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Abstract

When one wants to treat the time-harmonic Maxwell equations with variational
methods, one has to face the problem that the natural bilinear form is not coer-
cive on the whole Sobolev space H

1. On can, however, make it coercive by adding
a certain bilinear form on the boundary of the domain. This addition causes a
change in the natural boundary conditions. The additional bilinear form (see (2.7),
(2.21), (3.3)) contains tangential derivatives of the normal and tangential compo-
nents of the field on the boundary, and it vanishes on the subspaces of H

1 that
consist of fields with either vanishing tangential components or vanishing normal
components on the boundary. Thus the variational formulations of the “electric” or
“magnetic” boundary value problems with homogeneous boundary conditions are
not changed. A useful change is caused in the method of boundary integral equa-
tions for the boundary value problems and for transmission problems where one has
to use nonzero boundary data. The idea of this change emerged from the desire to
have strongly elliptic boundary integral equations for the “electric” boundary value
problem that are suitable for numerical approximation [12], [13]. Subsequently, it
was shown how to incorporate the “magnetic” boundary data and to apply the idea
to transmission problems [3], [7], [5]. In the present note we present this idea in full
generality, also for the anisotropic case, and prove coercivity without using symbols
of pseudodifferential operators on the boundary.

1 Introduction

Let Ω ⊂ IR3 be a bounded domain with boundary Γ ∈ C1,1. This means that the exterior
normal ~n can be extended to a Lipschitz continuous vector field of unit length on a
neighborhood of Γ.

Consider the time-harmonic Maxwell equations

curl ~E = iωµ ~H ; curl ~H = −iωε ~E in Ω .(1.1)

Here ω is a constant, and ε and µ are in general (3×3)-matrix valued functions which
we assume to be in C1(Ω). Further assumptions on ε and µ will be made later on. All
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functions are complex-valued. The electric field ~E satisfies the second order equation

curlα curl ~E − ω2ε ~E = 0 in Ω ,(1.2)

where α = µ−1. Since also
div ε ~E = 0 in Ω(1.3)

holds, ~E satisfies

P ~E − ω2ε ~E : = curlα curl ~E − ε∗ grad(s div ε ~E) − ω2ε ~E = 0 in Ω ,(1.4)

where ε∗ is the adjoint of ε, and s ∈ C1(Ω) is an arbitrary function.
The natural bilinear form associated with the second order elliptic system (1.4) is

a0( ~E, ~F ) : =
∫

Ω

{

(α curl ~E) · curl ~F + s(div ε ~E)(div ε ~F )
}

dx.(1.5)

Let us denote the L2(Ω) inner product by (·, ·), for scalar as well as for vector functions:

( ~E, ~F ) : =
∫

Ω

~E(x) · ~F (x) dx.

By <·, ·> we denote the L2(Γ) inner product

<u, v> : =
∫

Γ
uv ds ,

where ds is the surface measure on Γ.
Green’s formulas are

(curl ~u, ~v) − (~u, curl~v) = <~n× ~u, ~v>(1.6)

(div ~u, ϕ) + (~u, gradϕ) = <~n · ~u, ϕ>(1.7)

Thus the bilinear form a0 is related to the differential operator P by

a0( ~E, ~F ) = (P ~E, ~F )− <~n× (α curl ~E), ~F> + <s div ε ~E, ~n · ε ~F> .(1.8)

This leads to the well-known (see e.g., [9], [14]) weak formulations of the standard
boundary value problems for the operator P :
Let

X : =
{

~E ∈ H1(Ω) | ~n× ~E = 0 on Γ
}

,(1.9)

Y : =
{

~E ∈ H1(Ω) | ~n · ε ~E = 0 on Γ
}

.(1.10)

Then for ~f ∈ L2(Ω), the weak form of the “electric” boundary value problem

P ~E = ~f in Ω ; ~n× ~E = 0 on Γ(1.11)

is: Find ~E ∈ X such that

a0( ~E, ~F ) = (~f, ~F ) for all ~F ∈ X .(1.12)
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From (1.8), we see that then ~E satisfies in the weak sense the natural boundary
condition

div ε ~E = 0 on Γ .(1.13)

