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5. Cohomology and base change. At this point, we have to digress
to prove a theorem of Grothendieck on the behavior of cohomology
groups of a family of vector bundles E, on a family of varieties
X, parametrized by points y € ¥ where X, is assumed to be a
flat family of varieties. An important consequence of this result
is the semicontinuity of the dimensions of the cohomology groups
of the E,.

We assume the following basic result.

TraeoreM. If f: X— Y is a proper morphism of locally noetherian
preschemes and & a coherent sheaf of Oy-modules on X, for all p> 0
the direct image sheaves R? f (F) are coherent sheaves of Op-modules.

We recall the following definition. If f: X—+¥ is a morphism of
preschemes and & a quasicoherent sheaf on X, & issaid to be flat
over Y or f-flat if for each z € X, & ,(for its natural structure of
Oy yy-module) is O y ;,,-flat. It is easily shown that this condition
is equivalent to requiring that for U c X, ¥ c ¥ with Uand V affine
open, and f(U) c V, #(U) is a flat 0y(V)-module.

The main result of this section is the following

THEOREM. Let f: X > Y be a proper morphism of noetherian
schemes with ¥ = Spec A affine, and F a coherent sheaf on X, flat
over ¥. There is a finite complex £': 0 > K% > Kl »,.. > K*—> 0
of finitely gemerated projective A-modules and an isomorphism of
Junctors

H?(X xy Spec B, ¥ ®, B)= HH K ®, B), (p>0)
on the category of A-algebras B.

Proor. Choose a finite affine covering % = {U;};; of X by affine
open subsets. Then the Cech complexC" =C* (U, F) =@ C°(U, F)

of alternating Cech cochains on 9 with coefficients in & is a finite
complex of A-flat modules, whose cohomologies are isomorphic to
the cohomology groups H?(X, #).
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Moreover, for all 4-algebras B, {U; Xy Spec B} is an affine cover-
ing of X xy Spec(B), and C?(A, F) ®, B is the module of Cech
p-cochaing of # ®, B for this covering. Therefore

H?(X X, Speec B,# ®, B)= HC'®, B)
for all B, and, in fact, functorially in B.

We nced the following basic lemma

Lemma 1. Let C* be a complex of A-modules (4 any noetherian
ring) such that the H(C") are finitely generated A-modules and such
that C? = (0) only if 0 < p < n. Then there exists a complex K~ of
finitely generated A-modules such that K? £ (0) only if 0< p< n
and K? is free if 1< p < n and a homomorphism of complexes
é: K-> C" such that ¢ induces isomorphisms H{(K") — HY(C"), alli.
Moreover if the C? are A-flat, then K° will be A-flat too.

Proor. We define, by descending induction on m, diagrams:

F, id am+1
Km > Kmt1 > Km+2 —
lqsm l¢m+1 l¢m+2
P 4 R N N 5 >Cmt2 5 ..
b i am+1

Put B? =0 for p >n. Suppose we have defined (K?, ¢,, 0%) for
p = m + 1 such that the following conditions hold:
(i) %P, =, 18, (p >m +1).
(ii) P*+led? =0, (p>m +1).
(ili) The ¢” induces isomorphisms in cohomology H*(K") ——>
H¢(C") for g>>m 4+ 2, and a surjection ker a*+! - H™+1(C").
(iv) The K? are A-free and finitely generated, (p > m + 1).
We then construct K™, 8™ and ¢, so as to satisfy (i)-(iii) with m 4 1
replaced by m.

Suppose first that m > 0. Let B™**! be the kernel of the homo-
morphism kerg™+! - Hm™+}(C"). Since B™*+!is finitely generated
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over .4 (A4 being noetherian), we can find a finitely generated free
module X and asurjection 8": K™ - B™+!, Further, since H™(C")
is a finitely generated 4-module, we can find a surjection K"™

A
~— H™(C*)with K"™finitely generated and free. Let p: K™ »Z™(C")

be any lift of A, and ¢, K™ - C™ the composite of p with the
inclusion Z™(C") - C™. We then put K™ = K™ @ K"™, and define
g™ K™ - K™+ by putting it equal to zero on K"™ and equal to 3’
on K™, Since ¢,,,,°9'(K™) c 3C™, we can find ¢,: K™ —»C™ such
that do¢,, = ¢,.,,08". We then define ¢,,: K™ - C™ as being equal
to ¢, on K™ and ¢, on K"™. The conditions (i)-(iii) are evidently
fulfilled with m instead of m + 1.

