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Summary. We consider spline collocation methods for a class of parabolic
pseudodifferential operators. We show optimal order convergence results in
a large scale of anisotropic Sobolev spaces. The results cover for example
the case of the single layer heat operator equation when the spatial domain
is a disc.
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1. Introduction

The integral equation method for the solution of parabolic problems is known
already for a long time, for the early literature see [23, 21, 28, 29, 30]. The
reasons which recommend this method instead of the domain methods are
similar as in the elliptic case. The main arguments are: In the level of the
numerical implementation there is a reduction in the dimension of the matrix
equation to be solved. The method is very suitable for exterior problems.
Moreover, by using the direct method the unknown function is a quantity of
physical interest.

In contrast to the elliptic case, there does not exist any general theory for
the numerical solution of the parabolic boundary integral equations. There
are results which are limited to special examples. The equations of the second
kind have been studied in the works of Onishi [25], and Costabel, Onishi,
Wendland [10]. For the equations of the first kind, there are satisfactory
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results only for the Galerkin solution of the single layer heat equation [8,
24]. The computationally more attractive collocation method is not yet fully
understood. Hamina and Saranen [15] were able to show convergence of the
spline collocation for the single layer heat equation in the case of the circle.
These results have been extended by Hämäläinen and Saranen [19, 20] to the
case of a general domain with smooth boundary when the arclength is used
as parametrization. However, the convergence results which they obtained
are not of optimal order. For a different approach using time discretization
for parabolic boundary integral equations we refer to [22].

In the study of the numerical methods for parabolic boundary integral
equations, it is useful to know which other representations for the operators
are available in addition to the natural kernel representation. In the elliptic
case, application of the theory of pseudodifferential operators has turned out
be very efficient and a large variety of general results have been obtained
by this framework. It seems now possible to analyze numerical schemes for
parabolic boundary integral equations with the help of parabolic pseudod-
ifferential operators acting in anisotropic Sobolev spaces.

The present paper gives a starting point in this direction; we obtain op-
timal order convergence results for the spline collocation method for the
class of operators which we call of convolutional type. In practical terms
this class covers equations given on circular boundaries. In future works we
will discuss more general types of operators which cover the case of general
smooth boundaries and even moving domains.

It is worth mentioning that even in the case of elliptic problems, the
stability and convergence of spline collocation in higher dimensions is not
generally known. To our knowledge, there are results only for some special
cases, where the equation is given on a torus [3, 32, 9], square or cube [11,
31]. For the spline collocation in the one dimensional case we refer to the
basic papers [4, 5, 33, 34]. In our case the integral equation is given on a
cylindrical domain. For the discretization we use uniform meshes and the
analysis of the collocation equations is based mainly on Fourier techniques.
However, it was not a priori obvious how to handle efficiently the collocation
problem in this situation, where the mesh is infinite in one direction.

For the numerical solution, one considers a problem on a finite time inter-
val, which leads to the solution of a finite-dimensional system of equations.
For the numerical analysis, however, it turned out that one cannot treat this
finite-dimensional problem directly, so we had to choose a different way. The
basic idea of our approach is to consider first the “whole space problem”,
i. e. the problem with the infinite time axis, for a properly chosen princi-
pal part of the operator. For the solution of this whole space problem, we
apply discrete Fourier transforms in both the space and the time direction.
With respect to the space variable, this is the conventional discrete Fourier
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transform method for periodic functions (or sequences). With respect to
the time variable, this transform is a periodic function which is defined for
a class of non-periodic functions (sequences) on the whole time interval.
Now the discretized whole-space problem is an infinite-dimensional system
of equations which requires different tools from those used traditionally.

One of the main properties which makes the analysis of the collocation
method possible is the coercivity of the parabolic boundary integral operators
in an anisotropic Sobolev space. The discrete analogue of this property,
namely the ellipticity of the numerical symbol, implies the stability of the
method. This ellipticity requires a complicated proof in the case of splines
of even degree (see the Appendix). A similar situation is known from the
analysis of the higher dimensional spline collocation for elliptic equations,
see Costabel and McLean [9]. For the stability and optimal order estimates
we need to impose the well-known condition relating the space and time
step sizes,ht ∼ h2

θ = h2. Although we have focused here on parabolic
boundary integral equations, it seems that our method may be useful for the
analysis of elliptic problems in the non-periodic case, too.

In addition to the basic optimal order convergence results, we obtain im-
proved error estimates when using even degree splines in the space direction.
These results extend the observation of Saranen [33] to the parabolic case.
They are useful in particular when heat potentials are approximated by the
collocation method for boundary densities. The basic examples covered by
our work are the single layer and the hypersingular heat operators. In order
to preserve the vanishing initial condition of the heat equation, we have to
use splines of low degree in the time direction: only piecewise constant or
piecewise linear continuous splines are considered. With this restriction of
the order of the method, we obtain convergence of orderO(h5) for the single
layer operator andO(h3) for the hypersingular heat operator.

2. Preliminaries

In the following analysis we use anisotropic Sobolev spaces of functions
(distributions)u(θ, t) which are 1-periodic with respect to the spatial vari-
ableθ. For s ∈ R let Hs, s

2 = Hs, s
2 (Rθ ×Rt) to be the anisotropic space

with the norm||u||s, s
2

given by

||u||2s, s
2

=
1
2π

∑
n∈Z

∫
R

(1 + |n| + |η| 1
2 )2s |û(n, η)|2 dη,
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where

û(n, η) =

1
2∫

− 1
2

∫
R

e−in2πθ−iηtu(θ, t)dt dθ .

We also need the corresponding spaces of functions, where the vanishing
initial condition att = 0 and finite time interval are taken into account. For
this we putR2

T := Rθ×(0, T ) and define

H̃s, s
2 = {u ∈ Hs, s

2 | suppu ⊂ Rθ×[0,∞)},
H̃s, s

2 (R2
T ) = {u = U |Rθ×(−∞,T ) : U ∈ H̃s, s

2 }.
The norm of the spaces̃Hs, s

2 (R2
T ) is given by the usual infimum norm,

||u||s, s
2 ;T = inf{||U ||s, s

2
: u = U |Rθ×(−∞,T ), U ∈ H̃s, s

2 }.
In the following we consider operators which are ofVolterra type. By the
definition the operatorL is of Volterra type, if the following property is
satisfied for allt ∈ R: if u vanishes in the domainτ < t, thenLu also has
this property. We assume that the operatorL takes the form

(2.1a) L = A+B,

where the main partA is given by

(2.1b) Au(θ, t) =
1
2π

∑
n∈Z

∫
R

a(n, η)û(n, η)ein2πθ+iηtdη

and the symbola(ξ, η) satisfies the following conditions withβ ∈ R, c0 >
0, and a number0 < γ ≤ 1,

(2.1c) a ∈ C∞(R2),
(2.1d) a(λξ, λ2η) = λβa(ξ, η), λ ≥ 1, |ξ| + |η| 1

2 ≥ γ,
(2.1e) Rea(ξ, η) ≥ c0(|ξ| + |η| 1

2 )β , |ξ| + |η| 1
2 ≥ γ,

(2.1f) The mappingη 7→ a(ξ, η) has a polynomially bounded analytic
continuation
into the domainz = η − iσ, σ > 0 which is continuous forσ ≥ 0,

(2.1g) B : H̃s, s
2 (R2

T ) → H̃s−β+δ, s−β+δ
2 (R2

T ) is bounded for a0 < δ ≤ 1
the operatorB is of Volterra type,

(2.1h) L : H̃s, s
2 (R2

T ) → H̃s−β, s−β
2 (R2

T ) is an isomorphism.

Remark 2.1The functiona(ξ, η), |ξ| + |η| 1
2 ≥ γ is the calledprincipal

symbolof the operatorL. Note that (2.1d) implies the upper bound

(2.2) |a(ξ, η)| ≤ c1(|ξ| + |η| 1
2 )β, |ξ| + |η| 1

2 ≥ γ.
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In the case of the classical parabolic boundary integral operators the principal
symbola(ξ, η) is defined for all(ξ, η) 6= (0, 0) which means thatγ can be
taken to be arbitrarily small. This fact has some importance later when
discussing the collocation method.

Remark 2.2Condition (2.1e) describes the coercivity of the operator. It is
essential for the numerical analysis, in particular for the stability of numer-
ical approximations. This property does not appear in the general theory of
pseudodifferential operators of Volterra type in [26, 27].

Remark 2.3Condition (2.1f) describes the Volterra property ofA [26].

Remark 2.4Particular examples of operators which satisfy assumption (2.1)
are the single layer heat operator (β = −1) and the hypersingular heat
operator (β = 1) when the spatial domain is a disc. For the general domains
with smooth boundary (2.1) covers the equations of the second kind. In these
cases we may chooseδ = 1.

From (2.2) it follows thatA defines a continuous mappingA : Hs, s
2 →

Hs−β, s−β
2 . Moreover, using the Volterra property we deduce thatA :

H̃s, s
2 (R2

T ) → H̃s−β, s−β
2 (R2

T ) is well-defined and bounded. For a more gen-
eral class of operators including those described by the assumption (2.1),
see [26, 27].