Similarly, the “magnetic” boundary value problem

P ~E = ~f in Ω ; ~n · ε ~E = 0 on Γ(1.14)

has the weak formulation: Find ~E ∈ Y such that

a0( ~E, ~F ) = (~f, ~F ) for all ~F ∈ Y .(1.15)

The natural boundary condition is

~n× (α curl ~E) = 0 on Γ .(1.16)

It is well known (see [9], [11]) that, under suitable hypotheses on ε, µ and s, the
bilinear form a0 is coercive on both subspaces X and Y of H1(Ω). Thus both boundary
value problems can be numerically approximated using finite element methods. Also the
spectral theory for strongly elliptic boundary value problems is available and can be used
for the analysis of the corresponding time-dependent problems.

The bilinear form a0 is, however, not coercive on the whole space H1(Ω). This causes
problems, e.g., if the boundary value problems are to be solved by boundary element
methods (see [12], [13], [1], [2]), or if corresponding transmission problems are studied [7].

The boundary integral equations of the first kind studied in [12], [13], [1], [2] are an
elliptic system of pseudodifferential equations which, due to the non-coercivity of a0, is not
strongly elliptic. In [1], [2], the problem was therefore treated as a saddle-point problem
and a mixed finite element method for its solution was devised. In [12], [13], it was found
that the system can be transformed into a strongly elliptic system which is then treatable
by ordinary finite element methods. This transformation corresponds to a change in
the natural boundary condition (1.13). This together with an analogous change in the
other natural boundary condition (1.16) was shown in [3] for the case ε = µ = s = 1 to
correspond to a change in the bilinear form a0 which makes it coercive over all of H1(Ω).

Transmission problems in a more general, but isotropic case, are studied in [7] by
boundary integral equation methods and in [5] for inhomogeneous problems by a coupling
of boundary integral equation and finite element methods. In [7], the strong ellipticity of
the system of pseudodifferential operators is proved by computing their principal symbols.

In this paper, we prove the coercivity (strong ellipticity, G̊arding’s inequality) for the
modified bilinear form in the general case just by using Green’s formula. Thus we need
less regularity for the boundary Γ than in [7]. There is even a result for polyhedra and
piecewise C1,1 boundaries.

In section 2, we begin with the simplest case ε = µ = s = 1 and generalize this then
to physically more meaningful isotropic homogeneous cases.

In section 3, we treat the anisotropic inhomogeneous case.
In section 4, we show corresponding results for piecewise smooth boundaries.
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2 The isotropic case

We will need the following notations:
For a vector field ~u defined on Γ or on a neighborhood of Γ, the tangential and normal

components are

~u⊤ : = −~n× (~n× ~u) = ~u− un~n ; un : = ~n · ~u .(2.1)

Here ~n is the unique extension of the exterior normal vector field on Γ to a neighbor-
hood of Γ as a Lipschitz continuous vector field of unit length (Recall that we assume
Γ ∈ C1,1 unless stated otherwise). It follows that

curl ~n ≡ ∂n~n ≡ 0 .(2.2)

We need the surface divergence div⊤ ~u⊤ on Γ which we define as follows

div⊤ ~u⊤ := div ~u⊤ = div ~u− un div ~n− ∂nun = div ~u− ~n · (∂n~u) − un div ~n.(2.3)

A little vector analysis together with (2.2) shows that

div⊤ ~u⊤ = ~n · curl(~n× ~u) .(2.4)

From Green’s formulas (1.6), (1.7) we obtain for ϕ supported in a small neighborhood of
Γ

<div⊤ ~u⊤, ϕ> = <~n · curl(~n× ~u), ϕ>

= (curl(~n× ~u), gradϕ) = − <~u⊤, grad
⊤
ϕ> .(2.5)

This formula shows that the mapping ~u 7→ div⊤ ~u⊤
∣

∣

∣

Γ
can be extended from smooth

functions ~u to ~u ∈ H1(Ω), defining a continuous mapping : H1(Ω) → H−1/2(Γ).

