The notions of Ox (D) for an effective Cartier divisor D on a scheme X and Opr (1) on projective
space have some different features, but on projective space OPZ(H ) (for a hyperplane H) coincides
with Opr (1), so it may get confusing.

I'll describe the 2 seperately, and then see how it goes to the same thing on P”.

(Remarks : Hartshorne may give more details than Voisin if you want very accurate definitions. In
Hartshorne Ox (D) is denoted .Z (D). Also note that Ox (D) is defined for arbitrary Cartier divisors,
not only the effective ones. We do not care about noneffective divisors here.)

Ox (D) (or O(D)) for a Cartier divisor D on a scheme X

Recall that an effective Cartier divisor D is defined, locally on some open affine U = Spec(A), by
a nonzerodivisor equation f € A up to units in A (cf Hartshorne p. 141 and 145). To it, is associated
the invertible sheaf Ox (D) defined on U as the module %A.

Remark 1 : in this general definition of Ox (D), there is NO notion of degree involved.
Remark 2 : there is an injective map Ox — Ox (D), which locally is the map A — %A, ar—a= %fa.

In our example X = P} and the divisor D is a hyperplane H with equation a linear form /.
(Let us not assume that ¢ = z,,, since it is actually useless.) Let’s look at the open affine U; =
{x; # 0}, its function ring is A; = k:[%’, ey %], the ring of degree 0 elements inside the localization

B; = klzo, ..., Tn, x%] (Note : A; is not graded.) Let ¢; = ¢/x; be the image of £ in A;. Then on U; the
sheaf OPE(H) is Z%-Ai and we have the map A4; — Z%-Ai defined above.

Opr (1) on projective space

The sheaf Opp (1) on X = P} is defined as the sheaf of rational functions inside K that have degree 1
(K is the constant sheaf on X defined by the fraction field K of B = k[zo, ..., x,]). More precisely, on
U; it is the sheaf associated to the module M; of degree 1 elements inside K = Frac(B;). Obviously
M; = xz;A;, since x; is invertible in B;.

The isomorphisms ¢;;: (Opr(1)1,)jy; — (Opr(1)y,)ju, are just the identity mappings. More
precisely, the function ring of U;; = U; N U; may be seen by localizing A; at %, we get A;; =
k[%‘z, . %, Zi], or by localizing A; at %, we get Aj; = k[i—?, . i—’;, i—z} which is of course the same

thing. Then ¢;; above is the identity map x;A;; — ;A5 = x4, -
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The construction of O(1) actually makes sense starting from any graded ring (so one defines O(1)
not just for projective space), and what’s essential is the notion of degree. But in full generality, I
think that there is no map Ox — O(1). See the differences with Ox (D) above.

Opr (H) ~ Opr (1) on projective space
Let X =P} again. We define an isomorphism Opr(H) ~ Opr (1) which is just multiplication by £.
On the open affine U;, this translates as multiplication by ¢;x; since £ = ;x; -
1
l;
On U; we have the following commutative square : the top row is the map Opp — Opr(H), the right

vertical arrow is the isomorphism OP?(H> o~ OPZ(l), and the bottom row is the map that comes as a
consequence of this isomorphism :
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So we have a morphism Opr — Opn (1), but we see that it owes its existence to the hyperplane H...
In other words there is no canonical morphism Opp — Opn (1), we have to choose a hyperplane. (This
is consistent with the fact that there is no map Ox — O(1) in general.)



