Jeudi 18 novembre 2010 Groupes, 1

Exercice 1 Soit $n \ge 1$ un entier. On note P_n le polygone régulier à n côtés dont les sommets sont les racines n-ièmes de l'unité dans le plan complexe, c'est-à-dire les points S_k d'affixe $\exp(2i\pi k/n)$, pour $k \in \{0, \ldots, n-1\}$. On appelle $groupe\ diédral\ \mathbb{D}_n$ le groupe des isométries de P_n . La rotation r de centre O et d'angle $2\pi/n$, et la symétrie de droite s autour de l'axe réel, sont des exemples de telles isométries.

- (1) Soit $f \in \mathbb{D}_n$. Montrez qu'il existe un unique entier $k \in \{0, \dots, n-1\}$ tel que l'une des isométries $r^{-k}f$ ou $sr^{-k}f$ fixe les points S_0 et S_1 .
- (2) On rappelle qu'une isométrie du plan affine euclidien qui fixe trois points non alignés est l'identité. Déduisez de la question précédente la liste de tous les éléments de \mathbb{D}_n .
- (3) Décrivez le sous-groupe de \mathbb{D}_n engendré par r, puis celui engendré par s.

Exercice 2 (1) Dans le groupe symétrique \mathfrak{S}_n , on considère un r-cycle $\tau = (i_1 i_2 \dots i_r)$ et une permutation quelconque σ . Montrez que $\sigma \tau \sigma^{-1} = (\sigma(i_1)\sigma(i_2)\dots\sigma(i_r))$.

- (2) Dans le groupe symétrique \mathfrak{S}_n , on considère $\sigma=(12\ldots n)$ et $\tau=(12)$. Pour k entier, calculez σ^k puis $\sigma^k\tau\sigma^{-k}$.
- (3) Déduisez-en que les permutations σ et τ engendrent \mathfrak{S}_n .