Similarly, the mapping ϕ 7→ grad⊤ ϕ
∣

∣

∣

Γ
is continuous from H1(Ω) to H−1/2(Γ). The

brackets <·, ·> then denote the natural duality between H−1/2(Γ) and H1/2(Γ). We use
the usual Sobolev spaces on Ω and Γ (see e.g. [9]), and we use the same notation for
spaces of vector-valued functions. Thus, e.g.,

‖~u‖2
H1(Ω) = (grad~u, grad ~u) + (~u, ~u) =

∫

Ω







3
∑

j,k=1

|∂juk|
2 +

3
∑

j=1

|uj|
2







dx.(2.6)

Theorem 2.1 Define a1(~u,~v) by

a1(~u,~v) := (curl ~u, curl~v) + (div ~u, div~v)

+ <grad⊤ un, ~v⊤> − <div⊤ ~u⊤, vn> .(2.7)

Then a1 is coercive over H1(Ω), i.e., there exist constants γ > 0 and c such that

Re a1(~u, ~u) ≥ γ‖~u‖2
H1(Ω) − c‖~u‖2

L2(Ω) for all ~u ∈ H1(Ω) .(2.8)
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Proof. Since a1 is continuous on H1(Ω) and C∞(Ω) is dense in H1(Ω), we need to show
(2.8) only for smooth ~u.
From the formula

grad(~a ·~b) = ~a× curl~b+~b× curl~a+ (~a · grad)~b+ (~b · grad)~a

together with (2.2) it follows that

gradun = ~n× curl ~u+ ∂n~u+ (~u · grad)~n .(2.9)

Now we apply Green’s formula (1.8)

(curl ~u, curl~v) + (div ~u, div~v) = (−∆~u, ~v)− <~n× curl ~u, ~v⊤> + <div ~u, vn>

to a1 and obtain

a1(~u,~v) = (−∆~u, ~v)− <~n× curl ~u− grad⊤ un, ~v⊤> + <div ~u− div⊤ ~u⊤, vn> .

With (2.3) and (2.9) this reduces to

a1(~u,~v) = (−∆~u, ~v) + <∂n~u+ (~u · grad)~n, ~v⊤> + <~n · ∂n~u+ un div ~n, vn>

= (−∆~u, ~v) + <∂n~u, ~v> +b(~u,~v)(2.10)

with
b(~u,~v) =<(~u⊤ · grad)~n + un(div ~n)~n, ~v> .(2.11)

Now we apply Green’s formula for the Laplace operator

(−∆~u, ~v) = (grad~u, grad~v)− <∂n~u, ~v>(2.12)

and obtain
a1(~u,~v) = (grad~u, grad~v) + b(~u,~v) .(2.13)

From the Lipschitz continuity of ~n we obtain an estimate

|b(~u,~v)| ≤ C‖~u‖L2(Γ) · ‖~v‖L2(Γ) ,(2.14)

where C is determined by an upper bound for the derivatives of ~n on Γ.
The trace lemma implies with (2.14)

|b(~u, ~u)| ≤ C‖~u‖2
Hs(Ω)

for any s > 1/2. It follows that for every η > 0 there is a Cη with

|b(~u, ~u)| ≤ η‖~u‖2
H1(Ω) − Cη‖~u‖

2
L2(Ω) .(2.15)

This gives with (2.13)

Re a1(~u, ~u) ≥ (1 − η)‖~u‖2
H1(Ω) − (1 + Cη)‖~u‖

2
L2(Ω) .

The following well-known result is an easy consequence of Theorem 2.1.

Corollary 2.2 The bilinear form (curl ~u, curl~v) + (div ~u, div~v) is coercive on the sub-

spaces X and Y ( see (1.9), (1.10)) of H1(Ω).

