TD - Feuille 4

Exercice 1 Soit k un corps.

- (1) Donnez un exemple de schéma dans lequel diviseurs de Weil et diviseurs de Cartier ne coïncident pas.
- (2) Soit C la courbe plane cuspidale d'équation $y^2 = x^3$. Soit D le diviseur de Cartier principal associé à la fonction méromorphe (y x)/x. Calculez son diviseur de Weil associé.

Pour la question suivante, on rappelle que si X est un schéma intègre normal, Z un diviseur de Weil de X et $U = X \setminus Z$, on a une suite exacte $\mathbb{Z} \to \operatorname{Cl}(X) \to \operatorname{Cl}(U) \to 0$.

- (3) Soit X le schéma affine normal défini par l'équation $z^2 = xy$ dans l'espace \mathbb{A}^3_k . On souhaite montrer que $\operatorname{Cl}(X) \simeq \mathbb{Z}/2\mathbb{Z}$ et que ce groupe est engendré par la génératrice $Z = \{x = z = 0\}$.
 - (i) On pose $U = X \setminus Z$. Montrez que Cl(U) = 0.
 - (ii) Montrez que la classe de Z engendre Cl(X) et que 2Z = 0.
- (iii) Montrez que $Z \neq 0$. (Si Z est le diviseur d'une fonction méromorphe f, montrez que f est en fait régulière et engendre l'idéal premier de Z. Aboutissez à une contradiction. On rappelle que si A est intègre normal, on a $A = \bigcap_{ht(p)=1} A_p$.)
 - (iv) Montrez que le groupe des classes de diviseurs de Cartier de X est nul.

Exercice 2 Schéma de Picard.

Soit k un corps algébriquement clos et X un k-schéma projectif. On définit le foncteur de $Picard\ relatif\ de\ X/k$ comme étant le foncteur F défini sur la catégorie des k-schémas par :

$$F(S) = \operatorname{Pic}(X \times S) / \operatorname{Pic}(S)$$
.

On admet qu'il existe un schéma noté $\operatorname{Pic}_{X/k}$ et une bijection fonctorielle en S:

$$F(S) = \operatorname{Hom}_k(S, \operatorname{Pic}_{X/k})$$
,

et que la composante connexe $\operatorname{Pic}_{X/k}^0$ du point correspondant au faisceau inversible trivial $[\mathcal{O}_X] \in F(k)$ est de type fini. Montrez que si X est lisse sur k, alors $\operatorname{Pic}_{X/k}^0$ est propre.

Exercice 3 Groupe de Picard de l'espace projectif.

Soit k un corps et soit \mathcal{L} un fibré en droites sur $\mathbb{P}_k^n = \operatorname{Proj}(k[x_0, \dots, x_n])$.

- (1) Justifiez que \mathcal{L} est trivial sur les ouverts standard U_i de \mathbb{P}_k^n .
- (2) Montrez que les fonctions inversibles sur $U_i \cap U_j$ sont de la forme $\alpha_{ij}(x_i/x_j)^{l_{ij}}$ avec $\alpha_{ij} \in k^*$ et $l_{ij} \in \mathbb{Z}$.
- (3) À partir de trivialisations de \mathcal{L} sur U_i , utilisez la condition de cocycle pour montrer que la puissance l_{ij} dans le changement de carte est indépendante de (i, j). Admettant que $H^1(\mathbb{P}^n_k, k^*) = 0$, où k^{\times} est le faisceau constant sur \mathbb{P}^n_k , montrer qu'on peut changer les trivialisations initiales pour se ramener à $\alpha_{ij} = 1$.
- (4) En déduire que $\mathcal{L} \simeq \mathcal{O}(l)$ pour un $l \in \mathbb{Z}$ puis que $\operatorname{Pic}(\mathbb{P}^n_k) \simeq \mathbb{Z}$.