Example 2.1Let E(·, ·) be the fundamental solution of the heat equation
and consider the single layer heat operator

(a) LΓuΓ (x, t) =

t∫
0

∫
Γ

uΓ (y, τ)E(x− y, t− τ)dsy dτ

on the smooth closed curveΓ . Having the parametric representationθ 7→
x(θ) of Γ we putu(θ, t) = uΓ (x(θ), t) and define the operator

(b) Lu(θ, t) =

t∫
0

1∫
0

u(φ, τ)E(x(θ) − x(φ), t− τ))|x′(φ)|dφ dτ.

If Γ is a circle with radiusr, then the operatorL has the principal symbol

(c) a(ξ, η) =
r

2(|ξ|2 + iηr2)
1
2
.

The operatorL satisfies all the assumptions (2.1a-h), see [2, 8, 16, 24].
The formula (c) for the principal symbol can be determined by using [27],
or more directly applying Laplace transform to the kernel representation
(b) and utilizing the asymptotic formulae of [1] for the appearing Bessel
functions.
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Example 2.2Further examples of operators satisfying conditions (2.1) of
arbitrarily high order can be obtained by defining

A4m+βu(θ, t) =
1
2π

∑
n6=0

∫
R

(n4 + η2)m(αn2 + iη)β/2û(n, η)ein2πθ+iηtdη .

Herem is a nonnegative integer,−2 < β < 2, α > 0. The order ofA4m+β

is 4m+ β.
Of particular importance are these operators withm = 0. The principal
symbol is in this case

(2.3) aβ(ξ, η) = (α|ξ|2 + iη)β/2.

Note that the coercivity condition (2.1e) is satisfied for (2.3) if and only if
|β| < 2.

For shortness we write the representation (2.1b) as

(2.4) Au(x) =
1
2π

∫
Z×R

a(ζ)û(ζ)ei〈x,ζ〉dζ,

wherex = (θ, t), ζ = (n, η), 〈x, ζ〉 = n2πθ + ηt, and the integration
notation

∫
dζ means the summation with respect of the first variable and

integration with respect the second variable.
For our analysis the following modification ofA is useful. We introduce

the modified symbola∗(ξ, η) putting
(2.5)

a∗(ξ, η) =

{
1
2(1 + ξ)a(1, η) + 1

2(1 − ξ)a(−1, η), |ξ| < 1, η ∈ R,

a(ξ, η), |ξ| ≥ 1, η ∈ R

and defineA∗ by the formula (2.1b) replacinga with a∗. Now we have

A∗ : Hs, s
2 → Hs−β, 12 (s−β) is an isomorphism,(2.6a)

Rea∗(ξ, η) ≥ c0 (1 + |ξ| + |η| 1
2 )β , ξ, η ∈ R,(2.6b)

Re(A∗u|u) ≥ c′0 ||u||2α, α
2
, u ∈ Hα, α

2 , α = β
2 ,(2.6c)

whereasA need not to have these properties. Here(u|v), u ∈ Hs, s
2 , v ∈

H−s,− s
2 denotes the natural continuation of theL2-inner product.

3. Collocation problem

LetN be a positive integer andht > 0. We introduce the uniform meshes
{θk = khθ}, k ∈ Z, hθ = 1

N and{tl = lht}, l ∈ Z. If we are especially
interested on the approximate solution on the interval[0, T ], it is natural
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to chooseht = T
M , M ∈ N. In the following analysis we apply spline

collocation at the nodal points of the mesh. For this, letSdθ
hθ

be the space
of all 1-periodic smoothest splines of degreedθ ∈ N0 subordinate to the
mesh{θk}, if dθ is an odd integer, and subordinate to the shifted mesh
{(k+ 1

2)hθ}, if dθ is an even integer. Correspondingly, letV dt
ht

be the space of

(non-periodic) splines of degreedt onR. Observe that functions inV dt
ht

have
no growth condition at infinity. For our purpose it is more convenient to use
the spacesSdt

ht
= V dt

ht
∩ L2(R). These spaces are infinite-dimensional and,

assumingN ≥ dθ+1, the spacesSdθ
hθ

areN -dimensional. For approximation

of functionsu(θ, t) we use the tensor product spacesSdθ
hθ

×Sdt
ht

.
In this section we consider collocation approximation of the equation

(3.1) A∗u = f.

The collocation problem is: finduh ∈ Sdθ
hθ

×Sdt
ht

such that

(3.2) A∗uh(xκ) = f(xκ), κ ∈ ZN × Z

wherexκ = (θk, tl), κ = (k, l) andZN = {n ∈ Z| − N
2 < n ≤ N

2 }.
Observe that no initial condition is imposed in this whole space setting.
We shall show that under certain assumptions the collocation equations are
uniquely solvable. For the analysis we apply Fourier techniques. We recall
the Fourier representation of spline functions. Let$ be the characteristic
function of the unit interval(−1

2 ,
1
2). We define the basic functionsχdt

ht,l
of

Sdt
ht

by χdt
ht,l

(τ) = $dt(ht
−1τ − l), l ∈ Z, where$dt is thedt +1-fold

convolution of$. Correspondingly, we have the 1-periodic basic splines
φdθ

hθ,k, k ∈ ZN and the basis functionsψd
h,κ = φdθ

hθ,k× χdt
ht,l
, κ ∈ ZN × Z

for Sdθ
hθ

×Sdt
ht

. Functionuh ∈ Sdθ
hθ

×Sdt
ht

has the unique representationuh =
uh{cκ} =

∑
κ cκψ

d
h,κ such that{cκ} ∈ L2(ZN ×Z). HereL2(ZN×Z) is the

space of the double sequences{cκ|κ ∈ ZN×Z} such that
∑

κ∈ZN×Z
|cκ|2 <

∞. Using the Fourier transform(F$)(η) = sin(η/2)
η/2 we obtain

ψ̂d
h,κ(ζ) = e−i〈xκ,ζ〉ψ̂d

h(ζ)

= hθhte−i〈xκ,ζ〉 [(F$)(2πhθn)]dθ+1 [(F$)(htη)]
dt+1 ,(3.3)

whereψd
h = ψd

h,(0,0). By (3.3) we get the following recurrence relation for

the Fourier coefficients of the spline functionsuh ∈ Sdθ
hθ

×Sdt
ht

(3.4)

ûh(n+pN, η+q 2π
ht

) = (−1)κp,q

[
n

n+pN

]dθ+1[ η

η+q 2π
ht

]dt+1

ûh(n, η),
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whereκp,q = p(dθ+1) + q(dt+1). The essential tool in our analysis is the
discrete Fourier transform together with a generalized version of the Poisson
formula for functions inHs, s

2 . For the case of ordinary Sobolev spaces see
[6]. We need the following Sobolev embedding result for anisotropic spaces
[20]. We recall shortly also the proof of this basic result.

Theorem 3.1 Assumes > 3
2 . If u ∈ Hs, s

2 , thenu is a continuous bounded
function inRθ ×Rt and the embeddingHs, s

2 ⊂ C(Rθ ×Rt) is continuous
such that

(3.5) sup
(θ,t)∈Rθ×Rt

|u(θ, t)| ≤ c(s)||u||s, s
2
, u ∈ Hs, s

2 .

Proof. One easily verifies that the function

I(s) =
∑
n∈Z

∫
R

(1 + |n| + |η| 1
2 )−2sdη, s ∈ R

is finite if and only ifs > 3
2 . LetC∞

10 be the space of the smooth functions
u(θ, t) which are 1-periodic with respect toθ and vanish identically for
sufficient larget. Since this space is dense inHs, s

2 it is enough to prove
(3.5) foru ∈ C∞

10 . By using the Fourier representation ofu and the Cauchy-
Schwarz inequality, we obtain

|u(θ, t)| ≤ 1
2π

∑
n∈Z

∫
R

|û(n, η)|dη ≤
√
I(s)
2π

||u||s, s
2
.ut

The classical Poisson formula extends for functionsu ∈ Hs, s
2 , s > 3

2 . In
this connection we introduce the discrete Fourier transform for sequences
and functions. Having a sequencec = {cκ} ∈ L2(ZN ×Z) the discrete
Fourier transform̃c(ζ), ζ ∈ ZN×Rht , Rht = (− π

ht
, π

ht
) of c is defined as

(3.6) c̃(ζ) = hθht

∑
κ∈ZN×Z

cκe−i〈xκ,ζ〉, ζ ∈ ZN×Rht .

We havec̃ ∈ L2(ZN ×Rht) and the mappingc 7→ c̃ from L2(ZN × Z) to
L2(ZN ×Rht) is an isomorphism such that

(3.7) ( c | d )h = 1
2π ( c̃ | d̃ )L2(ZN×Rht

),

where the inner-products are defined by

( c | d )h = hθht

∑
κ∈ZN×Z

cκd̄κ ,(3.8a)

( c̃ | d̃ )L2(ZN×Rht
) =

∫
ZN×Rht

c̃(ζ)d̃(ζ) dζ.(3.8b)
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The inverse mapping̃c 7→ c is given by

(3.9) cκ =
1
2π

∫
ZN×Rht

c̃(ζ)ei〈xκ,ζ〉dζ, κ ∈ ZN × Z.

