HU Berlin

Exercises BMS Basic Course Algebraic Geometry

Prof. Dr. J. Kramer

Solution to be presented on July 3rd in the exercise class.

Exercise sheet 11

Exercise 11.1 (Ex. II.1.14. of [Har])

Let \mathcal{F} be a sheaf on a topological space X, and let $s \in \mathcal{F}(U)$ be a section over an open set $U \subseteq X$. The support Supp(s) of s is defined to be

$$Supp(s) := \{ P \in U \mid s_P \neq 0 \},\$$

where s_P denotes the germ of s in the stalk \mathcal{F}_P . Show that $\operatorname{Supp}(s)$ is a closed subset of U. We define the support $\operatorname{Supp}(\mathcal{F})$ of \mathcal{F} as

$$\operatorname{Supp}(\mathcal{F}) := \{ P \in X \mid \mathcal{F}_P \neq 0 \}.$$

It need not be a closed subset.

Exercise 11.2 (Ex. II.1.16. of [Har])

A sheaf \mathcal{F} on a topological space X is *flasque* if for every inclusion $V \subseteq U$ of open sets, the restriction map $\mathcal{F}(U) \longrightarrow \mathcal{F}(V)$ is surjective.

- (a) Show that a constant sheaf on an irreducible topological space is flasque.
- (b) If $0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$ is an exact sequence of sheaves, and if \mathcal{F}' is flasque, then for any open set $U \subseteq X$, the sequence

$$0 \longrightarrow \mathcal{F}'(U) \longrightarrow \mathcal{F}(U) \longrightarrow \mathcal{F}''(U) \longrightarrow 0$$

of abelian groups is also exact.

- (c) If $0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$ is an exact sequence of sheaves, and if \mathcal{F}' and \mathcal{F} are flasque, then \mathcal{F}'' is flasque.
- (d) If $f: X \longrightarrow Y$ is a continuous map of topological spaces, and if \mathcal{F} is a flasque sheaf on X, then $f_{\star}\mathcal{F}$ is a flasque sheaf on Y.
- (e) Let \mathcal{F} be any sheaf on X. We define a new sheaf \mathcal{G} , called the *sheaf of discontinuous* sections of \mathcal{F} as follows. For each open set $U \subseteq X$, $\mathcal{G}(U)$ is the set of maps

$$s: U \longrightarrow \bigcup_{P \in U} \mathcal{F}_P$$

such that for each $P \in U$, $s(P) \in \mathcal{F}_P$. Show that \mathcal{G} is a flasque sheaf, and that there is a natural injective morphism of \mathcal{F} to \mathcal{G} .

Exercise 11.3 (Ex. II.1.20. of [Har])

Let Z be a closed subset of a topological space X, and let \mathcal{F} be a sheaf on X. We define $\Gamma_Z(X, \mathcal{F})$ to be the subgroup of $\Gamma(X, \mathcal{F})$ consisting of all sections whose support is contained in Z.

(a) Show that the presheaf given by the assignment

 $V \mapsto \Gamma_{Z \cap V}(V, \mathcal{F}|_V) \qquad (V \subseteq X, \text{ open})$

is a sheaf. It is called the subsheaf of \mathcal{F} with supports in Z, and is denoted by $\mathcal{H}^0_Z(\mathcal{F})$.

(b) Let $U = X \setminus Z$, and let $j : U \longrightarrow X$ be the inclusion. Show there is an exact sequence of sheaves on X

$$0 \longrightarrow \mathcal{H}^0_Z(\mathcal{F}) \longrightarrow \mathcal{F} \longrightarrow j_{\star}(\mathcal{F}|_U).$$

Furthermore, if \mathcal{F} is flasque, the map $\mathcal{F} \longrightarrow j_{\star}(\mathcal{F}|_U)$ is surjective.