Introduction à la Géométrie Algébrique. Le langage des schémas Sujet d'examen, à rendre pour le mardi 24 novembre 2015

	La notation accordera beaucoup d'importance à la clarté et à la	
	précision des arguments et des références aux théorèmes utilisés.	

Exercice 1 Soient X un schéma et $x \in X$ un point. Montrez que pour toute famille finie U_1, \ldots, U_n de voisinages ouverts affines de x, il existe un voisinage ouvert affine de x qui est principal dans chacun des U_i . Montrez que le résultat n'est plus nécessairement vrai pour une famille infinie $\{U_i\}_{i\in\mathbb{N}}$.

Exercice 2 Soit X un espace topologique. On note Ab la catégorie des groupes abéliens et Ab(X) la catégorie des faisceaux de groupes abéliens sur X. On fixe un ouvert U et on note $\Gamma_U : Ab(X) \to Ab$ le foncteur défini par $\Gamma_U(\mathscr{F}) = \mathscr{F}(U)$.

- (1) Le foncteur Γ_U possède-t-il toujours un adjoint à gauche?
- (2) Le foncteur Γ_U possède-t-il toujours un adjoint à droite?

Exercice 3 Soit $n \ge 1$ un entier. Pour tout schéma S, on pose $\mathcal{A}_S = \mathcal{O}_S^{\oplus n}$ et on note e_i le i-ième vecteur de la base canonique de $\Gamma(S, \mathcal{A}_S) = \Gamma(S, \mathcal{O}_S)^{\oplus n}$. On appelle \mathcal{O}_S -algèbre (associative, unitaire) libre de rang n la donnée d'un morphisme de faisceaux $m: \mathcal{A}_S \otimes_{\mathcal{O}_S} \mathcal{A}_S \to \mathcal{A}_S$ qui munit \mathcal{A}_S d'une structure de \mathcal{O}_S -algèbre associative avec e_1 pour unité. Pour tout morphisme de schémas $f: S' \to S$, on dispose d'une image inverse naturelle $m' = f^*m$ qui fait de $\mathcal{A}_{S'}$ une $\mathcal{O}_{S'}$ -algèbre libre de rang n.

(1) En observant qu'un morphisme m comme ci-dessus est déterminé par les images des $e_i \otimes e_j$, démontrez qu'il existe un schéma X_n et une bijection fonctorielle en S:

 $\operatorname{Hom}_{\operatorname{Sch}}(S, X_n) \xrightarrow{\sim} \{ \mathcal{O}_S \text{-algèbres associatives, unitaires, libres de rang } n \}.$

- (2) Décrivez X_n pour n=2. Est-il réduit? irréductible?
- (3) Décrivez X_n pour n = 3. Est-il réduit ? irréductible ?

Exercice 4 (1) Soit $\alpha: X \to S$ un morphisme de schémas. On suppose qu'il existe un recouvrement ouvert $S = \bigcup_{i \in I} S_i$ tel que pour tout i le morphisme $\alpha_{|X_i}: X_i \to S_i$ est un isomorphisme, où l'on a noté $X_i = \alpha^{-1}(S_i)$. Montrez que f est un isomorphisme.

(2) Soit X un schéma et $A = \Gamma(X, \mathcal{O}_X)$. Montrez que X est affine si seulement s'il existe $n \geq 1$ fonctions $f_1, \ldots, f_n \in A$ telles que l'ouvert $X_{f_i} = \{x \in X; f_i(x) \neq 0\}$ est un schéma affine et que l'idéal (f_1, \ldots, f_n) est égal à A.