Corrigé de l'examen de Mathématiques

Exercice 1

1. Le calcul donne $323 = 17 \times 19$ et $1197 = 3^2 \times 7 \times 19$. On en déduit pgcd(a, b) = 19 et $ppcm(a, b) = 3^2 \times 7 \times 17 \times 19$.

2. Appliquons l'algorithme d'Euclide : $1197 = 3 \times 323 + 228$ $323 = 1 \times 228 + 95$

 $228 = 2 \times 95 + 38$ $95 = 2 \times 38 + 19$

 $38 = 2 \times 19 + 0$

Le pgcd est le dernier reste non nul : c'est 19.

3. Le chiffre a_0 est le reste de la DE de 323 par 4: $323 = 4 \times 80 + 3$ Le chiffre a_1 est $80 = 4 \times 20 + 0$ 80 par 4: Le chiffre a_2 est 20 par 4: $20 = 4 \times 5 + 0$ Le chiffre a_3 est 5 par 4: $5 = 4 \times 1 + 1$ Le chiffre a_4 est 4 par 4: $1 = 0 \times 1 + 1$

Donc l'écriture de 323 en base 4 est $\overline{11003}_{\text{(quatre)}}$.

4. Le dernier chiffre de l'écriture décimale de $b^a=1197^{323}$ est égal à son reste modulo 10. Or $1197\equiv 7$ (10) donc c'est le même reste que 7^{323} . On a $7^2\equiv 9$ (10), $7^3\equiv 3$ (10), $7^4\equiv 1$ (10) : on voit qu'il suffit de connaître le reste de la division euclidienne de 323 modulo 4 qui est égal à 3 d'après la question précdente : $7^{323}=7^{4k+3}=(7^4)^k\times 7^3$ donc

$$1197^{323} \equiv 7^{323} \equiv (7^4)^k \times 7^3 \equiv 7^3 \equiv 3 \ (10)$$

Exercice 2

1. Comme C est sur le cercle de diamètre [AD], la droite (CD) est perpendiculaire à la droite (AC). La droite (BH) est aussi perpendiculaire à (AC) car c'est la hauteur de ABC en B. Donc (CD) // (BH).

De même le point B est sur le cercle de diamètre [AD] donc $(BD) \perp (BA)$. Comme (CH) est la hauteur de ABC en C on a aussi $(CH) \perp (BA)$. Donc (BD) / / (CH).

En conséquence le quadrilatère BDCH a ses côtés parallèles deux à deux, c'est un parallélogramme.

- 2. Le point O est le milieu de [AD]. Par ailleurs I est le milieu de [BC] qui est une diagonale de BDCH; les diagonales d'un parallélogramme se coupent en leur milieu donc I est le milieu de l'autre diagonale [DH]. Par le théorème de Thalès dans les triangles DAH et DOI, il s'ensuit que (AH) // (OI) et $\overline{AH} = 2\overline{OI}$. Ceci démontre que $\overline{AH} = 2\overline{OI}$.
- 3. La composée $t:=s\circ s'$ est une translation de vecteur $2\overrightarrow{OI}$ (puisque (OI) est perpendiculaire à (BC)). D'après la question précédente c'est le vecteur \overrightarrow{AH} .
- 4. Il découle de (3) que l'image de A par t est H. Donc s(s'(A)) = H qui est la même chose que s'(A) = s(H). Comme la droite (BC) est un diamètre (donc un axe de symétrie du cercle) on a $s'(A) \in \mathscr{C}$, donc $s(H) \in \mathscr{C}$.

Exercice 3

1. La table des carrés modulo 4 est

reste mod. $4 de x$	0	1	2	3
reste mod. 4 de x^2	0	1	0	1

2. Supposons que x et y aient la même parité. S'ils sont pairs tous les deux alors $z^2 = x^2 + y^2 \equiv 0 + 0 \equiv 0$ (4) donc d'après le tableau ci-dessus z doit être pair. Donc 2 divise x, y et z ce qui contredit l'hypothèse que pgcd(x, y, z) = 1.

S'ils sont impairs tous les deux alors $z^2 = x^2 + y^2 \equiv 1 + 1 \equiv 2$ (4) mais le tableau montre que cela n'est pas possible (il n'y a pas de carré congru à 2 modulo 4).

Donc x et y n'ont pas la même parité, et il en découle que $z^2 = x^2 + y^2 \equiv 1 + 0 \equiv 1$ (4) donc z est impair.