Proof. From the definition (2.7) it follows immediately that the two boundary terms in
a1(~u,~v) vanish if either un = vn = 0 or ~u⊤ = ~v⊤ = 0 holds on Γ. Thus

a1(~u, ~u) = ‖ curl ~u‖2
L2(Ω) + ‖ div ~u‖2

L2(Ω) for all ~u ∈ X ∪ Y.
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Remark 2.3 The bilinear form a1 provides weak formulations of the following two bound-
ary value problems:

Let ~f ∈ L2(Ω), ρ ∈ H−1/2(Γ) and ~ψ⊤ ∈ H−1/2(Γ) be given. Then the condition

a1(~u,~v) = (~f, ~v) + <ρ, vn> for all ~v ∈ X(2.16)

is the weak form of the boundary value problem

−∆~u = ~f in Ω ; div ~u− div⊤ ~u⊤ = ρ on Γ .(2.17)

The condition
a1(~u,~v) = (~f, ~v) + <~ψ⊤, ~v⊤> for all ~v ∈ Y(2.18)

is the weak form of the boundary value problem

−∆~u = ~f in Ω ; −~n× curl ~u+ grad⊤ un = ~ψ⊤ on Γ .(2.19)

We see that the boundary terms in (2.7) correspond to a change in the natural boundary
conditions. Thus the set of “Cauchy data”

(~u⊤, un, −~n× curl ~u, div ~u)

is replaced by the equivalent set

(~u⊤, un, −~n× curl ~u+ grad⊤ un, div ~u− div⊤ ~u⊤) .

Of course, this change is only seen if (2.17) and (2.19) are completed by the addition of
inhomogeneous stable boundary conditions. On the spaces defined by homogeneous stable
boundary conditions, i.e., X for (2.17) and Y for (2.19), one obtains the familiar form of
the “electric” and “magnetic” boundary value problems, respectively.

Now we generalize Theorem 2.1 in several steps.
First we note that a1(~u,~v) is actually hermitian: According to (2.5) we have

a1(~u,~v) = (curl ~u, curl~v) + (div ~u, div~v) + <grad
⊤
un, ~v⊤> + <~u⊤, grad

⊤
vn> ,

hence for ~u = ~v, a1 is real:

a1(~u, ~u) = ‖ curl ~u‖2
L2(Ω) + ‖ div ~u‖2

L2(Ω) + 2 Re <grad
⊤
un, ~v⊤> .(2.20)

Theorem 2.4 Let α, β ∈ C/ , θ1, θ2 ∈ IR be such that

0 < θ1 + θ2 ≤ 2 min{Reα,Reβ}.

Let a2(~u,~v) be defined by

a2(~u,~v) := α (curl ~u, curl~v) + β (div ~u, div~v)

+ θ1<grad⊤ un, ~v⊤> − θ2<div⊤ ~u⊤, vn> .(2.21)

Then a2 is coercive over H1(Ω).
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Proof. The boundary terms in a2 give

Re ( θ1<grad⊤ un, ~u⊤> + θ2<~u⊤, grad⊤ un> ) = (θ1 + θ2) Re <grad⊤ un, ~u⊤> .

Thus with θ := (θ1 + θ2)/2 we have

Re a2(~u, ~u) = (Reα− θ)‖ curl ~u‖2
L2(Ω) + (Reβ − θ)‖ div ~u‖2

L2(Ω) + θa1(~u, ~u)

≥ θRe a1(~u, ~u),

and the assertion follows from Theorem 2.1.

