Contrôle 2

Aucun document n'est autorisé. Toute affirmation doit être justifiée. La rédaction doit être soignée.

Exercice 1 [2 points] Soit A un anneau. Décrivez l'anneau des endomorphismes du A-module à gauche A.

Exercice 2 [2 points] Soient k un corps (commutatif), A une k-algèbre de dimension finie, $x \in A$. Montrez que si x est régulier à gauche, alors il est inversible (à droite et à gauche).

Exercice 3 Soit M l'ensemble des polynômes $P \in \mathbb{R}[X]$ tels que $P(\mathbb{Z}) \subset \mathbb{Z}$.

- (a) [1 point] Montrez que M est un \mathbb{Z} -module.
- (b) [2 points] On pose $H_0 = 1$ et $H_n = \frac{X(X-1)...(X-n+1)}{n!}$ pour $n \ge 1$ entier. Montrez que $H_n \in M$.
- (c) [2 points] Montrez que $\{H_n\}_{n\geq 0}$ est une famille libre du \mathbb{Z} -module M.
- (d) [2 points] Montrez que $\{H_n\}_{n\geqslant 0}$ est une famille génératrice. Indication : montrer que pour tout $P\in M$ de degré n, il existe $\lambda_0,\ldots,\lambda_n$ réels tels que $P=\sum_{k=0}^n\lambda_kH_k$, puis que $\lambda_k\in\mathbb{Z}$ pour tout k.

Université Rennes 1, Année 2012-2013, Master 1 Math., Algèbre de base

Contrôle 2

Aucun document n'est autorisé. Toute affirmation doit être justifiée. La rédaction doit être soignée.

Exercice 1 [2 points] Soit A un anneau. Décrivez l'anneau des endomorphismes du A-module à gauche A.

Exercice 2 [2 points] Soient k un corps (commutatif), A une k-algèbre de dimension finie, $x \in A$. Montrez que si x est régulier à gauche, alors il est inversible (à droite et à gauche).

Exercice 3 Soit M l'ensemble des polynômes $P \in \mathbb{R}[X]$ tels que $P(\mathbb{Z}) \subset \mathbb{Z}$.

- (a) [1 point] Montrez que M est un \mathbb{Z} -module.
- (b) [2 points] On pose $H_0 = 1$ et $H_n = \frac{X(X-1)...(X-n+1)}{n!}$ pour $n \geqslant 1$ entier. Montrez que $H_n \in M$.
- (c) [2 points] Montrez que $\{H_n\}_{n\geqslant 0}$ est une famille libre du \mathbb{Z} -module M.
- (d) [2 points] Montrez que $\{H_n\}_{n\geqslant 0}$ est une famille génératrice. Indication : montrer que pour tout $P\in M$ de degré n, il existe $\lambda_0,\ldots,\lambda_n$ réels tels que $P=\sum_{k=0}^n\lambda_kH_k$, puis que $\lambda_k\in\mathbb{Z}$ pour tout k.