If the point values{u(xκ)} of the functionu are given and{u(xκ)} ∈
L2(ZN × Z), then the discrete Fourier transform ofu is defined by

(3.10) ũ(ζ) = hθht

∑
κ∈ZN×Z

u(xκ)e−i〈xκ,ζ〉, ζ ∈ ZN × Rht .

The next two theorems are very essential for our work. Applying these the-
orems we get an effective formulation for collocation equations on uniform
meshes.

Theorem 3.2 (Poisson formula). Assume thatu ∈ Hs, s
2 , s > 3

2 and
h0t > 0. Then{u(xκ)} ∈ L2(ZN × Z) and we have

ũ(ζ) =
∑

p,q∈Z

û(n+pN, η+q 2π
ht

), in L2(ZN ×Rht),(3.11a)

2πhθht

∑
κ∈ZN×Z

|u(xκ)|2 = ||ũ||2L2(ZN×Rht
) ≤ c(s, h0t) ||u||2s, s

2
,(3.11b)

where (3.11b) holds for0 < ht ≤ h0t.

Proof. Suppose thatu ∈ C∞
10 . By applying the discrete Fourier transform for

1-periodic functions and the Poisson summation formula for non-periodic
functions we have

1
N

∑
k∈ZN

u(θk, t)e−in2πθk =
∑
p∈Z

û(n+pN, t), (û(·, t) is F-coefficient)

ht

∑
l∈Z

u(θ, tl)e−iηtl =
∑
q∈Z

û(θ, η + q 2π
ht

), (û(θ, ·) is F-transform)

which imply (3.11a) for functions inC∞
10 . By (3.7) we have

(3.12)

2πhθht

∑
κ∈ZN×Z

|u(xκ)|2 =
∑

n∈ZN

π/ht∫
−π/ht

∣∣∑
p,q

û(n+pN, η + q 2π
ht

)
∣∣2dη =: T.

We will show that (3.12) extends toHs, s
2 , s > 3

2 by continuity. To this
end we estimate the right-hand side of (3.12) for functionsu ∈ Hs, s

2 .
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For s > 3
2 , h0t > 0 there is a positive numberc(s, h0t) such that for all

(n, η) ∈ ZN×Rht , 0 < ht ≤ h0t holds∑
(p,q) 6=(0,0)

(|n+pN | + |η + q 2π
ht

| 1
2
)−2s ≤ c(s, h0t).

By this estimate we obtainT ≤ ||u||20,0 + c(s, h0t)T1 where

T1 =
∑

n∈ZN

∫
Rht

∑
(p,q) 6=(0,0)

(|n+pN | + |η + q 2π
ht

| 1
2 )2s|û(n+pN, η + q 2π

ht
)|2dη

≤ c ||u||2s, s
2
.

Thus we have proved foru ∈ Hs, s
2 , 0 < ht ≤ h0t, s >

3
2

(3.13)
∑

n∈ZN

π/ht∫
−π/ht

∣∣∣∑
p,q

û(n+pN, η + q 2π
ht

)
∣∣∣2dη ≤ c(s, h0t) ||u||2s, s

2
.

Next we show that{u(xκ)} ∈ L2(ZN × Z) for u ∈ Hs, s
2 , s > 3

2 . Take
a sequence{un} ∈ C∞

10 such that{un} converges tou in Hs, s
2 . Applying

(3.12), (3.13) toun − um we find that{un(xκ)} is a Cauchy sequence in
L2(ZN×Z) and has a limit{uκ} ∈ L2(ZN×Z). By the Sobolev embedding
follows u(xκ) = uκ, hence{u(xκ)} ∈ L2(ZN × Z). By a limiting process
we finally obtain that (3.11a), (3.11b) are valid foru ∈ Hs, s

2 , s > 3
2 . ut

Theorem 3.2 does not give accurate results when applied to functions
A∗uh, uh ∈ Sdθ

hθ
×Sdt

ht
. There holdsSdθ

hθ
×Sdt

ht
⊂ Hs, s

2 , s < min{dθ +
1
2 , 2dt+1}, and Theorem 3.2 implies thatA∗uh is continuous and the discrete

Fourier transformÃ∗uh is defined ifβ < min{dθ − 1, 2dt − 1
2}. We can

replace this condition with the following

(3.14a) β < min{dθ, 2dt}.
In addition, we assume that one of the following conditions is satisfied

(3.14b) Integersdθ, dt are odd,
(3.14c) dθ +dt is odd,|β|< 2, β ≥ −dθ −1, the principal symbol is as in

(2.3),
(3.14d) Integersdθ, dt are even, (2.3) holds withβ = −1.

We defineN2∗ = {(p, q)∈ N2
0| (p, q) 6=(0, 0)}. Assumingλ≥ 1, µ≥ 1, ν <

min{λ−1, 2(µ−1)}, one easily verifies

(3.15)
∑

(p,q)∈N2∗

(p+ q
1
2 )ν(1 + p)−λ(1 + q)−µ < ∞.
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Theorem 3.3 Assume (3.14) and letuh{cκ} ∈ Sdθ
hθ

×Sdt
ht

. ThenA∗uh is

continuous, the discrete Fourier transform̃A∗uh is defined and we have

(3.16) Ã∗uh = 1
hθht

c̃ Ã∗ψd
h.

Proof. From (3.3) we deduce

(3.17) ûh(ζ) = 1
hθht

c̃(ζ) ψ̂d
h(ζ), ζ ∈ Z × R.

Observe that̃c is a(N, 2π
ht

)-periodic function and̂uh ∈ L2(Z × R). Intro-
ducingζp,q = ζ + (pN, q 2π

ht
), p, q ∈ Z we have

(3.18) A∗uh(x) =
1

2πhθht

∑
p,q

∫
ZN×Rht

a∗(ζp,q)ψ̂d
h(ζp,q)c̃(ζ)ei〈x,ζp,q〉dζ.

For fixedN, ht there holds

(3.19) |a∗(ζp,q)ψ̂d
h(ζp,q)| ≤ c (1+|p|+|q| 1

2 )β(1+|p|)−dθ−1(1+|q|)−dt−1

for ζ ∈ ZN × Rht . The continuity ofA∗uh(x) follows by using (3.15), the
continuity and uniform boundedness of the functionsei〈x,ζp,q〉 and the fact
that theL2(ZN ×Rht)-functionc̃(ζ) is absolutely integrable overZN ×Rht

. Introducing the temporary notation

ac
∗(ζ) =

∑
p,q

a∗(ζp,q)(−1)κp,q

[ n

n+pN

]dθ+1[ η

η+q 2π
ht

]dt+1
ψ̂d

h(ζ)

we have for the collocation pointsx = xκ

(3.20) A∗uh(xκ) =
1

2πhθht

∫
ZN×Rht

ac
∗(ζ)c̃(ζ)e

i〈xκ,ζ〉dζ.

By this formula the valuesA∗uh(xκ) are the Fourier coefficients of the
L2(ZN×Rht)–function 1

2πhθht
ac∗ c̃. Therefore{A∗uh(xκ)} ∈ L2(ZN×Z)

andÃ∗uh is well-defined. But using the definition (3.10) for̃A∗uh and (3.9)
we obtain

(3.21) A∗uh(xκ) =
1
2π

∫
ZN×Rht

Ã∗uh(ζ)ei〈xκ,ζ〉dζ.

Since{ei〈xκ,ζ〉} is a complete basis ofL2(ZN × Rht), (3.20), (3.21) imply

Ã∗uh = 1
hθht

ac∗ c̃. Finally, choosinguh = ψd
h we getÃ∗ψd

h = ac∗ which
yields (3.16). ut
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To obtain solvability of the problem (3.2) we analyze the functioñA∗ψd
h

which can be considered as an approximation of̂A∗ψd
h. Henceforthc, c0

denote general positive constants which are independent of the discretization

parameters. Observe thatc0 hθht ≤ ψ̂d
h(ζ) ≤ c hθht , ζ ∈ ZN× Rht .

Furthermore, there holds for allζ ∈ ZN×Rht

c0 hθht |ζ|β ≤ |Â∗ψd
h(ζ)| ≤ c hθht |ζ|β ,(3.22a)

ReÂ∗ψd
h(ζ) ≥ c0 hθht |ζ|β ,(3.22b)

where|ζ| = |n| + |η|1/2 with |n| = max{1, |n|}. Under some additional

assumptions we show that the properties (3.22) remain valid when̂A∗ψd
h

is replaced byÃ∗ψd
h . Moreover, we estimate the approximation error. We

impose the condition

(3.23) γ2/π ≤ ν := h2
θh

−1
t ≤ ν1 < ∞,

whereγ is the parameter appearing in (2.2). As it was pointed out in Remark
2.1 the constantγ can be taken arbitrary small for the classical parabolic
boundary integral operators. Having the condition (3.23) we can use the
common parameterh = hθ and have thenht ∼ h2. This condition is well-
known in connection of the parabolic problems.