Now we can treat the isotropic homogeneous case of Maxwell’s equations. Thus assume
that α, ε, s are scalar constants and there exists θ such that θε ∈ IR and

0 < θε ≤ min{Reα,Re s|ε|2}.(2.22)

Then with β = s|ε|2 and θ1 = θ2 = θε we can write a2 as

a2(~u,~v) := (α curl ~u, curl~v) + (s div ε~u, div ε~v)

+ <θ grad⊤ εun, ~v⊤> − <div⊤ ~u⊤, θεvn> .(2.23)

Again, on the subspaces X and Y , the boundary terms in a2 vanish. If

(~u⊤, εun, −α~n× curl ~u, s div ε~u)(2.24)

are the natural Cauchy data corresponding to the bilinear form a0 (see (1.5)), then the
addition of the boundary terms to a2 in (2.23) can be interpreted as a change to the set
of Cauchy data

(~u⊤, θεun, −α~n× curl ~u+ θ grad
⊤
εun,

s

θ
div ε~u− div⊤ ~u⊤).(2.25)

In [7], the case α = s|ε|2 was considered. In this case, the operator P (see (1.4)) is the
scalar operator −α∆. The Cauchy data (2.25) correspond to [7, (5.8)], and the coercivity
under the condition (2.22) is shown there using symbols of pseudodifferential operators
on the boundary Γ(see [7, (5.13)]).

The strong ellipticity of the system of boundary integral equations discussed in [7] can
be inferred from Theorem 2.4 using the general theory of strongly elliptic transmission

problems presented in [7, Section 2].
In Theorem 2.4, the possibility of complex constants α and ε was emphasized in order

to include the important case of a perfect conductor. There α > 0 and ε = iσ/ω, where
σ > 0 is the conductivity. According to (2.22), we obtain a coercive bilinear form a2 if we
choose θ = −iτ with 0 < τ ≤ α/|ε| and s = α/|ε|2 .

Another consequence of Theorem 2.4 is the possibility of solving the boundary value

problems involving the Cauchy data (2.25) by boundary element methods using boundary
integral equations of the first kind [8].

Finally, one can use the coercive bilinear form a2 for the numerical solution of an inter-
face problem by a coupling of finite element and boundary element methods as explained
in [4], [5], [6].

In all these cases, the set of Cauchy data determining the boundary conditions is not
uniquely given by the bilinear form a2. If (~w⊤, wn, ~ψ⊤, ψn) are the Cauchy data for ~u,
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where ~w corresponds to stable and ~ψ to unstable (natural) boundary conditions, then the
condition is

a2(~u
1, ~u2) = (P~u1, ~u2) + <~ψ1

⊤
, ~w2

⊤
> + <ψ1

n, w
2
n> .(2.26)

Thus instead of (2.25), we can also choose (with θ1 + θ2 = θ)

(~u⊤, εun, −α~n× curl ~u+ θ1 grad⊤ εun, s div ε~u− θ2 div⊤ ~u⊤).

In any case, the mapping from the standard Cauchy data to the changed Cauchy data as
well as the inverse mapping are given by tangential differential operators.

3 The anisotropic case

The anisotropic case of Theorem 2.1 requires a new proof which then will also include
the isotropic but inhomogeneous case. The proof follows [11] where the coercivity of the
bilinear form a0 on the space X is shown.

We make the following assumptions:
ε and µ are selfadjoint positive definite (3 × 3) matrix functions in C1(Ω); ε is real

(the case of nonreal ε is left as an exercise for the reader); s ∈ C1(Ω) is a scalar real-
valued function, and there exist positive constants α1, ε1, s1 such that with α = µ−1 and
κ = ε−1 det ε there holds for all x ∈ Ω, ξ ∈ C/ 3

ξ · α(x)ξ ≥ α1|ξ|
2 ; ξ · ε(x)ξ ≥ ε1|ξ|

2,
ξ · α(x)ξ ≥ s(x)ξ · κ(x)ξ ; s(x) ≥ s1.

(3.1)

For a vector field ~u we define the tangential vector field

~uε :=
−s

~n · ε~n
~n× (κ(~n× ~u)).(3.2)

We see that ~uε

∣

∣

∣

Γ
= 0 holds if and only if ~u⊤

∣

∣

∣

Γ
= 0 holds. Thus the space X could be

defined in terms of ~uε instead of ~u⊤. For scalar ε, we have ~uε = sε~u⊤.
Instead of the normal component un = ~n · ~u, we need here the conormal component

~n · ε~u, and we define the space Y as in (1.10).