- 3. Comme x et z sont impairs tous les deux, z x et z + x sont pairs. De plus y est pair (par hypothèse) donc il existe bien des entiers u, v, w tels que z + x = 2u, z x = 2v et y = 2w. De plus on peut réécrire (\mathscr{P}) en $y^2 = z^2 x^2 = (z x)(z + x)$ c'est-à-dire $4w^2 = 4uv$, d'où en simplifiant par 4, $w^2 = uv$.
- 4. On observe d'abord que z = u + v et x = u v. Supposons que u et v soient tous deux divisibles par un entier premier p. Alors z = u + v et x = u v sont divisibles par p, et comme $y^2 = z^2 x^2$, alors y^2 est aussi divisible par p. Dans ce cas, y est divisible par p ce qui contredit $\operatorname{pgcd}(x, y, z) = 1$. Donc, u et v sont premiers entre eux.

En utilisant le fait rappelé dans l'énoncé, comme $uv = w^2$ est un carré, alors u et v sont des carrés.

- 5. Si $x^2 + y^2 = z^2$ alors en reportant on a $(dx')^2 + (dy')^2 = (dz')^2$ donc en divisant par d^2 , $x'^2 + y'^2 = z'^2$. Donc (x', y', z') est une solution de (\mathscr{P}) .
- 6. On doit montrer que toute solution (x, y, z) de (\mathscr{P}) peut s'écrire sous la forme proposée $(x = d(a^2 b^2),$ etc.) et qu'un triplet de la forme proposée est une solution de (\mathscr{P}) .

Soit (x, y, z) une solution quelconque de (\mathscr{P}) . Soit $d = \operatorname{pgcd}(x, y, z)$ et x = dx', y = dy', z = dz'. Alors (x', y', z') est une solution (d'après la question 5.) avec $\operatorname{pgcd}(x', y', z') = 1$ donc d'après les questions 1. à 4. il existe deux carrés $u = a^2$ et $v = b^2$ tels que $x' = u - v = a^2 - b^2$, $z' = u + v = a^2 + b^2$ et y' = 2ab. Donc, $x = d(a^2 - b^2)$, y = 2dab, $z = d(a^2 + b^2)$.

Réciproquement n'importe quel triplet de cette forme est une solution de (\mathcal{P}) car

$$\left[d(a^2 - b^2)\right]^2 + \left[2dab\right]^2 = d^2(a^4 + b^4 - 2a^2b^2 + 4a^2b^2) = d^2(a^2 + b^2)^2 = \left[d(a^2 + b^2)\right]^2$$

Donc on a bien ainsi toutes les solutions de (\mathcal{P}) .

7. (Pour a = 2 et b = 1 on obtient le triplet connu (3, 4, 5). C'est de la triche!) Pour a = 4 et b = 1 on obtient le triplet (15, 8, 17). Pour a = 4 et b = 3 on obtient le triplet (7, 24, 25).

Exercice 4

- 1. Soit r une rotation quelconque d'angle θ . Si deux points M et N ont pour images M' = r(M), N' = r(N), alors M'N' = MN (car r est une isométrie) et $(\overrightarrow{MN}, \overrightarrow{M'N'}) = \theta$ (2π) .
- 2. D'après la construction, on a $r_1(C) = B'$ et $r_1(C') = B$ donc BB' = CC' et de plus $(\overrightarrow{CC'}, \overrightarrow{B'B}) = \pi/3$ (2π) . Donc les droites (BB') et (CC') sont sécantes (elles font entre elles un angle non nul modulo π).
- 3. On vient de montrer que l'angle entre les droites (BB') et (CC') est égal à $\pi/3$ modulo π . L'angle orienté $(\overrightarrow{TC'}, \overrightarrow{TB})$ mesure lui aussi cet angle de droites, donc $(\overrightarrow{TC'}, \overrightarrow{TB}) = \pi/3$ (π) .

- 4. En utilisant de nouveau la condition de cocyclicité on a $(\overrightarrow{TA}, \overrightarrow{TC'}) = (\overrightarrow{BA}, \overrightarrow{BC'})$ (π) . Or du fait que $C' = r_2(A)$ on a $(\overrightarrow{BA}, \overrightarrow{BC'}) = \pi/3$ (2π) donc $(\overrightarrow{TA}, \overrightarrow{TC'}) = \pi/3$ (π) .
- 5. On montre, sur le modèle de la question 3., que les points T, B. A', C sont cocycliques. Ensuite on montre comme dans la question 4. que $(\overrightarrow{TB}, \overrightarrow{TA'}) = (\overrightarrow{CB}, \overrightarrow{CA'}) = \pi/3 \ (\pi)$.
- 6. Utilisant les calculs des questions précédentes on a :

$$(\overrightarrow{TA},\overrightarrow{TA'}) = (\overrightarrow{TA},\overrightarrow{TC'}) + (\overrightarrow{TC'},\overrightarrow{TB}) + (\overrightarrow{TB},\overrightarrow{TA'}) = \pi/3 + \pi/3 + \pi/3 = 0 \ (\pi)$$

Donc les points T, A, A' sont alignés i.e. T appartient à la droite (AA').