Université Rennes 1, Année 2013-2014 Master 1 Math., Algèbre générale de base

Feuille d'exercices 2

Exercice 1 - Quotients successifs

- (1) Soient A un anneau et I,J des idéaux bilatères de A tels que $I\subset J$. On note J/I l'idéal image de J dans l'anneau quotient A/I. Montrez que les anneaux (A/I)/(J/I) et A/J sont isomorphes.
- (2) Soient A un anneau et x,y deux éléments de A. Montrez qu'il existe des isomorphismes entre : l'anneau quotient A/(x,y) ; l'anneau quotient de A/(x) par l'idéal engendré par \overline{y} ; l'anneau quotient de A/(y) par l'idéal engendré par \overline{x} .
- (3) Soit $\mathbb{Z}[i] = \{a + bi \in \mathbb{C}; a, b \in \mathbb{Z}\}$ l'anneau des *entiers de Gauss*. Soit p un nombre premier. Montrez que l'idéal (p) est premier dans $\mathbb{Z}[i]$ ssi -1 n'est pas un carré modulo p. (Indication : donnez une présentation de $\mathbb{Z}[i]$ comme quotient d'un anneau de polynômes à coefficients dans \mathbb{Z} puis utilisez la question (2).)

Exercice 2 - Image d'un idéal Soit $f: A \longrightarrow B$ un morphisme d'anneaux commutatifs.

- (1) Montrez que les conditions suivantes sont équivalentes : (i) l'image de tout idéal de ${\pmb A}$ est un idéal de ${\pmb B}$; (ii) ${\pmb f}$ est surjectif.
- (2) Lorsque f est surjectif, on note I son noyau (donc f induit un isomorphisme $A/I \simeq B$). Montrez que les applications $J \mapsto f(J)$ et $K \mapsto f^{-1}(K)$ sont des bijections réciproques entre l'ensemble des idéaux J de A contenant I et l'ensemble des idéaux K de B.
- (3) On rappelle qu'un idéal $p \subset A$ est dit premier lorsque l'anneau quotient A/p est intègre. Montrez que l'image réciproque d'un idéal premier de B est un idéal premier de A. Dans le cas surjectif, montrez que les bijections de la question (2) induisent des bijections entre les idéaux premiers de A contenant I et les idéaux premiers de B.

(4) On rappelle qu'un idéal $m\subset A$ est dit maximal si l'anneau quotient A/m est un corps. Dans le cas surjectif, montrez que l'image réciproque d'un idéal maximal de B est un idéal maximal de A (et donner un contre-exemple lorsque f n'est pas surjectif) puis montrez que les bijections de la question (2) induisent des bijections entre les idéaux maximaux de A contenant I et les idéaux maximaux de B.

Exercice 3 - Morphisme de Frobenius

Soient p un nombre premier et A un anneau commutatif de caractéristique p.

- (1) Montrez que px = 0 pour tout $x \in A$.
- (2) Montrez que dans A, les coefficients binomiaux $\binom{p}{i}$ sont nuls pour 0 < i < p.
- (3) Montrez que l'application $F:A\longrightarrow A, x\longmapsto x^p$ est un endomorphisme d'anneaux. Que vaut-il dans le cas où $A=\mathbb{Z}/p\mathbb{Z}$?
- (4) Montrez que F est injectif (resp. bijectif) si K est un corps (resp. un corps fini).

Exercice 4 - Nilradical et anneaux commutatifs réduits

Soit A un anneau commutatif. On appelle nilradical et A l'ensemble des éléments nilpotents de A, et on le note Nil(A) (on trouve aussi la notation $\sqrt{0_A}$ dans la littérature). On dit que A est réduit s'il ne possède pas d'élément nilpotent non nul, c'est-à-dire si $Nil(A) = \{0\}$.

- (1) Montrez que Nil(A) est un idéal de A.
- (2) Montrez que $A_{\mathrm{r\acute{e}d}}:=A/\operatorname{Nil}(A)$ est réduit, et que $\pi:A\to A_{\mathrm{r\acute{e}d}}$ vérifie la propriété universelle suivante : pour tout morphisme d'anneaux commutatifs $f:A\to B$ tel que B est un anneau réduit, il existe un unique morphisme $f':A_{\mathrm{r\acute{e}d}}\to B$ tel que $f=f'\circ\pi$.
- (3) Si A est un anneau de caractéristique égale à un nombre premier p, montrez que l'endomorphisme de Frobenius de A est injectif si et seulement si A est réduit.
- (4) Montrez que Nil(A[X]) = Nil(A)[X].

Exercice 5 - Anneaux finis

- (1) Donnez un exemple d'anneau fini non commutatif.
- (2) Soient A un anneau fini et $x \in A$. Montrez que les conditions suivantes sont équivalentes : x est inversible à gauche ; régulier à gauche ; inversible à droite ; régulier à droite.
- (3) Montrer qu'un anneau fini intègre est une algèbre à division.

Exercice 6 - Inversible + nilpotent

Soient A un anneau, $u \in A$ un élément inversible et $n \in A$ un élément nilpotent. Montrez que si A est commutatif alors u+n est inversible. Est-ce encore vrai si A n'est pas commutatif ?

Exercice 7 - Matrices et polynômes

Soient R un anneau commutatif et $n \geq 1$ un entier. Donnez un isomorphisme d'anneaux $M_n(R[X]) \to M_n(R)[X]$ entre l'anneau des matrices à coefficients dans l'anneau de polynômes et l'anneau des polynômes à coefficients dans l'anneau de matrices.