Theorem 3.1 Let a3(~u,~v) be defined by

a3(~u,~v) := (α curl ~u, curl~v) + (s div ε~u, div ε~v)

+ <grad
⊤
(~n · ε~u), ~vε> − <div⊤ ~uε, ~n · ε~v> .(3.3)

Then a3 is coercive over H1(Ω).

Proof. Let a0 be defined as in (1.5). Then, according to (1.8) and (3.1), we have

Re a0(~u, ~u) ≥ Re (sκ curl ~u, curl ~u) + (s div ε~u, div ~u)

= Re (curl sκ curl ~u− ε grad s div ε~u, ~u)(3.4)

+ Re <−s~n× (κ curl ~u), ~u> + Re <s div ε~u, ~n · ε~u> .
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Now we use the formula (see [11])

κ(~a×~b) = (ε~a) × (ε~b).(3.5)

This implies

s curl κ curl ~u = ε grad(s div ε~u) − s(div ε grad)(ε~u) + d1(~u),(3.6)

where d1(~u) contains derivatives of s and ε, but only first order derivatives of ~u, and it is
linear in ~u. We will denote a similar function below by d2(~u).
From (3.4) and (3.6) we obtain

Re a0(~u, ~u) ≥ Re (−s(div ε grad)ε~u, ~u) + Re (d1(~u), ~u)

+ Re <−s~n× (κ curl ~u), ~u> + Re <s div ε~u, ~n · ε~u> .(3.7)

Now we use partial integration for the strongly elliptic operator −s div ε grad ε. For this
purpose we need the positive selfadjoint square root δ of ε:

δ ∈ C1(Ω) , δ2(x) = ε(x) for all x ∈ Ω.

Then we have

(−s(div ε grad)ε~u, ~u) = (sε grad δ~u, grad δ~u)

+ (d2(~u), ~u)− <s(~n · ε grad)ε~u, ~u> .(3.8)

The first term on the right hand side causes the coercivity:

Re (sε grad δ~u, grad δ~u) ≥ s1ε1(‖δ~u‖
2
H1(Ω) − ‖δ~u‖2

L2(Ω)),(3.9)

and there exists γ1 > 0 such that

‖δ~u‖2
H1(Ω) ≥ γ1‖~u‖

2
H1(Ω) − c‖~u‖2

L2(Ω).

The terms (dj(~u), ~u) can be estimated by

| (dj(~u), ~u) | ≤ C‖~u‖H1(Ω) · ‖~u‖L2(Ω) ≤ η‖~u‖2
H1(Ω) + Cη‖~u‖

2
L2(Ω)

for any η > 0. Thus they do not disturb the coercivity.
From (3.4)–(3.9) we obtain

Re a0(~u, ~u) ≥ γ‖~u‖2
H1(Ω) − c‖~u‖2

L2(Ω)

+ Re {<−s~n× (κ curl ~u), ~u> + <s div ε~u, ~n · ε~u>(3.10)

− <s(~n · ε grad)ε~u, ~u> } .

We have to show that the boundary terms on the right hand side of (3.10) coincide up to
compact terms with the negative of the boundary terms in the definition (3.3) of a3. We
denote by r1, r2, etc., expressions containing derivatives of ε, s and ~n, but no derivatives
of ~u. Then for the terms <rj(~u), ~u> , we will have estimates similar to (2.15) above,
hence these compact terms will not disturb the validity of G̊arding’s inequality.
From (3.5) above we obtain

~n× (κ curl ~u) = ~n× ((ε grad) × (ε~u)) + r1(~u)

= (ε grad)(~n · ε~u) − (~n · ε grad)(ε~u) + r2(~u).(3.11)
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This gives for the boundary term

<−s~n× (κ curl ~u), ~u> + <s div ε~u, ~n · ε~u> − <s(~n · ε grad)ε~u, ~u>

=<s div ε~u, ~n · ε~u> − <s grad(~n · ε~u), ε~u> − <r2(~u), ~u>(3.12)

=<div⊤(sε~u)⊤, ~n · ε~u> − <grad
⊤
(~n · ε~u), s(ε~u)⊤> + <r3(~u), ~u> .