Lemma 3.4 Assume (3.14) and (3.23). Abbreviatingd̄ = min{dθ, 2dt +1}
we have for allζ ∈ ZN×Rht ,

c0 h
3|ζ|β ≤ |Ã∗ψd

h(ζ)| ≤ c h3|ζ|β ,(3.24a)

ReÃ∗ψd
h(ζ) ≥ c0 h

3|ζ|β,(3.24b)

|Ã∗ψd
h(ζ) − Â∗ψd

h(ζ)| ≤ c
[
h|ζ|]d̄+1−β|Ã∗ψd

h(ζ)|.(3.24c)

Proof. We have

Ã∗ψd
h(ζ) = Â∗ψd

h(ζ)

+
∑

(p,q) 6=(0,0)

a∗(ζp,q)(−1)κp,q

[
n

n+pN

]dθ+1[ η

η+q 2π
ht

]dt+1

ψ̂d
h(ζ).

We assume that (3.14b) is valid. The proof for the cases (3.14c) and (3.14d)
is given in the appendix. If bothdθ anddt are odd, then(−1)κp,q = +1, and
we obtain the stability estimate (or “ellipticity of the numerical symbol”)
(3.24b) by (2.1e),

ReÃ∗ψd
h(ζ) ≥ ReÂ∗ψd

h(ζ) ≥ c0 hθht|ζ|β .
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In order to prove the consistency estimate (3.24c), we consider the dis-
cretization error writing

(3.25) Ã∗ψd
h(ζ) − Â∗ψd

h(ζ) = T (ζ)ψ̂d
h(ζ),

whereT = T1 + T2 + T3 with

T1 =
∑
p6=0

a∗(ζp,0)(−1)κp,0

[
n

n+pN

]dθ+1

,

T2 =
∑
q 6=0

a∗(ζ0,q)(−1)κ0,q

[
η

η+q 2π
ht

]dt+1

,

T3 =
∑

p,q 6=0

a∗(ζp,q)(−1)κp,q

[
n

n+pN

]dθ+1[ η

η+q 2π
ht

]dt+1

.

Assumen 6= 0. Using (2.1d), (2.2) we obtain for all(p, q) 6= (0, 0)

|a∗(ζp,q)| = |a(ζp,q)| = Nβ|a(p+ n
N , ν(q2π + htη))|

≤ c Nβ
(|p+ n

N | + |ν(q2π + htη)| 1
2
)β ≤ c Nβ

(|p| + |q| 1
2
)β
,

since|p + n
N | + |ν(q2π + htη)| 1

2 ≥ γ if ν ≥ γ2/π. Therefore by (3.15),
dθ > β, 2dt > β

|T3| ≤ c Nβ| n
N |dθ+1|htη|dt+1

∞∑
p,q=1

(p+ q
1
2 )β 1

pdθ+1
1

qdt+1

≤ ch−β|hn|dθ+1|h2η|dt+1.

The other terms have the bounds|T1| ≤ ch−β|hn|dθ+1, |T2| ≤ ch−β

·|h2η|dt+1. These upper bounds remain valid also forn = 0 and we ob-

tain |T | ≤ ch−β
[
h|ζ|]d̄+1

which yields

(3.26) |Ã∗ψd
h(ζ) − Â∗ψd

h(ζ)| ≤ c
[
h|ζ|]d̄+1−β|Â∗ψd

h(ζ)|.
Sinced̄+1−β ≥ 1 andh|ζ| is uniformly bounded inZN×Rht , (3.26) implies

(3.27) |Ã∗ψd
h(ζ)| ≤ c |Â∗ψd

h(ζ)|.
Using (3.27), (3.24b), (3.22a) we get (3.24a) and (3.24c). ut

We assume that for the functionf there holdsf = {f(xκ)} ∈ L2(ZN×
Z). Then using the representationuh = uh{cκ} for uh ∈ Sdθ

hθ
×Sdt

ht
, we can

give the collocation problem in the form

(3.28) A∗c = f,
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whereA∗ is defined byA∗c = {(A∗uh)(xκ)}. Observe thatA∗ depends
on the parametersd, N andht. It turns out thatA∗ : L2(ZN × Z) →
L2(ZN × Z) is an isomorphism. In particular, the collocation problem is
uniquely solvable. To prove that result, we introduce inL2(ZN × Z) the
discrete norms||c||s, s

2 ;h, s ∈ R such that

||c||2s, s
2 ;h =

1
2π

∫
ZN×Rht

|ζ|2s|c̃(ζ)|2dζ.

The discrete anisotropic Sobolev spaceH
s, s

2
h is the spaceL2(ZN × Z)

endowed with norm||c||s, s
2 ;h. Observe that for fixed parametersN and

ht all the norms||c||s, s
2 ;h , s ∈ R, are equivalent. Withs = 0 we have

||c||s, s
2 ;h = ||c||h. Moreover we have

(3.29) |( c | d )h| ≤ ||c||s, s
2 ;h ||d||−s,− s

2 ;h, s ∈ R.

Using these norms we can describe the mapping properties ofA∗ very
much analogously with the continuous case. In addition to the whole space
problem (3.2) we consider the corresponding problem where the vanishing
initial condition is taken into account. In the case of this latter problem we
assume thatdt = 0 or dt = 1. We define

S̃dt
ht

= {v ∈ Sdt
ht

| suppv ⊂ [0,∞)}.

Under our assumption concerning the degreedt there holds

Sdθ
hθ

× S̃dt
ht

= {uh = uh{cκ} ∈ Sdθ
hθ

×Sdt
ht

| c ∈ L̃2(ZN × Z)} ,

whereL̃2(ZN× Z) = {c ∈ L2(ZN× Z)| ck,l = 0, k, l ∈ Z, l ≤ 0}. We set

H̃
s, s

2
h = {c ∈ H

s, s
2

h | c ∈ L̃2(ZN × Z)}.

The half space problem with the vanishing initial condition is given by: for
f = A∗u, u ∈ H̃s, s

2 find uh ∈ Sdθ
hθ

× S̃dt
ht

such that

(3.30) A∗uh(xκ) = f(xκ), κ ∈ ZN × N.

Theorem 3.5 Assume (3.14) and (3.23). Ifu ∈ Hs, s
2 , s > β + 3

2 , then the
collocation problem (3.2) has a unique solution. If, in addition,u ∈ H̃s, s

2

anddt = 0 or dt = 1, then the problem (3.30) is uniquely solvable and the
solutions of (3.2) and (3.30) coincide.
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Proof. Consider the problem (3.2). We show that the operatorA∗ : H
s, s

2
h →

H
s−β, 12 (s−β)
h is an isomorphism. First we prove the continuity. We have

(3.31) Ã∗c = Ã∗uh = 1
hθht

c̃ Ã∗ψd
h.

By (3.24a), (3.31) we get the required continuity,

||A∗c||2s−β, 12 (s−β);h ≤ c

∫
ZN×Rht

|ζ|2(s−β)|Ã∗uh(ζ)|2dζ

≤ c

∫
ZN×Rht

|ζ|2s|c̃(ζ)|2dζ ≤ c ||c||2s, s
2 ;h.

Now, the equation (3.28) is equivalent with the problem: findc ∈ H
α, α

2
h

such that

(3.32) (A∗c | d )h = ( f | d )h, d ∈ H
α, α

2
h .

SinceA∗ : H
α, α

2
h → H

−α,− α
2

h is continuous, the left-hand side of (3.32)

defines a bounded sesquilinear form inH
α, α

2
h ×Hα, α

2
h . Moreover, by (3.7),

(3.31),

( A∗c | c)h = 1
2π ( Ã∗c | c̃ )ZN×Rht

=
1

2πhθht

∫
ZN×Rht

Ã∗ψd
h(ζ)|c̃(ζ)|2dζ.

Using (3.24b) we get

(3.33) Re( A∗c | c )h ≥ c0

∫
ZN×Rht

|ζ|β |c̃(ζ)|2dζ ≥ c0 ||c||2α, α
2 ;h.

The unique solvability of (3.32) follows from the theorem of Lax and Mil-

gram. Moreover,A∗ : H
α, α

2
h → H

−α,− α
2

h is an isomorphism such that
||A−1∗ f ||α, α

2 ;h = ||c||α, α
2 ;h ≤ c−1

0 ||f ||−α,− α
2 ;h. This proves the assertion

for the case of (3.2). Ifu ∈ H̃s, s
2 we have by the Volterra property that

f ∈ H̃
−α,− α

2
h . The problem (3.30) is equivalent with the equation (3.28)

such thatc ∈ H̃
α, α

2
h . By the Volterra property ofA∗ and the continuity of

A∗uh it follows thatA∗ mapsH̃
s, s

2
h into the spacẽH

s−β, 12 (s−β)
h . Using the

formulation (3.32) in the subspacẽH
−α,− α

2
h we obtain the unique solution

as in the previous case. But this solution satisfies also the equation (3.32)
and therefore coincides with the whole-space solution. ut
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Remark 3.1In fact we have an explicit formula for the Fourier coefficients of
the collocation solution and it will be used in the next section. By Theorem
3.2 and Theorem 3.3 the collocation problem is equivalent with the equation

(3.34) Ã∗uh = f̃ , in ZN×Rht .

