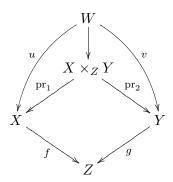
TD - Feuille 3

Corrigé ex. 1 Notons $f: X = \operatorname{Spec}(A) \to Z = \operatorname{Spec}(C)$ et $g: Y = \operatorname{Spec}(B) \to Z = \operatorname{Spec}(C)$. Rappelons la définition d'un produit fibré par sa propriété universelle : c'est un schéma noté $X \times_Z Y$ muni de deux morphismes $\operatorname{pr}_1: X \times_Z Y \to X$ et $\operatorname{pr}_2: X \times_Z Y \to Y$ tels que pour tout schéma W et tous morphismes $u: W \to X$ et $v: W \to Y$ tels que $f \circ u = g \circ v$, il existe un unique morphisme $W \to X \times_Z Y$ tel que le diagramme suivant soit commutatif :



Dans le cas où X,Y,X sont affines, la description de $X\times_Z Y$ est immédiate car la donnée de u et v est équivalente à la donnée de deux morphismes d'anneaux $\varphi\colon A\to \Gamma(W,\mathcal{O}_W)$ et $\psi\colon B\to \Gamma(W,\mathcal{O}_W)$ tels que $u\circ f^\sharp=v\circ g^\sharp$. (On note $f^\sharp\colon C\to A$ et $g^\sharp\colon C\to B$.) On a donc un diagramme de somme amalgamée dans la catégorie des anneaux, et on sait que la somme amalgamée existe : c'est le produit tensoriel. Précisément il existe un unique morphisme $t\colon A\otimes_C B\to \Gamma(W,\mathcal{O}_W)$ qui rend commutatif le diagramme d'anneaux évident. On pose donc $X\times_Z Y=\operatorname{Spec}(A\otimes_C B)$, la donnée de t fournit un morphisme de schémas $W\to X\times_Z Y$ et la vérification de la propriété universelle est évidente car c'est plus ou moins ce que nous venons de faire.

Corrigé ex. 2 Soit un morphisme $f: \operatorname{Spec}(K) \to X$. Alors comme $\operatorname{Spec}(K)$ a pour espace sous-jacent un point $\{z\}$, l'image est un point $x \in X$. Par ailleurs on a l'extension d'anneaux locaux $\mathcal{O}_{X,x} \to \mathcal{O}_{\operatorname{Spec}(K),z} = K$ (obtenue en passant aux anneaux locaux à partir de $f^{\sharp}: \mathcal{O}_X \to f_*\mathcal{O}_{\operatorname{Spec}(K)}$). Dire que c'est un morphisme d'anneaux locaux veut dire que l'idéal maximal m_x s'envoie dans l'idéal maximal de K, c'est-à-dire 0. Donc ce morphisme passe au quotient en $k(x) \to K$.

Réciproquement, soit donnés $x \in X$ et $i: k(x) \to K$. On définit $f: \operatorname{Spec}(K) \to X$ ensemblistement par f(z) = x. Il faut ensuite définir $f^{\sharp}: \mathcal{O}_X \to f_*\mathcal{O}_{\operatorname{Spec}(K)}$. Un tel morphisme de faisceaux est donné par des morphismes $\mathcal{O}_X(U) \to \mathcal{O}_{\operatorname{Spec}(K)}(f^{-1}(U))$ pour tous les ouverts U; ce qui veut dire le morphisme nul $\mathcal{O}_X(U) \to \{0\}$ si $x \notin U$, et un morphisme $\mathcal{O}_X(U) \to K$ si $x \in U$. Si $x \in U$, on définit $\mathcal{O}_X(U) \to K$ par :

$$\mathcal{O}_X(U) \stackrel{\text{germe}}{\longrightarrow} \mathcal{O}_{X,x} \to k(x) \stackrel{i}{\longrightarrow} K$$
.

On vérifie que ces constructions sont inverses l'une de l'autre...

Corrigé ex. 3 (1) Il suffit de montrer que si un fermé V(I) contient p, alors il contient V(p). Or cela signifie juste que $p \supset I$ et $q \supset p$ (q premier) implique $q \supset I$, c'est donc évident.

