HU Berlin

Exercises BMS Basic Course Algebraic Geometry

Prof. Dr. J. Kramer

Solution to be presented on May 8th in the exercise class.

Exercise sheet 3

Exercise 3.1

Let $X = \mathbb{C}$ be equipped with the Euclidean topology and consider the following (pre)sheaves on X: the locally constant sheaf $\underline{\mathbb{Z}}$ with group \mathbb{Z} , the sheaf \mathcal{O}_X of holomorphic functions, and the presheaf \mathcal{F} of functions admitting a holomorphic logarithm. Show that

 $0 \longrightarrow 2\pi i \,\underline{\mathbb{Z}} \longrightarrow \mathcal{O}_X \xrightarrow{\exp} \mathcal{F} \longrightarrow 0,$

where $2\pi i \mathbb{Z} \longrightarrow \mathcal{O}_X$ is the natural inclusion, is an exact sequence of presheaves. Show that \mathcal{F} is not a sheaf.

Exercise 3.2

Let X, Y be topological spaces and let $f: X \to Y$ be a continuous map.

(a) Let \mathcal{G} be a sheaf on Y. Construct explicitly an example such that the presheaf $f^+\mathcal{G}$ given by the assignment

$$U \mapsto \varinjlim_{\substack{V \subseteq Y, \text{ open} \\ f(U) \subseteq V}} \mathcal{G}(V) \quad (U \subseteq X, \text{ open})$$

is not a sheaf.

(b) Let \mathcal{F} be a sheaf on X and let \mathcal{G} be a presheaf on Y. Show that there is a bijection

 $\operatorname{Hom}_{\operatorname{Sh}(X)}(f^{-1}\mathcal{G},\mathcal{F}) \longrightarrow \operatorname{Hom}_{\operatorname{PreSh}(Y)}(\mathcal{G},f_*\mathcal{F})$

of sets.

Exercise 3.3

Let k be a field. Consider the projective space $\mathbb{P}^n(k) := (k^{n+1} \setminus \{0\}) / \sim$, where the equivalence relation \sim is given by

$$(x_0,\ldots,x_n) \sim (x'_0,\ldots,x'_n) \iff \exists \lambda \in k \setminus \{0\} : x_i = \lambda x'_i \quad \forall i = 0,\ldots,n.$$

The equivalence class of a point (x_0, \ldots, x_n) is denoted by $[x_0 : \ldots : x_n]$. For $i = 0, \ldots, n$, we set

$$U_i := \left\{ [x_0 : \ldots : x_n] \in \mathbb{P}^n(k) \mid x_i \neq 0 \right\} \subset \mathbb{P}^n(k).$$

- (a) We define the topology on $\mathbb{P}^n(k)$ by calling a subset $U \subseteq \mathbb{P}^n(k)$ open if $U \cap U_i$ is open in U_i for all i = 0, ..., n. Show that $\{U_i\}_{i=0,...,n}$ is an open covering of $\mathbb{P}^n(k)$.
- (b) Prove that the map $U_i \to \mathbb{A}^n(k)$, given by

$$[x_0:\ldots:x_n]\mapsto \left(\frac{x_0}{x_i},\ldots,\frac{\widehat{x}_i}{x_i},\ldots,\frac{x_n}{x_i}\right),$$

is a bijection; here, the hat means that the *i*-th entry has to be deleted. By means of this bijection we endow U_i with the structure of a locally ringed space isomorphic to $(\mathbb{A}^n(k), \mathcal{O}_{\mathbb{A}^n(k)})$ denoted by (U_i, \mathcal{O}_{U_i}) .

(c) For an open set $U \subseteq \mathbb{P}^n(k)$, we set

$$\mathcal{O}_{\mathbb{P}^n(k)}(U) := \left\{ f : U \to k \left| f \right|_{U \cap U_i} \in \mathcal{O}_{U_i}(U \cap U_i) \,\forall i = 0, \dots, n \right\}.$$

Show that

$$\mathcal{O}_{\mathbb{P}^n(k)}(U) = \left\{ f: U \to k \, \middle| \, \forall x \in U, \, \exists x \in V \subseteq U \text{ open}, \\ \exists g, h \in k[X_0, \dots, X_n] \text{ homogeneous: } \deg(g) = \deg(h), \\ h(v) \neq 0, f(v) = g(v)/h(v) \, \forall v \in V \right\}.$$

Conclude that $(\mathbb{P}^n(k), \mathcal{O}_{\mathbb{P}^n(k)})$ is a locally ringed space.

Exercise 3.4

A locally ringed space (X, \mathcal{O}_X) is called an *affine scheme*, if there exists a ring A such that (X, \mathcal{O}_X) is isomorphic to $(\text{Spec}(A), \mathcal{O}_{\text{Spec}(A)})$. A morphism of affine schemes is a morphism of locally ringed spaces. The category of affine schemes will be denoted by (Aff), the category of commutative rings with 1 by (Ring).

- (a) Show that the assignment $A \mapsto (\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)})$ induces a contravariant functor $\operatorname{Spec} : (\operatorname{Ring}) \to (\operatorname{Aff}).$
- (b) Show that the assignment $(\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)}) \to \Gamma(\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)})$ induces a contravariant functor $\Gamma : (\operatorname{Aff}) \to (\operatorname{Ring}).$
- (c) Prove that the functors Spec and Γ define an anti-equivalence between the category (Ring) and the category (Aff).