By (3.16) this becomes

(3.35)
1

hθht
c̃ Ã∗ψd

h = f̃ .

By Lemma 3.4 the function(Ã∗ψd
h)−1 is well–defined and(Ã∗ψd

h)−1 ∈
L∞(ZN×Rht). Sincef̃ ∈ L2(ZN×Rht) equation (3.35) has unique solution
c̃ ∈ L2(ZN×Rht),

(3.36) c̃ = hθht (Ã∗ψd
h)−1f̃ .

Using (3.17) we obtain inZN×Rht

(3.37) ûh = ψ̂d
h (Ã∗ψd

h)−1f̃ .

The values of̂uh for ζ /∈ ZN×Rht can be determined by using the recurrence
relation (3.4) or directly from (3.37) when the discrete Fourier transforms
on the right-hand side are defined inZ × R by (N, 2π

ht
)-periodic extension.

Remark 3.2In the case of whole space problem the Volterra property of the
operator is not used. Our method can be applied also to elliptic problems.

4. Convergence

Here we prove convergence results for the collocation starting with the whole
space problem

(4.1) A∗uh(xκ) = A∗u(xκ), κ ∈ ZN ×Z.

Theorem 4.1 Assume the conditions of Theorem 3.5 . Ifu ∈ Hs, s
2 , s >

β + 3
2 , then the collocation solutionuh ∈ Sdθ

hθ
×Sdt

ht
satisfies

(4.2) ||u− uh||
t,

t
2

≤ chmin{s−t, d̄+1−t}||u||s, s2 ,

wheret ≤ s, β ≤ t < d+ 1
2 , d = min{dθ, 2dt + 1

2}, d̄ = min{dθ, 2dt +1}.
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Proof. It suffices to estimate the following three terms

T1 =
∫

ZN×Rht

|ζ|2t|û(ζ) − ûh(ζ)|2dζ,

T2 =
∫

(ZN×Rht
)c

|ζ|2t|ûh(ζ)|2dζ, T3 =
∫

(ZN×Rht
)c

|ζ|2t|û(ζ)|2dζ,

where(ZN × Rht)
c = (Z × R) \ (ZN × Rht). For the last term one easily

obtains

(4.3) T3 ≤ ch2(s−t)||u||2
s,

s
2
, t ≤ s.

Using formula (3.37) for̂uh we get inZN × Rht

û− ûh =
(Ã∗ψd

h − Â∗ψd
h) û

Ã∗ψd
h

− ψ̂d
h (Ã∗u− Â∗u)

Ã∗ψd
h

,

which yields by Lemma 3.4 forζ ∈ ZN × Rht

(4.4a) |û(ζ)−ûh(ζ)| ≤ c
[
h|ζ|]d̄+1−β|û(ζ)|+c |ζ|−β|Ã∗u(ζ)−Â∗u(ζ)|,

(4.4b) |ûh(ζ)| ≤ c |û(ζ)| + c |ζ|−β|Ã∗u(ζ) − Â∗u(ζ)|.

Thus we obtainT1 ≤ c(T11 + T12), where

T11 =
∫

ZN×Rht

|ζ|2t
[
h|ζ|]2(d̄+1−β)|û(ζ)|2 dζ,

T12 =
∫

ZN×Rht

|ζ|2(t−β)|Ã∗u(ζ) − Â∗u(ζ)|2 dζ.

ForT11 we have

T11 = h2(s−t)
∫

ZN×Rht

[
h|ζ|]2(d̄+1−β−(s−t))|ζ|2s|û(ζ)|2dζ,(4.5)

≤ c h2(s−t)||u||2s, s
2
, s− t ≤ d̄+ 1 − β.

Forζ = (n, η), ζ ′ = (n′, η′)we denoteζ ′ ∼ ζ if n′ = n+pN, η′ = η+q 2π
ht

.
By using (2.2) we can conclude

|a∗(ζ ′)| ≤ c |ζ ′|β, for all ζ ′ ∼ ζ, ζ ′ 6= ζ, ζ ∈ ZN × Rht .
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Thus we obtain

|Ã∗u(ζ) − Â∗u(ζ)|2 =
∣∣∑

ζ′∼ζ
ζ′ 6=ζ

a∗(ζ ′)û(ζ ′)
∣∣2

≤ c
∑
ζ′∼ζ
ζ′ 6=ζ

|ζ ′|2(β−s)
∑
ζ′∼ζ
ζ′ 6=ζ

|ζ ′|2s|û(ζ ′)|2.(4.6)

Moreover,

c0 h
−1(|p| + |q|12 ) ≤ |ζ ′| ≤ c h−1(|p| + |q|12 )

and we get fors− β > 3
2 ,

(4.7)
∑
ζ′∼ζ
ζ′ 6=ζ

|ζ ′|2(β−s) ≤ c h2(s−β)
∑

(p,q) 6=(0,0)

(|p|+|q|12 )2(β−s) ≤ c h2(s−β).

From (4.6), (4.7) it follows

(4.8) |Ã∗u(ζ) − Â∗u(ζ)|2 ≤ c h2(s−β)
∑
ζ′∼ζ
ζ′ 6=ζ

|ζ ′|2s|û(ζ ′)|2.

Using|ζ|2(t−β) ≤ c h2(β−t) for ζ ∈ ZN × Rht , t ≥ β we estimate

T12 ≤ c h2(β−t)
∫

ZN×Rht

|Ã∗u(ζ) − Â∗u(ζ)|2dζ(4.9)

≤ c h2(s−t)
∫

ZN×Rht

∑
ζ′∼ζ
ζ′ 6=ζ

|ζ ′|2s|û(ζ ′)|2dζ

≤ c h2(s−t)||u||2s, s
2
, t ≥ β, s > β + 3

2 .

ForT2 we recall the recurrence relations (3.4) for the Fourier coefficients of
spline functionsuh ∈ Sdθ

hθ
×Sdt

ht
and obtain

(4.10) |ûh(ζ ′)| ≤ c
[
h|ζ|]d̄+1(1 + |p|)−(dθ+1)(1 + |q|)−(dt+1)|ûh(ζ)|.
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Applying (4.10), (3.15) we get fort < d+ 1
2

T2 =
∫

ZN×Rht

∑
ζ′∼ζ
ζ′ 6=ζ

|ζ ′|2t|ûh(ζ ′)|2dζ

≤ c h−2t

∫
ZN×Rht

[
h|ζ|]2(d̄+1) ∑

(p,q)∈N2∗

(p+ q
1
2 )2t(1 + p)−2(dθ+1)

·(1 + q)−2(dt+1)|ûh(ζ)|2dζ
≤ c h2(d̄+1−t)

∫
ZN×Rht

|ζ|2(d̄+1)|ûh(ζ)|2dζ.

For further estimation ofT2 we use (4.4b), (3.24c) to getT2 ≤ c(T21 +T22),
where

T21 = h2(d̄+1−t)
∫

ZN×Rht

|ζ|2(d̄+1)|û(ζ)|2dζ(4.11)

= h2(s−t)
∫

ZN×Rht

[
h|ζ|]2(d̄+1−s)|ζ|2s|û(ζ)|2dζ

≤ c h2(s−t)||u||2s, s
2
, s ≤ d̄+ 1.

For the other term we obtain by (4.8) fors− β > 3
2 , β ≤ d̄+ 1,

T22 = h2(d̄+1−t)
∫

ZN×Rht

|ζ|2(d̄+1−β)|Ã∗u(ζ) − Â∗u(ζ)|2dζ(4.12)

≤ c h2(s−t)
∫

ZN×Rht

[
h|ζ|]2(d̄+1−β) ∑

ζ′∼ζ
ζ′ 6=ζ

|ζ ′|2s|û(ζ ′)|2dζ

≤ c h2(s−t)
∫

ZN×Rht

∑
ζ′∼ζ
ζ′ 6=ζ

|ζ ′|2s|û(ζ ′)|2dζ

≤ c h2(s−t)||u||2s, s
2
.

Putting the estimates (4.3), (4.5), (4.9), (4.11) and (4.12) together we find
the error estimate (4.2). ut
Remark 4.1The constantc in the error estimate (4.2) depends on the op-
eratorA∗. More precisely, it depends on the constantsc0, c1 andγ, β of
the estimates (2.1), (2.2). It will be important, for instance in localization
arguments for operators with variable coefficients, that it dependsonly on
these constants and not otherwise onA∗.
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Next we discuss the collocation problem on the finite interval[0, T ]. This
problem is given by: foru ∈ H̃s, s

2 (R2
T ) find uh ∈ Sdθ

hθ
×S̃dt

ht
[0, T ] such that

(4.13) Luh(xκ) = Lu(xκ), κ ∈ ZN × {1, · · · ,M}.
HereM ∈ N, ht = T

M . In order to guarantee that the point valuesLuh(xκ)
are defined we impose in addition to (3.14) the condition

(4.14) β < d+ δ − 1.