Suppose then that m = — 1, that is, that {K?, ¢,, 87} have been
defined for p >» 0 satisfying (i)-(iii). We then replace K° by
K°/ker 3° » Ker ¢,, and we take ¢y: K°—> C° and 3% K° > K*'to
be the induced mappings.- Putting K? = 0 for p < 0, we get a
coraplex

0> K'>K'»>Ke5>K3»,,,>K">0

and a homomorphism ¢: K* — C* which by construction induces
isomorphisms in cohomology. We have only to check that K° is
A-flat when all the C? are A-flat. Consider the ‘mapping cylinder’
complex L defined by L? = K* @ C?~! for p € Z, and 9: L? —» LP+!
defined by a(z, 0) = (2z, ¢(z)), 8(0, y) = (0, — dy). If O is the
complex obtained from C* by shifting degrees by one (and making
a sign change in 3), C'? = (C?~1, we have an exact sequence .of
complexes 0 > (" - L' - K* — 0, and hence an exact cohomology
sequence

Hr(C") HP+Y(CY)
I |
B?(K*)—> H?+1(0")— HPHY (L) — H?+1(K") ——> HP3(C")

and one sees from the definition that the cohomology maps
H?(K") - H?*}((C"") = H?(C") are the ones induced by ¢: K* - C".
Since these are all isomorphisms, H?(L') = (0) for all p € Z. But
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then 0 > K =L'> ! > J2 > ... > L1 5 0 is exact and the
modules L* arc flat for > 1, hence K°is 4-flat.

Applying the lemma to our case, we have a complex K°, and a
homomorphism K* - C" such that

HYK') =~ H?(C")~ HY(X, F),all p.

Note that K° is A-projective, since it is 4-flat and finitely generated
over a noetherian 4. It remains to check that for all A-algebras
B, HK'® 4B) > H?(C"® 4B) is an isomorphism too. Thisis a

consequence of

Lemma 2. Let C°, K° beany finite complexes of flat A-modules,
and let C° > K’ be a homomorphism of complexes inducing isomor-

phisms HP(C') —> H?(K*) for all p. Then for every A-algebra B,
the maps H?(C" ® , B) —> H?(K'®, B) are isomorphisms.

Proor. Construct the ‘mapping cylinder’ L’ exactly as in the
proof of Lemma 1. As before, we see that L is an exact finite

complex of flat A-modules. Then it is easy to see that all the
orP
modules Z? = Ker(L? -~ L?*1) are flat too, hence

0 > 77 > I? > 2Pt — 5. 0

is a short exact sequence of flat 4-modules. Therefore
0 — 2°Q, B—> I’Q, B—> Z**1Q, B —> 0

is exact, from which it follows that L' ®, B is exact. But now
L’ ®, B is the mapping cylinder of the map K ® , B >C" ®, B.
So using the cohomology sequence in reverse, it follows that
HBH?(K"®, B) ~H?(C" ® , B) are isomorphisms.

For any morphism f: X - ¥ and y € ¥, we denote by X, the fiber
over y of f (i. e., the fiber product X Xy Spec k(y), considered as
a scheme over &(y)), and for # quasi-coherent on X, we denote by
&, the sheaf # ®oyk(y) on X .

We have then the following important corollary.
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Cororrary. Let X, Y, fand F be as in the theorem (except that Y
need not be affine). Then we have:

(a) Foreachp > 0, the function Y — Z defined by
y — dimy, H?(X,, #,) is upper semicontinuous on Y.
(b) The function Y —Z defined by

y=>XF,) = > (1) dimy,, B(X,, #,)
p=0
is lacally constant on Y.

Proor. The problem being local on Y, we may assume Y affine.
Let K* be a complex as in the proposition; by further localization,
we may assume K to be a free complex. Denote by d7: K? —» K?+1
the coboundary of K. We then have

dimy, H?(X,, ¥ ,) = dimy,[ker (@ ® 4 k(y))]—
— dimy,[Tm(d”~! ® 4 k(y))]
= dimg, [K?*Qk(y)] — dim,‘(y)[Im(dl’@) ky)]—
— dimy,[Tm(@®=® ky))]. (*)
The first term being constant on Y, (b) follows on taking alternating
sum of (*) over all p. We assert that for any p > 0, the function
pp (y) =dimy,, [Im(d?Q® k(y))] is lower semi-continuous on Y. In
fact, if 7 is any integer > 0, and d?: A"K? —» ATKP+! is the map
induced by 47,
{ye¥|ply) <r}={ye¥ | Q ky) =0},
and this set is closed since d? is a homomorphism of free finitely
generated modules, and hence is described by a matrix in 4, and
the above set is the set of common zeros of all entries of the matrix.
This proves (a).
Moreover, the theorem gives the following criterion for putting

together the cohomology groups of & along the fibres of f into a
vector bundle on Y.