(2) Comme les ouverts distingués d'un schéma affine forment une base de la topologie, il est en effet possible de choisir f et g comme indiqué. On a donc des morphismes d'anneau $r: B \to A_f$ et $s: A_f \to B_g$. On voudrait que ces morphismes induisent des isomorphismes inverses l'un de l'autre entre A_f et B_g . Si on veut que r se factorise par B_g , il faut que r(g) soit inversible. Pour cela il faudra localiser encore une fois. Notons $a/f^n = r(g)$, alors r induit un morphisme $r': B_g \to A_{af}$. Par ailleurs, $s \circ r: B \to B_g$ est le morphisme canonique donc $g/1 = sr(g) = s(a)/s(f)^n$. Ainsi $s(af) = gs(f)^{n+1}$ est inversible dans B_g , donc s induit un

morphisme $s': A_{af} \to B_g$ qui est un inverse pour r'. Donc le voisinage $\operatorname{Spec}(A_{af}) = \operatorname{Spec}(B_g)$ répond à la question.

(3) On note pour commencer que pour une partie Z d'un espace topologique X, le calcul de l'adhérence \overline{Z} est local, c'est-à-dire que pour tout ouvert U, l'intersection de \overline{Z} avec U est égale à l'adhérence de $Z \cap U$ dans U. En effet, notons $\mathcal{F}(X)$ l'ensemble des fermés de X, on a :

$$\overline{Z} \cap U = \bigcap_{F \in \mathcal{F}(X) \atop F \supset Z} F \cap U = \bigcap_{F \in \mathcal{F}(X) \atop F \supset Z} \overline{F \cap U} \cap U = \bigcap_{G \in \mathcal{F}(X) \atop G \cap U \supset Z \cap U} G \cap U = \bigcap_{H \in \mathcal{F}(U) \atop H \supset Z \cap U} H = \text{adh\'erence de } Z \cap U \text{ dans } U \text{ ,}$$

avec les changements d'indice $G = \overline{F \cap U}$ puis $H = G \cap U$. Donc $\{x\}$ est fermé dans X ssi pour tout ouvert affine U contenant x, $\{x\}$ est fermé dans U. Cette dernière condition s'exprime en disant que l'idéal premier qui représente x dans U est maximal, d'après la question (1). On a donc (i) \iff (ii).

Soit $U = \operatorname{Spec}(A)$ et $V = \operatorname{Spec}(B)$ des voisinages ouverts affines de x et $p_x \subset A$ resp. $q_x \subset B$ les idéaux premiers correspondant à x. D'après la question (2) il existe des localisés A_f et B_g qui sont isomorphes. Or il est facile de voir que pour l'inclusion $\operatorname{Spec}(A_f) \subset \operatorname{Spec}(A)$, un idéal premier est maximal dans A_f si et seulement s'il est maximal dans A. Donc p_x est maximal dans A ssi il est maximal dans le localisé $A_f \simeq B_g$, ssi q_x est maximal dans B. Ceci prouve que (ii) \iff (iii).

Corrigé ex. 4 (1) Si $F = X = \operatorname{Spec}(A)$, d'après l'exercice précédent, l'adhérence de $\{p\}$ dans X est V(p), donc p est un point générique si et seulement s'il est inclus dans tous les idéaux premiers de A, i.e. c'est l'unique premier minimal de A. Donc p est le nilradical de A, qui est bien premier car F = X est irréductible. Dans le cas général, soient η_1, η_2 deux points génériques de F et $U_1 = \operatorname{Spec}(A)$ ouvert affine de X contenant η_1 . Comme l'adhérence de η_2 est F tout entier, elle contient η_1 . Donc tout ouvert de F contenant η_1 contient η_2 . C'est le cas en particulier de $U_1 \cap F$, qui est un schéma affine (car c'est un fermé de U_1 affine) irréductible (car c'est un ouvert de F_1 qui est irréductible). D'après le cas particulier traité au début, il n'y a qu'un point générique dans $U_1 \cap F$ donc $\eta_1 = \eta_2$.