Observe that in the practical cases whereδ = 1, (4.14) is valid already
by (3.14). In the following proof we will apply the decompositionL =
A + B = A∗ + B∗. One can easily verify thatA − A∗ defines a bounded
operatorA − A∗ : H̃s, s

2 → H̃s−β+1, 12 (s−β+1). Since0 < δ ≤ 1 the
operatorB∗ = B + A − A∗ preserves the smoothing property ofB such

thatB∗ : H̃s, s
2 (R2

T ) → H̃s−β+δ, s−β+δ
2 (R2

T ) is bounded. Now the condition
(4.14) implies the continuity of the functionsBuh, B∗uh.

Theorem 4.2Assume (2.1), (3.14), (3.23), (4.14) and thatdt = 0 or dt = 1.
If u ∈ H̃s, s

2 (R2
T ), s > β+ 3

2 , then the problem (4.13) has a unique solution
for sufficiently smallh, and we have

(4.15) ||u− uh||t, t
2 ;T ≤ c hmin{s−t, d̄+1−t}||u||s, s

2 ;T ,

wheret ≤ s, β ≤ t < d+ 1
2 .

Proof. We look first the case of the operatorA∗ where (4.13) reads

(4.16) A∗uh(xκ) = A∗u(xκ), κ ∈ ZN × {1, · · · ,M}.
For u ∈ H̃s, s

2 (R2
T ) let U ∈ H̃s, s

2 be any extension ofu such thatu =
U |Rθ×(−∞,T ). By Theorem 3.5 there exists a unique solutionUh ∈ Sdθ

hθ
×S̃dt

ht

of the problem

(4.17) A∗Uh(xκ) = A∗U(xκ), κ ∈ ZN × N.

By Theorem 3.5,Uh is also solution of the corresponding whole space
problem. Puttinguh = Uh|Rθ×(−∞,T ) and using the Volterra property of
A∗ we find thatuh is a solution of (4.16). Applying Theorem 4.1 we get

||u− uh||t, t
2 ;T ≤ ||U − Uh||t, t

2
≤ c hs−t||U ||s, s

2

which yields

(4.18) ||u− uh||t, t
2 ;T ≤ c hs−t inf

U |Rθ×(−∞,T )=u

||U ||s, s
2

= c hs−t||u||s, s
2 ;T
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for β ≤ t < d + 1
2 , β + 3

2 < s ≤ d̄ + 1. If u = 0, it follows from (4.18)
thatuh = 0. This implies the existence of a unique solution for (4.16) since
it reduces to finite system of equations given by a square matrix. Consider
now the general caseL = A+B = A∗ +B∗. Assume thatuh is a solution
of (4.13). Introducingw := u+A−1∗ B∗(u− uh) we find

(4.19) A∗uh(xκ) = A∗w(xκ), κ ∈ ZN × {1, · · · ,M}.
Moreover

w − uh = (I +A−1
∗ B∗)(u− uh) = A−1

∗ L(u− uh)

which yields

u− uh = (A−1
∗ L)−1(w − uh) = (L−1A∗)(w − uh).

By the mapping properties ofL andA∗ we obtain

(4.20) ||u− uh||t, t
2 ;T ≤ c ||w − uh||t, t

2 ;T .

Write w = u + v, v = A−1∗ B∗(u − uh) and letu0
h, vh ∈ Sdθ

hθ
×S̃dt

ht
[0, T ]

be the collocation solutions such that

A∗u0
h(xκ) = A∗u(xκ), κ ∈ ZN × {1, · · · ,M},

A∗vh(xκ) = A∗v(xκ), κ ∈ ZN × {1, · · · ,M}.
Sinceu0

h +vh is a collocation solution ofw onR2
T with the operatorA∗, the

unique solvability of (4.19) impliesuh = u0
h + vh. There holdsw − uh =

u− u0
h + v − vh and by (4.18) we get

||w − uh||t, t
2 ;T ≤ ||u− u0

h||t, t
2 ;T + ||v − vh||t, t

2 ;T(4.21)

≤ chs−t||u||s, s
2 ;T + ||v − vh||t, t

2 ;T .

Puttingσ = min{d̄+1− t, δ} andρ = min{d̄+1, t+ δ} we obtain for the
valuesβ ≤ t < d+ 1

2 , β + 3
2 < s ≤ d̄+ 1

||v − vh||t, t
2 ;T ≤ c hσ||A−1

∗ B∗(u− uh)||ρ, ρ
2 ;T(4.22)

≤ c hσ||u− uh||t, t
2 ;T

if additionally t + δ > β + 3
2 . Taking 0 < h ≤ h0 small enough we

obtain from (4.20–22) the required estimate. Thus we proved (4.15) under
the restrictiont > β + 3

2 − δ. Assumeβ ≤ t ≤ β + 3
2 − δ. By (4.14) we

haveβ + 3
2 < d + 1

2 + δ, and we can chooseτ such thatβ + 3
2 < τ <

d+ 1
2 + δ, τ ≤ s. This time we estimate

||v − vh||t, t
2 ;T ≤ c hτ−t||v||τ, τ

2 ;T ≤ c hτ−t||u− uh||τ−δ, τ−δ
2 ;T .
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Sinceβ + 3
2 − δ < τ − δ < d + 1

2 we can use the already obtained result
(4.15) to have

(4.23) ||v − vh||t, t
2 ;T ≤ c hs−t+δ||u||s, s

2 ;T ≤ c hs−t||u||s, s
2 ;T .

Combining (4.21), (4.23) we get (4.15) also forβ ≤ t ≤ β + 3
2 − δ. The

existence of the unique collocation solution follows by the same argument
as in the case of the operatorA∗. ut
Remark 4.2 In practical applications only choices with low order splines
are of interest. To illustrate our results consider some examples. For the
single layer heat operator (β = −1) we can choosedθ ≥ 0, dt = 0, 1.
With piecewise constants we obtain linear convergence for theL2-norm,
whereasdθ = 1, dt = 0 gives quadratic convergence rate. Also the choice
dθ = 3, dt = 1 might be of interest, since it yields the rateO(h4) (assuming
sufficient regularity on the solution). For the hypersingular heat operator
(β = 1) we may usedθ ≥ 2, dt = 1. With dθ = 3 we get the convergence

rateO(h3) for theL2 norm and theH1,
1
2 norm.

Remark 4.3 As in the case of the elliptic problems, we obtain improved

convergence results forHt,
t
2 norms witht < β when using splines of even

degree. The highest convergence rates for the single layer heat operator
are obtained in theH−2,−1 norm, with dθ = dt = 0: O(h3) and with
dθ = 2, dt = 1: O(h5). For the hypersingular operator, we obtain with
dθ = 2, dt = 1: O(h3) in theL2 norm.

More generally, we have the following result.

Theorem 4.3 Assume the conditions of Theorem 4.2 with0 < δ ≤ 1 in
(2.1g) and thatdθ is even. Then fors > β + 3

2 , t < d+ 1
2 , t ≤ s, we have

for sufficiently smallh,

(4.24) ||u− uh||t, t
2 ;T ≤ c hα||u||s, s

2 ;T ,

with α = min{s− t, s−β, d̄+1− t, d̃+2−β, d̄+1−β+ δ} , where
d̃ = min{dθ, 2dt}.

Proof. We first note that the perturbation operatorB (or equivalentlyB∗)
affects the improved convergence result (4.24) only ifδ < 1 since we have
d̃ ≤ d̄.
The proof will now be done in three steps. The main observation is that for
evendθ, the consistency estimate (3.24c) of Lemma 3.4 can be improved:

(4.25) |Ã∗ψd
h(ζ) − Â∗ψd

h(ζ)| ≤ c
[
h|ζ|]d̃+2−β|Ã∗ψd

h(ζ)|.
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The proof of (4.25) will be the first step.
We consider the functionT (ζ) defined in (3.25) in the proof of Lemma 3.4:

T (ζ) =
∑

(p,q) 6=(0,0)

a∗(ζp,q)(−1)κp,q

[
n

n+pN

]dθ+1[ η

η+q 2π
ht

]dt+1

.

It suffices to consider the casen 6= 0. Defining ξ = n
N ∈ [−1

2 ,
1
2 ] and

τ = htη ∈ [−π, π] and using the homogeneity ofa, we have thenT (ζ) =
NβF (ξ, τ) with

F (ξ, τ)=
∑

(p,q) 6=(0,0)

a(ξ+p, ν(τ+2πq))(−1)κp,q

[
ξ

ξ+p

]dθ+1[ τ

τ+2πq

]dt+1

.

By (3.15), this series converges together with all its derivatives and therefore
F is aC∞ function on[−1

2 ,
1
2 ] × [−π, π]. Since(−1)κp,q = (−1)κ−p,q and

a(−x, y) = a(x, y), we have

F (−ξ, τ) =
∑

(p,q) 6=(0,0)

a(−ξ−p, ν(τ+2πq))(−1)κp,q

·
[ −ξ
−ξ−p

]dθ+1[ τ

τ+2πq

]dt+1

= F (ξ, τ) .

