution to be presented on June 12th in the exercise class.

Exercise sheet 8

Exercise 8.1 (Ex. II.3.9. of [Har])

(a) Let k be a field. Show that

$$\mathbb{A}^n_k \times_{\mathrm{Spec}(k)} \mathbb{A}^m_k \cong \mathbb{A}^{n+m}_k$$

and show that the underlying point set of the product is not the product of the underlying point sets of the factors (even if k is algebraically closed).

(b) Let k be a field and s, t indeterminates over k. Then, $\operatorname{Spec} k(s)$, $\operatorname{Spec} k(t)$, and $\operatorname{Spec}(k)$ are all one-point spaces. Describe the product scheme

$$\operatorname{Spec} k(s) \times_{\operatorname{Spec}(k)} \operatorname{Spec} k(t).$$

Exercise 8.2 (Ex. II.3.10. of [Har])

- (a) Let $f: X \longrightarrow S$ be a morphism of schemes and $s \in S$ a point. Show that $sp(X_s)$ is homeomorphic to $f^{-1}(s)$ with the induced topology.
- (b) Let k be an algebraically closed field, $X := \operatorname{Spec} k[Y, Z]/(Y Z^2)$, $S := \operatorname{Spec} k[Y]$, and $f : X \longrightarrow S$ the morphism induced by sending $Y \mapsto Y$. Prove the following assertions:
 - (1) If $s \in S$ is the point $a \in k$ with $a \neq 0$, then the fiber X_s consists of two points, with residue field k.
 - (2) If $s \in S$ corresponds to $0 \in k$, then the fiber X_s is a non-reduced one-point scheme.
 - (3) If η is the generic point of S, then X_{η} is a one-point scheme, whose residue field is an extension of degree two of the residue field of η .

Exercise 8.3

Let S be a scheme, X a scheme over S, and $p, q : X \times_S X \longrightarrow X$ the two projections. As usual, denote by $\Delta : X \longrightarrow X \times_S X$ the diagonal morphism giving rise to the subset $\Delta(X) \subseteq X \times_S X$. Further, consider the subset

$$Z := \{ z \in X \times_S X \mid p(z) = q(z) \}$$

of $X \times_S X$. Show that the obvious inclusion $\Delta(X) \subseteq Z$ need not be an equality.

Exercise 8.4 (Ex. II.3.11. of [Har])

- (a) Show that closed immersions are stable under base extension, i.e., if $f: Y \longrightarrow X$ is a closed immersion and if $X' \longrightarrow X$ is any morphism of schemes, then $f': Y \times_X X' \longrightarrow X'$ is also a closed immersion.
- (b) Let Y be a closed subset of a scheme X, and give Y the reduced induced subscheme structure. If Y' is any other closed subscheme of X with the same underlying topological space, show that the closed immersion $Y \longrightarrow X$ factors through Y'. We express this property by saying that the reduced induced structure is the smallest subscheme structure on a closed subset.
- (c) Let $f : Z \longrightarrow X$ be a morphism of schemes. Show that there is a unique closed subscheme Y of X with the following property: the morphism f factors through Y, and if Y' is any other closed subscheme of X through which f factors, then $Y \longrightarrow X$ factors through Y' also.

We call Y the scheme-theoretic image of f. If Z is a reduced scheme, then Y is just the reduced induced structure on the closure of the image f(Z).