Exercises BMS Basic Course Algebraic Geometry

Prof. Dr. J. Kramer

Solution to be presented on May 22nd in the exercise class.

Exercise sheet 5

Exercise 5.1

Consider the following affine schemes:

- (a) $X_1 = \operatorname{Spec} \mathbb{C}[X]/(X^2),$
- (b) $X_2 = \operatorname{Spec} \mathbb{C}[X]/(X^2 X),$
- (c) $X_3 = \operatorname{Spec} \mathbb{C}[X]/(X^3 X^2),$
- (d) $X_4 = \operatorname{Spec} \mathbb{R}[X]/(X^2 + 1).$

For i = 1, ..., 4, describe the topological space X_i and its open subsets, and compute $\mathcal{O}_{X_i}(U)$ for all open subsets $U \subseteq X_i$.

Exercise 5.2

Let k be an algebraically closed field and let $X = \operatorname{Spec} k[X_1, X_2]$ be an affine scheme. Show that $U = X \setminus V(X_1, X_2)$ is an open subscheme of X, which is not affine.

Exercise 5.3

Let R be a commutative ring with 1 and $R[X_1, \ldots, X_n]$ the polynomial ring in n variables over R. We define the affine space \mathbb{A}^n_R of relative dimension n over R by

$$\mathbb{A}^n_R := \operatorname{Spec} R[X_1, \dots, X_n].$$

For i = 0, ..., n, let U_i be the affine spaces \mathbb{A}^n_R of relative dimension n over R given by

$$U_i := \operatorname{Spec} R\Big[\frac{X_0}{X_i}, \dots, \frac{\widehat{X_i}}{X_i}, \dots, \frac{X_n}{X_i}\Big].$$

Further, let

$$U_{ij} := D_{U_i} \left(\frac{X_j}{X_i} \right) \subseteq U_i$$

for $i \neq j$ and $U_{ii} := U_i$ (i, j = 0, ..., n). Finally, let $\varphi_{ii} = \mathrm{id}_{U_i}$ and for $i \neq j$, let $\varphi_{ij} : U_{ij} \longrightarrow U_{ji}$ be the isomorphism of affine schemes induced by the equality

$$R\Big[\frac{X_0}{X_i}, \dots, \frac{\widehat{X_i}}{X_i}, \dots, \frac{X_n}{X_i}\Big]_{\frac{X_i}{X_j}} \longrightarrow R\Big[\frac{X_0}{X_j}, \dots, \frac{\widehat{X_j}}{X_j}, \dots, \frac{X_n}{X_j}\Big]_{\frac{X_j}{X_i}}.$$

(a) Verify, that the given data constitute a gluing datum, i.e., they satisfy the assumptions (1)–(4) of Exercise 4.3.

The scheme obtained by gluing the n+1 copies of \mathbb{A}^n_R along the isomorphisms φ_{ij} is called the projective space \mathbb{P}^n_R of relative dimension n over R.

(b) Show that for n > 0 the scheme \mathbb{P}^n_R is not affine.

Exercise 5.4

Let X be an integral scheme with generic point η and let U = Spec(A) be an affine open subset of X. Recall that the local ring $\mathcal{O}_{X,\eta}$ is a field, called the function field K(X) of X.

- (a) Show that $\operatorname{Quot}(A) \cong \mathcal{O}_{X,\eta} = K(X)$.
- (b) By identifying $\mathcal{O}_X(U)$ and $\mathcal{O}_{X,x}$ with subrings of K(X), show that we have

$$\mathcal{O}_X(U) = \bigcap_{x \in U} \mathcal{O}_{X,x} \subseteq K(X).$$

An element of K(X) is called a *rational function* on X. We say that $f \in K(X)$ is *regular* at $x \in X$ if $f \in \mathcal{O}_{X,x}$.

(c) Let k be an algebraically closed field. Describe the regular and the rational functions on $\mathbb{A}_k^n = \operatorname{Spec} k[X_1, \ldots, X_n].$