(2) L'application est bien définie car comme un point est irréductible, son adhérence l'est aussi. Le fait que ce soit une bijection est clair d'après (1).

Corrigé ex. 5 (1) Si $X = \operatorname{Spec}(A)$, Y = V(I), Z = V(J), alors $Y \cap Z = V(I+J)$. (Détail : si $W = Y \times_X Z$ est un sous-schéma fermé de X qui est un produit fibré dans la catégorie des schémas, alors en particulier c'est un produit fibré dans la sous-catégorie des schémas affines. Alors $W = \operatorname{Spec}(B)$ tel que B est une somme amalgamée de A/I et A/J au-dessus de A dans la catégorie des anneaux. On sait que cette somme est $B = A/I \otimes_A A/J \simeq A/(I+J)$.) Un exemple d'intersection non réduite de sous-schémas fermés réduits : dans $X = \mathbb{A}^2_k$, on prend pour Y la parabole $y = x^2$ et pour Z la droite y = 0. L'intersection est le sous-schéma fermé $x^2 = 0$.

(2) Si $X = \operatorname{Spec}(A)$ et $Y = \operatorname{Spec}(B)$ alors y correspond à un idéal premier $q \in B$ et $k(y) = B_q/qB_q$. Alors $f^{-1}(y) = \operatorname{Spec}(A \otimes_B k(y))$. Par exemple, considérons la parabole $X = \{y = x^2\}$ et la droite $Y = \{x = 0\}$, dans le plan affine. On va regarder la fibre en $0 \in Y$ de la projection $f: X \to Y$ définie par f(x, y) = y. En termes de schémas, $X = \operatorname{Spec}(k[x, y]/(y - x^2))$, $Y = \operatorname{Spec}(k[y])$, et f est induit par le morphisme d'anneaux $k[y] \to k[x, y]/(y - x^2)$, $y \mapsto y$. Le point $0 \in Y$ correspond à $\operatorname{Spec}(k) \to Y$ induit par le morphisme d'anneaux $k[y] \to k$, $y \mapsto 0$, c'est-à-dire, c'est le quotient par l'idéal I = (y). Notons $A = k[x, y]/(y - x^2)$. On a $A \otimes_{k[y]} k = A/yA = k[x]/x^2$ et donc la fibre $f^{-1}(0) = \operatorname{Spec}(k[x]/x^2)$ est non réduite.

Corrigé ex. 6 Soit $F \subset Y$ fermé, il faut vérifier que f(F) est fermé. Comme $X_{\text{réd}} \hookrightarrow X$ est un homéomorphisme on peut supposer X, Y et F réduits. Or f(F) est fermé si et seulement si $f(F) \cap U_i = f(F \cap V_i)$ est fermé dans U_i , pour tout i. Ceci nous ramène au cas où X et Y sont affines, X = Spec(A) et Y = Spec(B), donc F = Spec(B/J). On peut remplacer X par l'adhérence schématique de f, ce qui nous ramène au cas où f est (schématiquement) dominant, c'est-à-dire $A \to B$ est injectif. Alors d'après le théorème de Cohen-Seidenberg, $f(F) = \{q \cap A, q \supset J\} = V(J \cap A)$.

Corrigé ex. 7 Le résultat est vrai aussi bien si l'on considère les variétés au sens classique, avec seulement des points fermés, ou au sens des schémas. Montrons d'abord que f est une bijection. Soit $U = \mathbb{A}^1_k \setminus \{0\}$,

on sait que $f|U:U\to f(U)$ est un isomorphisme. Il reste à regarder la fibre de f en $p=(0,0)\in X$. Si on considère les variétés au sens classique, la fibre est l'ensemble $\{0\}\in\mathbb{A}^1_k$. Si on considère les variétés comme des schémas, notons $A=k[x,y]/(y^2-x^3)$, le morphisme d'anneaux correspondant à f est $A\to k[t],$ $x\mapsto t^2,\ y\mapsto t^3$. Le corps résiduel de p est A/(x,y)=k. Donc la fibre a pour anneau de fonctions $k[t]\otimes_A k=k[t]/(x,y)k[t]=k[t]/(t^2,t^3)k[t]=k[t]/t^2$. Dans tous les cas, l'espace sous-jacent à la fibre est un point. Donc f est bijective. De plus f est continue, et pour voir que sa réciproque est continue il suffit de voir que f est fermé, ce qui découle du fait que f est fini (en effet l'image de f0 est f1 est f2 est engendré comme f3 donc f4 est un homéomorphisme.

