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Exercise sheet 12

Exercise 12.1 (Ex. II.1.17. of [Har])
Let X be a topological space, x ∈ X a point, and A an abelian group. Define a sheaf
ix(A) on X by the assignment

ix(A)(U) =

{
A, if x ∈ U,

0, otherwise;
(U ⊆ X, open).

Show that for the stalk ix(A)y at a point y ∈ X, we have

ix(A)y =

{
A, if y ∈ {x},
0, otherwise;

whence the name skyscraper sheaf originates. Show that the skyscraper sheaf could also
be described as i?(A), where A denotes the constant sheaf A on the closed subspace {x}
and i : {x} −→ X is the inclusion.

Exercise 12.2 (Ex. II.1.19. of [Har])
Let X be a topological space, Z ⊆ X a closed subset, and i : Z −→ X the inclusion.
Further, let U = X \Z be the complementary open subset and j : U −→ X its inclusion.

(a) Let F be a sheaf on Z. Show that for the stalk (i?F)z at a point z ∈ Z, we have

(i?F)z =

{
Fz, if z ∈ Z,

0, otherwise;

hence, we call the sheaf i?F the sheaf obtained by extending F by zero outside Z.

(b) Let F be a sheaf on U . Let j!(F) be the sheaf on X associated to the presheaf given
by the assignment

j!(F)(V ) :=

{
F(V ), if V ⊆ U,

0, otherwise;
(V ⊆ X, open).

Show that for the stalk j!(F)x at a point x ∈ U , we have

j!(F)x =

{
Fx, if x ∈ U,

0, otherwise;

furthermore, show that j!(F) is the only sheaf on X which has this property, and
whose restriction to U is F . We call j!(F) the sheaf obtained by extending F by zero
outside U .



(c) Let F be a sheaf on X. Show that there is the following exact sequence of sheaves
on X

0 −→ j!(F
∣∣
U

) −→ F −→ i?(F
∣∣
Z

) −→ 0.

Exercise 12.3 (Ex. II.5.6. of [Har])
Recall the notions of support of a section of a sheaf, support of a sheaf, and subsheaf with
supports from exercise sheet 11.

(a) Let A be a ring, M an A-module, X = Spec(A), and F = M̃ . For any m ∈ M =
Γ(X,F), show that Supp(m) = V (Ann(m)).

(b) If A is a noetherian ring andM a finitely generated A-module, show that Supp(F) =
V (Ann(M)).

(c) Show that the support of a coherent sheaf on a noetherian scheme is closed.

(d) Again, let A be a ring and M an A-module. For an ideal a ⊆ A, we define the
submodule Γa(M) of M by

Γa(M) :=
{
m ∈M

∣∣ ∃n ∈ N : anm = 0
}
.

Show that if A is noetherian, X = Spec(A), and F = M̃ , we have an isomorphism
of OX-modules

Γ̃a(M) ∼= H0
Z(F),

where Z = V (a) and H0
Z(F) is defined in Exercise 11.3.

(e) Let X be a noetherian scheme and Z ⊆ X a closed subset. If F is a quasi-coherent
(respectively, coherent) OX-module, then H0

Z(F) is also quasi-coherent (respective-
ly, coherent).


