Contrôle 1, corrigé

Exercice 1 (2 points) Soient A un anneau et I, J des idéaux bilatères de A tels que $I \subset J$. On note J/I l'idéal image de J dans l'anneau quotient A/I. Montrez que les anneaux (A/I)/(J/I) et A/J sont isomorphes.

Considérons le morphisme surjectif d'anneaux $\pi: A \to (A/I)/(J/I)$ composé des deux morphismes surjectifs canoniques d'anneaux $\pi_1: A \to A/I$ et $\pi_2: A/I \to (A/I)/(J/I)$. Dire que $a \in A$ est dans le noyau de π , c'est dire que $\pi_1(a)$ est dans le noyau de π_2 , c'est-à-dire dans J/I. D'après la construction de π_1 , ceci signifie qu'il existe $j \in J$ tel que $a \equiv j \mod I$, c'est-à-dire $a - j \in I$. Comme $I \subset J$, cela veut simplement dire que $a \in J$. Finalement $\ker(\pi) = J$. D'après le théorème de passage au quotient, ou propriété universelle du morphisme de quotient $\rho: A \to A/J$, il existe un unique morphisme $\pi': A/J \to (A/I)/(J/I)$ tel que $\pi = \pi'\rho$, et de plus le noyau de π' est égal à $\ker(\pi)/J = 0$ et l'image de π' est égale à celle de π c'est-à-dire (A/I)/(J/I). Ainsi π' est un isomorphisme.

Exercice 2 (5 points) Soient k un corps, $M_2(k)$ la k-algèbre des matrices de taille (2,2) à coefficients dans k, et A la sous-k-algèbre engendrée par les matrices $M = E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $N = E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

- (1) Donnez une base de A comme k-espace vectoriel.
- (2) A est-il commutatif? Est-ce une algèbre à division? Est-ce un anneau simple?
- [2 pts] (1) Par définition A est la plus petite k-algèbre contenant M et N. Elle contient en particulier le sous-espace vectoriel V de $M_2(k)$ de base I_2 , M et N. Or les relations $M^2 = M$, $N^2 = 0$, MN = N, NM = 0 impliquent que V est stable par produit. Ainsi V est une sous-k-algèbre de $M_2(k)$, donc A = V. Une base de A comme k-espace vectoriel est $\{I_2, M, N\}$.
- [1 pt] (2) Comme $MN = N \neq 0 = NM$, l'anneau A n'est pas commutatif.
- [1 pt] Comme $N \neq 0$ et $N^2 = 0$, N n'est pas inversible et l'anneau A n'est pas une algèbre à division.
- [1 pt] Compte tenu des relations $N^2 = 0$, NM = 0 et MN = N, la droite vectorielle engendrée par N est un idéal bilatère distinct de $\{0\}$ et A, donc A n'est pas simple.

Exercice 3 (3 points) Soient A un anneau, $u \in A$ un élément inversible et $n \in A$ un élément nilpotent. Montrez que si A est commutatif alors u + n est inversible (commencez par considérer le cas u = 1). Est-ce encore vrai si A n'est pas commutatif?

[1 pt] Notons k un entier tel que $n^k = 0$. Par simple développement, on trouve :

$$(1+n)\sum_{i=0}^{k-1}(-n)^i = 1 + (-1)^{k-1}n^k = 1.$$

Ainsi $\sum_{i=0}^{k-1} (-n)^i$ est un inverse à droite pour 1+n, et comme A est commutatif c'est bien sûr aussi un inverse à gauche donc 1+n est inversible.

- [1 pt] Écrivons $u + n = u(1 + u^{-1}n)$. Comme A est commutatif, alors $(u^{-1}n)^k = u^{-k}n^k = 0$ i.e. $u^{-1}n$ est nilpotent. D'après ce qui précède $1 + u^{-1}n$ est inversible, donc u + n aussi.
- [1 pt] Si A n'est pas commutatif, ceci n'est pas toujours vrai : par exemple considérons $A = M_2(k)$ pour un corps k, et les éléments $u = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $n = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$. On voit que u est inversible, n est nilpotent, mais $u + n = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ n'est pas inversible.