Therefore there exists a functionG ∈ C∞([−1
4 ,

1
4 ] × [−π, π]) such that

F (ξ, τ) = G(ξ2, τ). Using the fact thath|ζ| = |ξ| + (ν|τ |)1
2 , we see that

the estimate (3.24c) means

(4.26) |F (ξ, τ)| ≤ c (ξ2 + |τ |)(d̄+1)/2 .

LetG(x, y) = Pd(x, y) +O((x2 + y2)(d+1)/2) be the Taylor expansion of
G at the origin where

Pd(x, y) =
d∑

k=0

αkx
kyd−k

is the lowest-order non-zero term. From the estimate (4.26) follows that

d ≥ d̄+1
2 = min{dθ+1

2 , dt+1} .
Sinced is an integer anddθ is even, this implies immediately

d ≥ min{dθ+2
2 , dt+1} = d̃

2 + 1 .
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Thus (4.26) can be improved to

(4.27) |F (ξ, τ)| ≤ c (ξ2 + |τ |)(d̃+2)/2 ,

hence
|T (ζ)| ≤ c h−β

[
h|ζ|]d̃+2

,

and thus the estimate (4.25) is shown.
As a second step, we reconsider the proof of Theorem 4.1. This means

that we want to show the estimate (4.24) for the case where the perturbation
B∗ is absent. Then we have to look at the error for the finite intervalR2

T .
The following estimates from the proof of Theorem 4.1 are already compat-
ible with (4.24):

T12 ≤ c h2min{s−t, s−β} ||u||2
s,

s
2
;

T21 ≤ c h2min{s−t, d̄+1−t} ||u||2
s,

s
2
;

T22 + T3 ≤ c h2(s−t) ||u||2
s,

s
2
.

The only term that needs improvement isT11. Using (4.25), we can improve
the estimate (4.4a) to
(4.28)

|û(ζ) − ûh(ζ)| ≤ c
[
h|ζ|]d̃+2−β|û(ζ)| + c |ζ|−β|Ã∗u(ζ) − Â∗u(ζ)| .

We change therefore the definition ofT11 to

T11 =
∫

ZN×Rht

|ζ|2t
[
h|ζ|]2(d̃+2−β)|û(ζ)|2 dζ,

and we see that now

T11 ≤ c h2(s−t)||u||2s, s
2
, for s− t ≤ d̃+ 2 − β.

This completes the proof of (4.24) for this case. As for the finite interval
R2

T , we obtain with exactly the same argument as in (4.18), that (4.24) is
valid, even forδ = 1 which corresponds to the case where the perturbation
is not present.

In the final step, we incorporate the perturbationB∗.
Using the notations of the proof of Theorem 4.2, we obtain, as we have just
shown,

(4.29) ‖u− u0
h‖t, t

2 ;T ≤ chmin{s−t,s−β,d̄+1−t,d̃+2−β}‖u‖s, s
2 ;T ,

and takingt = β, s = d̄+ 1 in (4.23),

(4.30) ‖v − vh||
β, β

2 ;T ≤ chd̄+1+δ−β‖u‖
d̄+1, d̄+1

2 ;T .
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The assertion (4.24) follows now by combining (4.20), (4.21), (4.29) and
(4.30). ut

Let us now consider the estimate (4.24) in more detail. The first ob-
servation is that if the parameterst ands both lie in the range allowed by
Theorem 4.2, namelyβ ≤ t < d + 1

2 , β + 3
2 < s ≤ d̄ + 1, then (4.24)

coincides with (4.15). Further, in order to obtain a higher convergence rate
than allowed by (4.25), one has to take valuest ands satisfyingt < β and
s > d̄+ 1 simultaneously. This implies that an improved estimate occurs if
and only if there holds

(4.31) d̄+ 1 − β < d̃+ 2 − β, i. e.0 < d̃− d̄+ 1 .

On the other hand, we havẽd ≤ d̄, and thus (4.31) becomes0 < d̃− d̄+1 ≤
1. But sinced̃ andd̄ are integers, (4.31) holds if and only if̃d = d̄. As we
consider only the two valuesdt = 0 anddt = 1, all the cases where an
improvement occurs are contained in the following list:

(4.32) dθ = 0, dt = 0 ; dθ = 0, dt = 1 ; dθ = 2, dt = 1 .

Finally, we can write the improved estimates in a symmetric form; we si-
multaneously taket = β − τ ands = d̄+ 1 + τ , τ > 0.

Now Theorem 4.3 takes the following equivalent but more explicit form.

Theorem 4.4 Assume the conditions of Theorem 4.2 with0 < δ ≤ 1 in
(2.1g) and thatdθ is even. Then in addition to the optimal order result (4.15),
there holds the suboptimal estimate

(4.33) ||u− uh||
β−τ, β−τ

2 ;T ≤ c hd̄+1+τ−β||u||
d̄+1+τ, d̄+1+τ

2 ;T ,

if 0 < τ ≤ δ and(dθ, dt) satisfies one of the conditions (4.32). The highest
convergence rate is̄d+ 1 − β + δ. The order of the improvement is 1.

Remark 4.4If the orderβ of the operatorL is positive, we obtain an improved
convergence with respect to the non-negative norms||u−uh||

β−τ, β−τ
2 ;T , 0 ≤

τ ≤ min{β, δ}. If β ≤ 0, we obtain improved convergence results only for
some norms of negative order. But such results are still of interest as in the
elliptic case. An application is given below.

Example 4.1 Consider the single layer heat potential which is given for
x 6∈ Γ by

Φ(x, t) =

t∫
0

1
2∫

− 1
2

u(φ, t′)E(x− x(φ), t− t′) |x′(φ)| dφ dt′ .
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For the notations see Example 2.1. Assume that we have determined the
collocation solutionuh(φ, t), (φ, t) ∈ R2

T by using the single layer heat
equation. Then we have the approximate heat potential for0 < t ≤ T

Φh(x, t) =

t∫
0

1
2∫

− 1
2

uh(φ, t′)E(x− x(φ), t− t′) |x′(φ)| dφ dt′ .

Applying (4.33) withβ = −1, δ = 1 we get

|Φ(x, t) − Φh(x, t)| ≤ c‖u− uh‖−2,−1;T ≤ chd̄+3‖u‖
d̄+2, d̄+2

2 ;T ,

c = c(x, t) .(4.34)

Thus we have the following improved rates for the heat potential
(4.35)

|Φ(x, t) − Φh(x, t)| ≤ c

{
h3 , if dθ = dt = 0 or dθ = 0 and dt = 1 ,
h5 , if dθ = 2 and dt = 1 .

The maximal order of improvement is 1.

5. Appendix. Stability: Splines of even degree

We want to show the positivity estimate (3.24b) under the hypotheses (3.14c)
or (3.14d).

We assume first that the degreedt is even anddθ is odd. In addition, we
assume that the principal symbol has the special form (2.3) with−2 < β <
2.
In the sum

(5.1) ac
∗(ζ) =

∑
p,q

a∗(ζp,q)(−1)κp,q

[ n

n+pN

]dθ+1[ η

η+q 2π
ht

]dt+1
ψ̂d

h(ζ)

we have(−1)κp,q = (−1)q. Since both Rea∗(ξ, η) andψ̂d
h(ξ, η) are even

functions ofξ andη, we may assume thatn andη in (5.1) are positive. For
the same reason, it suffices to consider the sum
(5.2)

a++
∗ (ζ) =

∑
p≥0,q≥0

a∗(ζp,q)(−1)κp,q

[ n

n+pN

]dθ+1[ η

η+q 2π
ht

]dt+1
ψ̂d

h(ζ),

If we can show that this has positive real part, then the 3 remaining sums
overp ≥ 0, q < 0, overp < 0, q ≥ 0, and overp < 0, q < 0 will have
positive real part, too, since they can be written as sums of the form (5.2)
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(with n replaced byN−n and/orη replaced by2π
ht

−η).
We write

a++
∗ (ζ) =

∞∑
p=0

[ n

n+pN

]dθ+1
ψ̂d

h(ζ)
∞∑

q=0

Sp,2q

with

Sp,2q = aβ(n+pN, η+2q 2π
ht

))
[ η

η+2q 2π
ht

]dt+1

− aβ(n+pN, η+(2q + 1)2π
ht

)
[ η

η+(2q + 1)2π
ht

]dt+1
(5.3)

We shall show now that forξ > 0 the positive function
(5.4)

τ 7→ g(τ) = Reaβ(ξ, τ)
[1
τ

]dt+1
has a negative derivative forτ > 0.