Pour voir que f n'est pas un isomorphisme on peut donner plusieurs arguments. D'abord on peut dire que si f était un isomorphisme, les restrictions sur les fibres seraient des isomorphismes, or on a calculé que la fibre en p = (0,0) est $\operatorname{Spec}(k[t]/t^2)$. Un autre argument est de dire que \mathbb{A}^1_k est lisse alors que X est singulier en p. Un troisième argument est que si f était un isomorphisme alors le morphisme d'anneaux de fonctions $A \to k[t]$ serait un isomorphisme, or il n'est pas surjectif (t n'est pas dans l'image).

- Corrigé ex. 8 (1) C'est une propriété générale des localisés : soit $S \subset R$ une partie multiplicative, on a une bijection $\{q \in \operatorname{Spec}(R), q \cap S = \emptyset\} \to \operatorname{Spec}(S^{-1}R)$ donnée par $q \mapsto S^{-1}q$ et son inverse est $q' \mapsto q' \cap R$. Cette bijection préserve les inclusions et donc envoie une chaîne d'idéaux premiers sur une chaîne d'idéaux premiers. Si $S = R \setminus p$ pour un premier p, alors les premiers q tels que $q \cap S = \emptyset$ sont les premiers inclus dans p, d'où le résultat annoncé.
- (2) Si p_0 est un premier minimal, d'après la question (1), le localisé A_{p_0} est de dimension 0. Or le théorème de structure des anneaux nœthériens de dimension 0 (ou anneaux artiniens) implique facilement que dans un tel anneau, tout élément est soit diviseur de zéro, soit inversible. On a $f \in p_0$, donc son image dans A_{p_0} est dans l'idéal maximal $p_0A_{p_0}$ et donc non inversible. L'image de f n'est pas non plus diviseur de zéro car fa/s = 0, avec $a \in A$ et $s \not\in p_0$, signifie qu'il existe $t \not\in p_0$ tel que tfa = 0 dans A, donc ta = 0 car f ne divise pas zéro, donc a/s = 0 dans A_{p_0} . Ainsi p_0 n'est pas un premier minimal, donc il contient un idéal premier p', ce qui fournit une chaîne $p' \subsetneq p_0 \subsetneq p_1 \subsetneq \cdots \subsetneq p_m$. Donc $m+1 \leq \dim(A)$, c'est le résultat annoncé.
- Corrigé ex. 9 (1) Il est facile de voir que $rt s^2$ est irréductible dans k[r, s, t, u] (qui est factoriel) donc il définit un idéal premier. Posons $A = k[r, s, t, u]/(rt s^2)$. D'après l'exercice précédent on a dim(A) = 4 1 = 3. Comme ru st est non nul dans A, il est non diviseur de 0 donc en appliquant encore l'exercice précédent on trouve que la dimension de $k[r, s, t, u]/(rt s^2, ru st)$ est 2.
- (2) On ne peut pas continuer selon le même procédé, car on s'aperçoit que $su-t^2$ est diviseur de 0 dans $k[r,s,t,u]/(rt-s^2,ru-st)$. En fait il est même nilpotent, de carré nul (vérifiez-le), comme on l'a vu dans l'exercice sur la cubique gauche : les équations sont celles de la cubique gauche (en version non projective). Or c'est un fait général (et plus ou moins évident) que $\dim(A) = \dim(A_{\text{réd}})$. Donc la dimension de $k[r,s,t,u]/(rt-s^2,ru-st,su-t^2)$ est la même que $k[r,s,t,u]/(rt-s^2,ru-st)$ c'est-à-dire 2.