In the latter equality we wrote ε~u = (ε~u)⊤ + ~n(~n · ε~u) in the second term and used the
definition (2.3) of div⊤ which shows that the terms <s∂n(ε~u)n, (ε~u)n> cancel.
Now the form of the boundary terms achieved in (3.12) is already similar to those in the
definition (2.7) of a1. In fact, for s = ε = 1, they coincide with those in (2.7). We could
have defined a3 using the boundary terms from (3.12) which are simpler in form than
those of (3.3), and they contain only tangential derivatives, too. We would not consider
this satisfactory, however, because the tangential components (ε~u)⊤ appearing in (3.12)
also contain the normal component of ~u. Thus it is not true in general that the boundary
terms in (3.12) vanish on the space X.
By definition of ~uε and (3.5) we have

~uε =
−s

~n · ε~n
~n× ((ε~n) × (ε~u)) =

−s

~n · ε~n
(~n · ε~u)ε~n+ sε~u.(3.13)

This gives for the first boundary term in (3.3) for ~u = ~v

<grad
⊤
(~n · ε~u), ~u>=<

−s

~n · ε~n
(~n · ε grad)(~n · ε~u), ~n · ε~u> + <s grad(~n · ε~u), ε~u> .

From (3.13) follows for the term div⊤ ~uε:

div⊤ ~uε = div ~uε + r4(~u)

=
−s

~n · ε~n
div((~n · ε~u)ε~n) + s div ε~u+ r5(~u)(3.14)

=
−s

~n · ε~n
(~n · ε grad)(~n · ε~u) + s div ε~u+ r6(~u).

Hence the two boundary terms in (3.3) together give

<grad⊤(~n · ε~u), ~uε> − <div⊤ ~uε, ~n · ε~u>(3.15)

=<s grad(~n · ε~u), ε~u> − <s div ε~u, ~n · ε~u> + <r7(~u), ~u> ,

and this coincides with the negative of (3.12) up to compact terms. Therefore, taking
(3.10), (3.12) and (3.15) together, we obtain the desired G̊arding inequality for a3.

4 Polyhedra and piecewise smooth domains

In this section we want to show that all previous theorems remain true for piecewise
smooth domains.

By a piecewise smooth domain we mean here the image of a polyhedron in IR3 under
a C1,1 mapping. The statement needs some explanation, because on a piecewise smooth
domain the tangential and normal components of even a smooth vector field are in general
discontinuous and therefore the tangential derivatives appearing in the definitions of the
various bilinear forms need to be explained. Of course, also the proofs as given above will
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not work, because one of the main tools, namely the extension of the normal vector field
~n to a neighborhood of Γ, is in general not available.

The piecewise smooth boundary Γ is, however, composed of smooth (C1,1) faces Γj,
j = 1, . . . , J : Γ =

⋃J
j=1 Γj, such that Γ \

⋃

Γj is the union of all corners and edges
of Γ. On each face Γj , the normal ~n is Lipschitz continuous and can be extended to a
neighborhood of Γj . Thus on each face separately, the quantities needed in the statements
of the theorems make sense. For example, in the definition (2.7) of a1(~u,~v), we now

interpret <gradun, ~v⊤> as
J

∑

j=1

<gradun, ~v⊤> j , where < ·, ·> j denotes the extension

of the L2 scalar product on Γj:

<gradun, ~v⊤> j :=
∫

Γj
grad

⊤
un · ~v⊤ ds.(4.1)

The first Green formulas (1.6), (1.7), (1.8) are, of course, valid for any Lipschitz
domain. The only formula that is definitely not true in general is the formula (2.5) for
partial integration on the boundary.

