L'ensemble \mathbb{R} des nombres réels (d)

Exercice d.1 Le maximum de 2 nombres x, y est noté $\max(x, y)$. De même on note $\min(x, y)$ le minimum de x et y. Démontrez que :

$$\max(x,y) = \frac{x+y+|x-y|}{2}$$
 et $\min(x,y) = \frac{x+y-|x-y|}{2}$.

Exercice d.2 Calculer inf A et sup A, ainsi que le plus grand élément et le plus petit élément de A (c'est-à-dire $\max(A)$ et $\min(A)$), s'ils existent, dans les cas suivants :

$$A = [-1, 1], A = \mathbb{Q}_-, A = \{1/n, n \in \mathbb{N}^*\}, A = \{x \in \mathbb{Q} : x^2 < 2\}$$

Exercice d.3 Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants :

$$[0,1] \cap \mathbb{Q} \ , \]0,1[\cap \mathbb{Q} \ , \ \mathbb{N} \ , \ \left\{ (-1)^n + \frac{1}{n} \ , \ n \in \mathbb{N}^* \right\}.$$

Exercice d.4 Soit A et B deux parties bornées de \mathbb{R} . Vrai ou faux ?

- 1. $A \subset B \Rightarrow \sup A \leq \sup B$,
- $2. \ B \subset A \Rightarrow \inf A \le \inf B,$
- 3. $\sup A \cup B = \max(\sup A, \sup B)$,
- $4. \, \sup(A+B) < \sup A + \sup B,$
- $5. \sup(-A) = -\inf A,$
- 6. $\sup A + \inf B \le \sup (A + B)$.

Exercice d.5 Soient A et B deux parties non vides de \mathbb{R} telles que pour tout x de A et tout y de B on ait x < y. Démontrer que sup A et inf B existent et que sup $A \leq \inf B$.

Exercice d.6 On rappelle qu'un sous-ensemble D de \mathbb{R} est dit dense dans \mathbb{R} si tout intervalle non vide de \mathbb{R} contient un élément de D.

- (1) L'ensemble $\mathbb Q$ est-il dense dans $\mathbb R$?
- (2) Montrer que $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} .

Exercice d.7 Soit $E := \{\frac{1}{n} \cos n \mid n \in \mathbb{N}^*\}$; calculer inf E et sup E.

Exercice d.8 Soit A un sous-ensemble de $\mathbb R$ tel que

$$\forall x \in A, [x-1, x+2] \subset A.$$

Montrer que $A = \emptyset$ ou $A = \mathbb{R}$.

Exercice d.9 **

Soit G un sous-groupe de $\mathbb R$ pour l'addition. On veut montrer que

- soit G est de la forme $a\mathbb{Z}$ (on note ainsi l'ensemble des réels de la forme an avec $n \in \mathbb{Z}$)
- soit G est dense dans \mathbb{R} .

On pose $A = G \cap \mathbb{R}_+^*$ et $a = \inf A$.

- (1) On suppose que $a \in A$.
- (a) Soit $x \in G$. Montrer que si $x \notin a\mathbb{Z}$ alors il existe $y \in G \cap]0, a[$ (on pourra utiliser l'entier n = E(x/a)). Déduire une contradiction.
- (b) En déduire que $G \subset a\mathbb{Z}$ puis que $G = a\mathbb{Z}$.
- (2) On suppose que $a \notin A$. Soit $]x,y[\subset \mathbb{R}$, avec x < y. On pose $\alpha = y x$.
- (a) Montrer qu'il existe $b,c \in A$ tels que $a < b < c < a + \alpha$. En déduire qu'il existe $g \in G$ avec $0 < g < \alpha$.
- (b) En déduire qu'il existe $n \in \mathbb{Z}$ tel que $ng \in]x,y[$. En déduire que $G \cap]x,y[$ est non vide.
- (c) Montrer que G est dense dans \mathbb{R} .
- (3) Conclusion?