CoroLrary 2. Let X, Y, f and & be as above. Assume Y is
reduced and connected. Then for all p the following are equivalent:
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(i) ye—> dim,, HX(X,, F,) is a constan! function,

(i) R?f (F) is a locally free sheaf & an Y, and for all ye Y, the
natural map

3 ®@ch(y) — HY X, )
18 an isomorphism.
If these conditions are fulfilled, we have further that
BP71f,(F) @ bly) — B H(X,, F,)

18 an isomorphism for all ye Y.

Proor. Again assume Y affine, X' as in the proposition.
(ii) = (i) is obvious. To prove (i) = (ii), we need two lemmas.

Lemma 1. If Y is reduced and F a coherent sheaf on Y such that
dimy, [F ®wyk(y)] =7, al ye¥, then F is locally free of rank

ronY.

Proor. For any ye Y, let oy,...,0, e F, lift generators of
F,® k(y). Since oy, ..., o, are extendable to sections in a neighbor-
hood of y, we have a homomorphism o: 03|, > % |, defined in a
neighborhood V of y. Then o is surjective on the stalks at y, by
Nakayama’s lemma, so coker{o) is zero at ¥ and hence in a neighbor-
hood of y. Thus, we may assume ¢ to be surjective. Then by
assumption, for every y' eV, the map

o Qk(y'): k(y'f >F, ®@”,k(y’)

is an isomorphism. Thus, if £ is the kernel of o, we have
Oy c M, O, foreach y' € V. Since Y isreduced, this means that
£) = (0). Thus ¢ is an isomorphism,

We apply this in the following

LeEmma 2. Let Y be a reduced, noetherian affine scheme, and let

4

F —> D
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be a homomorphism of coherent locally free Oyp-sheaves. If
dim, ,[Im(¢ ® k(y))] s locally constant, then there are splittings:

FaF, 0F,
D=H,0H,
such that ¢ |.9;.1 = (0), Im(¢) cD,, and ¢: F, - D, 1s an isomor-
phism, s.e.
0 isom,
= [ 0 0 l

Proor. By Lemma 1, O/¢(F) is locally free. If ¥ = Spec (4),
M=I(Y,F), N=I(Y, D), then this means that N/¢(M) is A-pro-
jective. Therefore ¥ splits into the direct sum of ¢(M) and a second
submodule isomorphic to N/¢(H). Or, insheaves, O =9,® O,, where
£, = Im(¢). Moreover, this shows that (M) is A-projective, too,
so M splits into the direct sum of Ker(¢) and a second submodule
isomorphic to ¢(HM). Or, in sheaves, F = F , @ F,, where ¢(F ;) =

(0), ¢: F, — ;.

Now assume (i) holds. Let K  be the complex given by the
theorem. As in the proof of Corollary 1, dim[Im(d?~! ® k(y))] and
dim[Im(d? ® k(y))] are locally constant. By Lemma 2, applied
first to d,: K? - K#*1, and second to d,_,: B*~! - Ker(d,),
we get splittings into projective modules:

Z,.,® K, , BoeH,®K, B,,,® K,
1 I fl
> K > K.,

r

K

p—1
where Z, , = Ker(d,_,), d,_;: K,_; - B, is an isomorphism,
B, ® H, =Ker(d,), and d,: K, - B,,, is an isomorphism. It
follows immediately that
B*K'®,B)sH,Q,B=H(K')Q,B,all B

and B*~Y(K°Q,B)= Z,_,®, B/Im(d,_,® B)z H"(K')Q, B,
all B. This proves (ii).
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CororrLarY 3. Let X, Y, f and F be as above (unlike Corollary
2, ¥ need not be reduced). Assume for some p that H?(X,, %) = (0),
all y € Y. Then the natural map

B?71 £, (F) @g, kly) > H1(X,, F,)
is an tsomorphism forall y € Y.

PrOOF. Again assume Y = Spec(4), K' as in the theorem.
Forally € ¥, we know that

p—1 P
K?=1 @ k(y) f—* K? @ k(y) i* KP*1 @ k(y)
is exact. Split the vector space K? ® k(y) into W, @ W,, where
W, =Image of K*~1Qk(y), and W, is mapped injectively to
K?+1® k(y). To prove the corollary at y, we can replace 4 by any
localization 4;, (f € 4, f(y) # 0). If we do this for a suitable f, we
may assume that K? itself splits into a direct sum of free modules
W,® W, such that (a) W, = W, ® k(y), and (b) W, c Im(d*~?).
To do this, just lift a basis of P_V-l to any elements in the image of
d?-1, and lift a basis of W, arbitrarily. But then since W, k(y)
- K?P+1Q k(y) is injective, it follows that W, - KP*+1 is also
injective if A4 is replaced again by a suitable localization 4, But
then Im(d@~1) n W, = (0), hence W, = Im(d*~1). Since W, is a
projective module the surjection K?~1 —» W, -0 splits, and
K?—1x Ker(d? )@ W,. It follows that we have exact sequences

K72 Ker(d* 1) —— HYX,F)—— 0
K2 Q kiy) —> Ker(d* ) ® k(y) —> H?~1(X,, &) —> 0.
Therefore H?~Y(X,, %) ~ H*~YX, #)Q® k(y) as required.

