Exercises BMS Basic Course Algebraic Geometry

Prof. Dr. J. Kramer

Solution to be presented on July 10th in the exercise class.

Exercise sheet 12

Exercise 12.1 (Ex. II.1.17. of [Har])

Let X be a topological space, $x \in X$ a point, and A an abelian group. Define a sheaf $i_x(A)$ on X by the assignment

$$i_x(A)(U) = \begin{cases} A, & \text{if } x \in U, \\ 0, & \text{otherwise;} \end{cases} \quad (U \subseteq X, \text{ open}).$$

Show that for the stalk $i_x(A)_y$ at a point $y \in X$, we have

$$i_x(A)_y = \begin{cases} A, & \text{if } y \in \overline{\{x\}}, \\ 0, & \text{otherwise;} \end{cases}$$

whence the name skyscraper sheaf originates. Show that the skyscraper sheaf could also be described as $i_{\star}(A)$, where A denotes the constant sheaf A on the closed subspace $\overline{\{x\}}$ and $i:\overline{\{x\}} \longrightarrow X$ is the inclusion.

Exercise 12.2 (Ex. II.1.19. of [Har])

Let X be a topological space, $Z \subseteq X$ a closed subset, and $i : Z \longrightarrow X$ the inclusion. Further, let $U = X \setminus Z$ be the complementary open subset and $j : U \longrightarrow X$ its inclusion.

(a) Let \mathcal{F} be a sheaf on Z. Show that for the stalk $(i_{\star}\mathcal{F})_z$ at a point $z \in Z$, we have

$$(i_{\star}\mathcal{F})_z = \begin{cases} \mathcal{F}_z, & \text{if } z \in Z, \\ 0, & \text{otherwise}; \end{cases}$$

hence, we call the sheaf $i_{\star}\mathcal{F}$ the sheaf obtained by extending \mathcal{F} by zero outside Z.

(b) Let \mathcal{F} be a sheaf on U. Let $j_!(\mathcal{F})$ be the sheaf on X associated to the presheaf given by the assignment

$$j_!(\mathcal{F})(V) := \begin{cases} \mathcal{F}(V), & \text{if } V \subseteq U, \\ 0, & \text{otherwise;} \end{cases} \quad (V \subseteq X, \text{ open}).$$

Show that for the stalk $j_!(\mathcal{F})_x$ at a point $x \in U$, we have

$$j_!(\mathcal{F})_x = \begin{cases} \mathcal{F}_x, & \text{if } x \in U, \\ 0, & \text{otherwise}; \end{cases}$$

furthermore, show that $j_!(\mathcal{F})$ is the only sheaf on X which has this property, and whose restriction to U is \mathcal{F} . We call $j_!(\mathcal{F})$ the sheaf obtained by extending \mathcal{F} by zero outside U. (c) Let \mathcal{F} be a sheaf on X. Show that there is the following exact sequence of sheaves on X

 $0 \longrightarrow j_{!}(\mathcal{F}\big|_{U}) \longrightarrow \mathcal{F} \longrightarrow i_{\star}(\mathcal{F}\big|_{Z}) \longrightarrow 0.$

Exercise 12.3 (Ex. II.5.6. of [Har])

Recall the notions of support of a section of a sheaf, support of a sheaf, and subsheaf with supports from exercise sheet 11.

- (a) Let A be a ring, M an A-module, X = Spec(A), and $\mathcal{F} = \widetilde{M}$. For any $m \in M = \Gamma(X, \mathcal{F})$, show that Supp(m) = V(Ann(m)).
- (b) If A is a noetherian ring and M a finitely generated A-module, show that $\text{Supp}(\mathcal{F}) = V(\text{Ann}(M))$.
- (c) Show that the support of a coherent sheaf on a noetherian scheme is closed.
- (d) Again, let A be a ring and M an A-module. For an ideal $\mathfrak{a} \subseteq A$, we define the submodule $\Gamma_{\mathfrak{a}}(M)$ of M by

$$\Gamma_{\mathfrak{a}}(M) := \{ m \in M \mid \exists n \in \mathbb{N} : \mathfrak{a}^n m = 0 \}.$$

Show that if A is noetherian, X = Spec(A), and $\mathcal{F} = \widetilde{M}$, we have an isomorphism of \mathcal{O}_X -modules

$$\widetilde{\Gamma}_{\mathfrak{a}}(\widetilde{M}) \cong \mathcal{H}^0_Z(\mathcal{F})$$

where $Z = V(\mathfrak{a})$ and $\mathcal{H}_Z^0(\mathcal{F})$ is defined in Exercise 11.3.

(e) Let X be a noetherian scheme and $Z \subseteq X$ a closed subset. If \mathcal{F} is a quasi-coherent (respectively, coherent) \mathcal{O}_X -module, then $\mathcal{H}^0_Z(\mathcal{F})$ is also quasi-coherent (respective-ly, coherent).