Jeudi 4 novembre 2010 Réduction des endomorphismes

Corrigé

Exercice 4 Soit k un corps et $(a, b, c, d, e) \in k^5$. Calculez le polynôme minimal et le polynôme caractéristique de la matrice

$$A = \left(\begin{array}{cccc} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right).$$

Avant de passer au corrigé, faisons quelques remarques qui, sur l'exemple de l'exercice, sont (plus ou moins...) évidentes mais qui éclairent la théorie générale. Je les inclurai d'ailleurs dans le cours : ces remarques ne sont pas explicitement mentionnées dans le programme, mais peuvent être considérées comme faisant partie du cours et seront considérées comme telles.

Soit E un espace vectoriel de dimension finie sur un corps k. Soit f un endomorphisme de E dont le polynôme caractéristique χ est scindé ; on peut par exemple supposer que $k = \mathbb{C}$ pour simplifier. On a donc $\chi(T) = (T - \lambda_1)^{\alpha_1} \dots (T - \lambda_r)^{\alpha_r}$ où α_i est la multiplicité de λ_i . Posons $F_i = \ker((f - \lambda_i \operatorname{Id})^{\alpha_i})$, c'est le sous-espace caractéristique associé à la valeur propre λ_i . Il contient le sous-espace propre associé à λ_i mais est en général plus gros. Enfin, notons χ_i le polynôme caractéristique de $f|_{F_i}$ et μ_i son polynôme minimal. Alors :

Proposition. Avec les notations précédentes, on a :

- (1) $\chi = \chi_1 \dots \chi_r \text{ et } \chi_i = (T \lambda_i)^{\alpha_i},$
- (2) $\mu = \mu_1 \dots \mu_r$ et $\mu_i = (T \lambda_i)^{\beta_i}$ pour un certain $\beta_i \leq \alpha_i$,
- (3) dim $F_i = \alpha_i$.

En effet, notons $P_i = (T - \lambda_i)^{\alpha_i}$ donc $F_i = \ker P_i(f)$. Les P_i sont premiers entre eux et leur produit annule f d'après Cayley-Hamilton, donc $E = F_1 \oplus \cdots \oplus F_r$ par le lemme des noyaux. Dans une base de E obtenue comme réunion de bases des F_i , la matrice de f est diagonale par blocs et le calcul du déterminant de $T \operatorname{Id} - f$ dans cette base montre que $\chi = \chi_1 \dots \chi_r$. De plus, par définition de F_i , l'endomorphisme $f - \lambda_i$ Id est nilpotent sur F_i ; comme la seule valeur propre d'un endomorphisme nilpotent est 0, la seule valeur propre de $f|_{F_i}$ est λ_i . Ceci montre que χ_i est de la forme $(T - \lambda_i)^{\gamma_i}$ pour un certain $\gamma_i \leq \alpha_i$. Comme $\chi = \chi_1 \dots \chi_r$, on a nécessairement $\gamma_i = \alpha_i$ pour tout i, ce qui prouve (1). Comme le degré du polynôme caractéristique d'un endomorphisme est égal à la dimension de l'espace, on a dim $F_i = \deg(\chi_i) = \alpha_i$ ce qui prouve (3). Enfin, comme μ_i divise μ d'après un lemme du cours, et que les μ_i sont premiers entre eux, leur produit divise μ (ce résultat sera rappelé lorsque nous étudierons les anneaux \mathbb{Z} et k[X]). Enfin, sur F_i le polynôme μ_i annule $f|_{F_i}$ (c'en est le polynôme minimal) donc $\mu_1 \dots \mu_r$ aussi annule $f|_{F_i}$. Comme les F_i engendrent E, finalement $\mu_1 \dots \mu_r$ annule f. Donc il est multiple du polynôme minimal μ , or nous avons montré qu'il en est aussi diviseur, et il en découle que $\mu = \mu_1 \dots \mu_r$ ce qui prouve (2).