CoroLLARY 4. Let X, ¥, and F be as above. If R, (F)=(0)
Jor k> ko, then H¥X,, #,) = (0) for all y€ Y, and for k> k,,

Proor. Use Corollary 3 and decreasing induction on k.

CoroLLaRY 5. Let X, Y, f and F be as above. Then if B is a flat
A-algebra,
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HP(X X 5 Spec B, F @ ,B) = H*(X,#)® ,B.

Proor. This follows immediately, from the fact that for B flat
over 4, and any complex K°,

H?(K*® ,B)= H(K') ® 4 B.

COorROLLARY 6. (Seesaw Theorem —provisional form). Let X be a
complete variety, T any variety and L a line bundle on X x T. Then
the set

Ty={teT|L|gyyistrivialon X x {£}}

isclosed in T, and if on X X T, p,: X X T, - T, ts the projection,
then L | g, p, = p3M for some line bundle M on T.

Proor. We first make the remark that a line bundle M on a
complete variety X is trivial if and only if dim H(X, M) > 0 and
dim HYX, M~1) >0 where M denotes the sheaf of sections of
M. In fact, the necessity of these conditions is clear. Suppose
conversely that they hold. The first implies the existence of a

o
non-zero homomorphism @Oy——> M, and the second implies a
non-zero homomorphism @y - M~1, hence on dualizing, a non-zero

homomorphism M —T> 0. Hence 7(o(1)) is & non-zero section
of Oy, and since X is complete and connected, 7(o(1)) is a non-zero
scalar. This implies that 700 is an isomorphism, nence o and =
are isomorphisms.

It follows that T'; isthe set of points fof 7' such that dim HO(X x {¢},
L X x{t}) > 0and dim HYX x {t}, L~1| X x{t}) > 0, and it follows
from Corollary 1 that T, is closed. Replacing T by T (so T is now
merely a reduced scheme of finite type over k) and L by its restriction
to X x Ty, we may assume that L | X x {t} is trivial for each t € T'.
Hence dim HX x {t}, L|{X x {t}) =1 for all t € T, so that by
Corollary 2, p,, (L) = M is an invertible sheafon T and

M ®, (k) HYX x {1}, LI X x )
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is an isomorphism. It clearly follows from the triviality of
L| X x {t} that the natural map p%(M) - L is an isomorphism.
Since M is the sheaf of sections of M, then p3 M = L.

6. The theorem of the cube: I

TeeoreM. Let X, ¥ be complete varieties, Z any vartety and Ty, Y,
and z, base points on X, Y, and Z, respectively. If L is any line bundle
on X X Y X Z whose restrictions to each of {x}x ¥ X Z, X x {yo} ¥ Z
and X x Y X {z,} are trivial, L is trivial.

ReMARE. Let 7' be a contravariant functor on the category of
complete varieties into the category Ab of abelian groups. Let
X,,..., X, be any system of complete varieties, z) a base point of

X;, and let =: Xox...xX,,—>X0><...><§,-><...xX,,(f,- indicating
the omission of the i-th factor X;) be the projection map, and

o8 XpX.uX Xy X 0. X, > Xy X... XX, the ‘inclusion’ defined by
Gi(Tgs+evs Tim gy Tigseees Tp) = (Toueees Timgy s Tigseees Tp)-

Consider the homomorphisms

ag: [ ] Ty oo x X X oro X X) > T(Xy x .. X X,),

=0
By: T(Xy % oo X X)) » [ | T(Xg X oo x Xy x ... X X,)
i=1
defined by

“}'(Eo’--' ’ gn) = Z "?(fi)’ p;'("]) = (0’:(”’1)» 0,2'(77): seey a:("l))

°
One then proves by an easy induction on 7 that we have a natural
splitting 7(X, x... x X,) = Im « @ Ker 8. The functor T is said to
be of order n (linear if n=1, quadratic if n=2, ete.) if « i3 surjective,
or equivalently B is injective. (Note that the definition of « is
independent of base points.)

Thus, the above theorem (when Z is also assumed complete)

may be paraphrased as saying that the functor Pic X is & quadratio
functor on the category of complete varieties.