Instead of repeating the proofs of all the theorems for piecewise smooth domains,
we present a stronger version of Theorem 2.1 for the case of a polyhedron and leave its
generalization to C1,1 images of polyhedra as well as the generalizations of Theorems 2.4
and 3.1 to the reader.

If Ω is a polyhedron, then the faces Γj are subsets of planes. Therefore the normal on
each Γj is constant.

Theorem 4.1 Let Ω be a polyhedron and let a4(~u,~v) be defined by

a4(~u,~v) := (curl ~u, curl~v) + (div ~u, div~v)

+
J

∑

j=1

{<grad
⊤
un, ~v⊤> j− <div⊤ ~u⊤, vn> j} .(4.2)

Then for all ~u,~v ∈ H1(Ω)

a4(~u,~v) = (grad~u, grad~v) .(4.3)

Proof. The right hand side of (4.3) is continuous on H1(Ω), and the left hand side is,
according to (4.1), defined by continuous extension from the case of smooth functions.
Therefore it suffices to show (4.3) for ~u,~v ∈ C2(Ω). Since the Green formulas (1.8) and
(2.12) hold and the boundary data are continuous on each face Γj , we obtain

a4(~u,~v) = (−∆~u, ~v)− <~n× curl ~u− grad
⊤
un, ~v⊤> + <div ~u− div⊤ ~u⊤, vn>

= (grad~u, grad~v)− <∂n~u, ~v>(4.4)

− <~n× curl ~u− grad⊤ un, ~v⊤> + <div ~u− div⊤ ~u⊤, vn> .

Now on each face Γj, the normal ~n is a constant vector. Therefore on Γj (compare (2.4),
(2.9))

div⊤ ~u⊤ = div ~u− ∂nun
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and
grad un = ~n× curl ~u+ ∂n~u ,

hence with ~n · ∂n~u = ∂nun on Γj we obtain

−(~n× curl ~u− grad⊤ un) · ~v⊤ = ∂n~u · ~v⊤ = ∂n~u · ~v − (∂nun)vn

= ∂n~u · ~v − (div⊤ ~u− div ~u)vn .

Therefore the boundary terms cancel on each Γj, and thus (4.4) implies (4.3).

The identity (4.3) implies of course coercivity:

a4(~u, ~u) = ‖~u‖2
H1(Ω) − ‖~u‖2

L2(Ω).(4.5)

Since the bilinear form a4 coincides with

a0(~u,~v) = (curl ~u, curl~v) + (div ~u, div~v)

on the subspaces X and Y of H1(Ω), one obtains as a corollary that a0 is coercive over
X and Y for every polyhedron Ω (and then also for every piecewise smooth domain Ω).
One must be careful, however, not to mistake this coercivity result for a regularity result.
It is, in general, for polyhedral Ω, not true that every distribution ~u ∈ L2(Ω) for which
curl ~u ∈ L2(Ω) and div ~u ∈ L2(Ω) hold and either ~u⊤ = 0 or ~n · ~u holds on Γ (so that

a4(~u, ~u) = a0(~u, ~u) = ‖ curl ~u‖2
L2(Ω) + ‖ div ~u‖2

L2(Ω)

is defined), is contained in H1(Ω). If one denotes the Hilbert spaces of these distributions
by H(div) ∩H0(curl) and H0(div) ∩H(curl), respectively (see [9]), then the coercivity of
a4 implies that X (with the H1(Ω) norm) is a closed subspace of H(div) ∩H0(curl) and
Y is a closed subspace of H0(div) ∩ H(curl), and that the two norms are equivalent on
these subspaces, but in general these are genuine subspaces of infinite codimension due
to edge singularities.

The situation is analogous to the well-known fact (see [10]) that the quadratic form
‖∆u‖2

L2(Ω) is coercive over H2(Ω) for every polyhedron and every convex domain in IRn,

whereas the corresponding H2 regularity result holds for convex and smooth domains,
but not for general polyhedra.
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