Corrigé. Notons $E = k^4$ l'espace vectoriel ambiant et e_1, \ldots, e_4 sa base canonique. Comme A est triangulaire supérieure, le calcul de son polynôme caractéristique χ ne présente pas de difficulté et on trouve :

$$\chi(T) = (T-1)^2 (T-2)^2.$$

Soient $P_1(T) = (T-1)^2$ et $P_2(T) = (T-2)^2$, et les sous-espaces caractéristiques $E_1 = \ker P_1(A)$ et $E_2 = \ker P_2(A)$. D'après le théorème de Cayley-Hamilton et le lemme des noyaux, on a $E = \ker(\chi(A)) = E_1 \oplus E_2$. De plus, les dimensions de E_1 et E_2 sont égales aux multiplicités c.-à-d. dim $E_1 = \dim E_2 = 2$. De plus, on voit tout de suite que e_1 et e_2 sont dans E_1 si bien qu'ils en forment une base. Cherchons maintenant une base de E_2 . On peut le faire directement, en calculant $B = (A-2\operatorname{Id})^2$ et en résolvant l'équation BX = 0 pour trouver une base du noyau de B; je vous recommande de le faire en exercice. Je propose plutôt d'utiliser l'observation suivante : $A-2\operatorname{Id}$ envoie e_3 et e_4 dans E_1 ; en détails,

$$Ae_3 - 2e_3 = be_1 + de_2 \in E_1,$$

 $Ae_4 - 2e_4 = ce_1 + ee_2 \in E_1.$

Notons $u = be_1 + de_2$ et $v = ce_1 + ee_2$. Ainsi, c'est une bonne idée de chercher deux vecteurs x, y dans E_1 tels que $e'_3 := e_3 + x$ et $e'_4 := e_4 + y$ soient des vecteurs propres associés à la valeur propre 2. En effet, les équations $Ae'_3 = 2e'_3$ et $Ae'_4 = 2e'_4$ mènent à

$$Ax - 2x = -(Ae_3 - 2e_3) = u$$

 $Ay - 2y = -(Ae_4 - 2e_4) = v$.

Les vecteurs u, v, x, y qui apparaissent dans ces équations sont dans E_1 . Or, l'endomorphisme de E_1 correspondant à A-2 Id est inversible (car la seule valeur propre de A sur E_1 est 1!): sa matrice est $\binom{1}{0} \binom{a}{1} - \binom{2}{0} \binom{0}{2} = \binom{-1}{0} \binom{a}{0}$. On en déduit qu'il existe d'uniques x et y dans E_1 tels que nous les cherchions: précisément, en se plaçant sur la base $\{e_1, e_2\}$ on peut noter $C = \binom{-1}{0} \binom{a}{0}$ et alors $x = C^{-1}u$, $y = C^{-1}v$. Finalement $E_2 = Vect(e_3', e_4')$ et ce sous-espace caractéristique est égal au sous-espace propre de 2, c'est-à-dire que l'endomorphisme de E_2 défini par A restreint à E_2 est diagonalisable. Notons P la matrice de passage de la base canonique $\mathcal{B} = (e_i)$ à la base $\mathcal{B}' = \{e_1, e_2, e_3', e_4'\}$. On a alors:

$$A' := P^{-1}AP = \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Nous savons que le polynôme minimal de $\binom{1}{0} \binom{a}{1}$ est T-1 si a=0 et $(T-1)^2$ sinon, et que le polynôme minimal de $\binom{2}{0} \binom{0}{2}$ est T-2. En utilisant le fait que le polynôme minimal est produit des polynômes minimaux des restrictions aux sous-espaces caractéristiques (proposition page précédente), on trouve :

- $\mu_A(T) = (T-1)(T-2)$ si a = 0,
- $\mu_A(T) = (T-1)^2(T-2)$ si $a \neq 0$.

On voit en particulier que contrairement au polynôme caractéristique, qui est donné par une formule impliquant le déterminant et qui est donc continu en les coefficients des matrices, le polynôme minimal n'est pas continu: il est constant lorsque a est non nul, et son degré fait un saut lorsque a tend vers 0. C'est là une grande différence entre polynôme caractéristique et polynôme minimal.