Le contrôle était noté sur 10 points, le barême est indiqué dans la marge.

Soit M un \mathbb{Z} -module. On dit que M est divisible si pour tout $n \in \mathbb{Z}$ non nul, le morphisme $f_n : M \to M$ défini par $f_n(x) = nx$ est surjectif. On dit que M est un module de torsion si pour tout $x \in M$, il existe $n \in \mathbb{Z}$ non nul tel que nx = 0.

- (1) Montrez qu'un Z-module libre n'est pas divisible.
- Le module libre nul $M = \{0\}$ est évidemment divisible, puisque toute application (linéaire ou pas !) $f : \{0\} \to \{0\}$ est surjective. L'énoncé n'était donc pas assez précis sur ce point. Maintenant soit M un module libre non nul ; il possède donc une base $\mathcal{B} = (e_i)_{i \in I}$ telle que I a au moins un élément j. Notons $e = e_j$. Pour tout élément x, la composante sur e_j de 2x lorsqu'on l'écrit sur la base \mathcal{B} est un entier pair puisque c'est le double de la composante de x sur e_j . Donc 2x n'est jamais égal à e_j , c'est-à-dire que e_j n'est pas dans l'image de f_2 qui n'est donc pas surjectif. Ceci montre que M n'est pas divisible.
 - (2) Montrez que le \mathbb{Z} -module \mathbb{Q} n'est pas libre.
- 1 pt Pour tout $n \neq 0$ et tout $x \in \mathbb{Q}$, on a x = ny avec $y = (1/n)x \in \mathbb{Q}$. Donc tout x est dans l'image de f_n , qui est surjective. Donc \mathbb{Q} est divisible, et d'après (1) il n'est pas libre.
 - (3) Montrez qu'un Z-module libre n'est pas un module de torsion.
- 4 pts Le module libre nul $M = \{0\}$ est évidemment de torsion, puisque son seul élément x = 0 vérifie 2x = 0. L'énoncé n'était donc pas assez précis sur ce point (et ceci avait été corrigé en amphi). Maintenant soit M un module libre non nul, $\mathcal{B} = (e_i)_{i \in I}$ une base, et e_j un de ses éléments. Comme \mathcal{B} est libre, il est équivalent de dire que $ne_j = 0$ ou que n = 0. Donc l'élément $x = e_j$ ne vérifie nx = 0 pour aucun $n \neq 0$. Ceci montre que M n'est pas un module de torsion.
 - (4) Montrez que le \mathbb{Z} -module $\mathbb{Z}/9\mathbb{Z}$ n'est pas libre.
- 1 pt Pour tout $x \in \mathbb{Z}/9\mathbb{Z}$ on a 9x = 0, donc $\mathbb{Z}/9\mathbb{Z}$ est un \mathbb{Z} -module de torsion. D'après (3) il n'est pas libre.

Commentaires.

- 1. Nombreux d'entre vous ont écrit qu'un module est de torsion s'il existe $n \in \mathbb{Z}$ non nul tel que pour tout $x \in M$, on a nx = 0. Ceci n'est pas vrai car l'ordre des quantificateur a de l'importance : il n'est pas équivalent d'écrire « $\forall x \in M$, $\exists n \in \mathbb{Z} \setminus \{0\}$ » ou « $\exists n \in \mathbb{Z} \setminus \{0\}$, $\forall x \in M$ ». Voici un contre-exemple : le module $M = \mathbb{Q}/\mathbb{Z}$ est un module de torsion, mais il n'est pas vrai qu'il existe un n uniforme (indépendant de x) tel que nx = 0 pour $x \in M$.
- 2. Un module peut être à la fois divisible et de torsion : c'est le cas du \mathbb{Z} -module $M=\mathbb{Q}/\mathbb{Z}$.