According to the homogeneity assumption (2.3), we can simplify (5.4) by
assuming thatα|ξ|2 = 1, and we compute then withτ = tanφ, φ ∈ (0, π

2 )

g′(τ) = Re
[ ∂
∂τ

(1 + iτ)
β
2 τ−dt−1

]
= |1 + iτ |β

2 −1τ−dt−2 Re
[(

iβτ/2 − (dt + 1)(1 + iτ)
)
eiφ(β

2 −1)
]

This can be written in the following two equivalent forms:

g′(τ)|1 + iτ |− β
2 +1τdt+2

=
−1

cosφ

{
(dt + 1) cosφβ

2 + β
2 sinφ sinφ(β

2 − 1)
}

=
−1

cosφ

{
(dt + 1 − β

2 ) cosφβ
2 + β

2 cosφ cosφ(β
2 − 1)

}
The first expression on the right hand side is easily seen to be negative for
β ∈ [−2, 0] and the second forβ ∈ [0, 2]. Thus (5.4) is shown.
If we setξ = n + pN andτ = η + 2q 2π

ht
in (5.4), we obtain immediately

that ReSp,2q = ηdt+1(g(τ) − g(τ+ 2π
ht

)) > 0 for all p, q ≥ 0.
It remains to estimate

S0,0 = (αn2 + iη)β/2 − (αn2 + i(η + 2π
ht

))β/2
[ η

η + 2π
ht

]dt+1

= ht
−β/2

(
(ξ2 + iτ)β/2 − (ξ2 + i(τ + 2π))β/2

[ τ

τ + 2π

]dt+1)
,

where we setξ2 = αn2ht andτ = ηht. With (3.23) we see that

(ξ2, τ) ∈ [0, α
4ν ] × [0, π] =: Q
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We see thatf(ξ2, τ) = ht
β/2 ReS0,0 is a continuous function onQ\{(0, 0)}

and positive there, as we have seen before. At the origin, we obtain with
dt + 1 > β/2

lim inf |ξ2 + iτ |−β/2f(ξ2, τ) = lim inf |ξ2 + iτ |−β/2 Re(ξ2 + iτ)β/2 > 0.

This implies that onQ\{(0, 0)}, f(ξ2, τ) ≥ c|ξ2 +iτ |β/2 with somec > 0.
Hence

(5.5) ReS0,0 ≥ cht
−β/2|ξ2 + iτ |β/2 ≥ c0|ζ|β .

Thus (3.24b) is shown for this case.
As a second case, we assume now thatdt is odd anddθ is even. The

principal symbol has the special form (2.3) with−2 < β < 2. In addition,
we have−(dθ + 1) ≤ β ≤ dθ + 1, which is restrictive only ifdθ = 0, or if
|β| > 1. We have again the formula (5.2), but now(−1)κp,q = (−1)p. We
can therefore write

a++
∗ (ζ) =

∞∑
p=0

[ η

η+q 2π
ht

]dt+1
ψ̂d

h(ζ)
∞∑

q=0

S2p,q

where once again the terms in the second sum are differences

S2p,q = aβ(n+2pN, η+q 2π
ht

))
[ n

n+2pN

]dθ+1

− aβ(n+(2p+1)N, η+q 2π
ht

)
[ n

n+(2p+1)N

]dθ+1
.

Thus withξ = n+ 2pN , τ = η + q 2π
ht

andg(ξ) = Reaβ(ξ, τ)ξ−dθ−1, we
have

ReS2p,q = ndθ+1(g(ξ) − g(ξ +N)) .

We will finish the proof for this second case as above by showing thatg is

a decreasing function. By writingσ = α|ξ|2
τ , we find

g(ξ) = Reξ−(dθ+1)(α|ξ|2 + iτ)β/2

= α(dθ+1)/2τ (β−dθ−1)/2 Reσ−(dθ+1)/2(σ + i)β/2.

It remains therefore to show that the function
(5.6)
σ 7→ h(σ) = Reσ−(dθ+1)/2(σ+i)β/2 has a negative derivative forσ > 0.

Let σ = cotφ, φ ∈ (0, π
2 ). We find

h′(σ) = σ− dθ+3
2 |σ + i|β

2 −1 Re
[(βσ

2
− dθ + 1

2
(σ + i)

)
eiφ(β

2 −1)
]
.
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In order to see that this is negative, we have to use a slightly different substi-
tution from the one used in the first case above. Thus we further introduce
ψ ∈ (0, φ) by −2ψ = φ(β

2 − 1) andδ = tanψ. We have then

0 < σδ < 1 and cosφ(β
2 − 1) =

1 − δ2

1 + δ2
, sinφ(β

2 − 1) =
−2δ

1 + δ2
.

Hence we compute

h′(σ)σ
dθ+3

2 |σ + i|− β
2 +1

=
−1

2(1 + δ2)

{
(dθ + 1 − β)σ(1 − δ2) + 2(dθ + 1)δ

}
=

−1
2(1 + δ2)

{
(dθ + 1 − β)(σ + δ(1 − σδ)) + (dθ + 1 + β)δ

}
.

This last formulation shows clearly thath′(σ) < 0.

We have thus shown that Reac∗(ζ) > ReS0,0ψ̂d
h(ζ) > 0. The estimate (5.5)

for ReS0,0 follows by the same argument as above in the first case.
For the third and final case we assume that (3.14d) holds, i. e. bothdt

anddθ are even. In the sum (5.2), we have now(−1)κp,q = (−1)p+q. The
sum is therefore alternating in both directions, and we group the summands
by four:

a++
∗ (ζ) = ψ̂d

h(ζ)
∞∑

p,q=0

S2p,2q

where we define

S2p,2q =

aβ(n+2pN, η+2q
2π
ht

)
[ n

n+2pN

]dθ+1[ η

η+2q 2π
ht

]dt+1

− aβ(n+(2p+1)N, η+2q
2π
ht

)
[ n

n+(2p+1)N

]dθ+1[ η

η+2q 2π
ht

]dt+1

− aβ(n+2pN, η+(2q+1)
2π
ht

)
[ n

n+2pN

]dθ+1[ η

η+(2q+1)2π
ht

]dt+1

+ aβ(n+(2p+1)N, η+(2q+1)
2π
ht

)
[ n

n+(2p+1)N

]dθ+1

×
[ η

η+(2q+1)2π
ht

]dt+1
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With ξ = n + 2pN , τ = η + 2q 2π
ht

andg(ξ, τ) = Reaβ(ξ, τ)ξ−(dθ+1)

·τ−(dt+1), we have

ReS2p,2q

= ndθ+1ηdt+1(g(ξ, τ) − g(ξ+N, τ) − g(ξ, τ+
2π
ht

) + g(ξ+N, τ+
2π
ht

)
)

= ndθ+1ηdt+1
∫ ξ+N

ξ

∫ τ+ 2π
ht

τ

∂2g(ξ, τ)
∂ξ∂τ

dτ dξ .

As above in the first two cases, we will be able to conclude the positivity of
ReS2p,2q and therefore the estimate (3.24b) forac∗(ζ) if we show that the
mixed derivative

(5.7)
∂2

∂ξ∂τ
g(ξ, τ) is positive forξ, τ > 0 .

We setσ = αξ2, d1 = (dθ + 1)/2, d2 = dt + 1, andγ = β/2, and we
compute

h(σ, τ) :=
∂2

∂σ∂τ
σ−d1τ−d2(σ + iτ)γ

= σ−d1−1τ−d2−1(σ + iτ)γ−2
{
d2(d1 − γ)σ2 + d1(γ − d2)τ2

+ i
(
2d1d2 − (d1 + d2)γ + γ(γ − 1)

)
στ

}
.

We can now assume thatσ = 1, and we setτ = tanφ, x = cosφ =
|1 + iτ |−1. We obtain

p := τd2+1|1 + iτ |−γ Reh(1, τ)

= cos2φ cos(γ − 2)φ
{
d2(d1 − γ) + d1(γ − d2)τ2

}
(5.8)

− sinφ cosφ sin(γ − 2)φ
{

2d1d2 − (d1 + d2)γ + γ(γ − 1)
}
.

Now we use the identities

cos(γ−2)φ = 2 cosφ cos(γ−1)φ− cos γφ
= (4 cos2φ−1) cos γφ− 2 cosφ cos(γ+1)φ

sinφ cosφ sin(γ−2)φ =
1
2
(− cos γφ+ cos 2φ cos(γ−2)φ)

= (4 cos4φ−3 cos2φ) cos γφ
+ (−2 cos3φ+cosφ) cos(γ+1)φ

and transform (5.8) into

p = q1(x) cos γφ+ q2(x) cos(γ + 1)φ
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with

q1(x) = −4γ(γ − 1)x4 + (2(d1 − d2)γ + 3γ(γ − 1))x2 + d1(d2 − γ)
q2(x) = 2γ(γ − 1)x3 + ((d2 − d1)γ − γ(γ − 1))x .

From this form of the expressionp, it would not be too hard to show its
positivity for negativeγ and sufficiently larged1, d2, while for positive
γ one would use a different expression involvingcos(γ − 1)φ. We shall,
however, concentrate now on the case at hand, namelyβ = −1 anddt = 0,
that isγ = −1/2 andd2 = 1, and we want to show thatp > 0 holds for all
x ∈ (0, 1) and alld1 ≥ 1/2.
We have in this case

p = (q1(x) + q2(x)) cos φ
2 =:

q(x)
4

cos φ
2

with the polynomial

q(x) = −12x4 + 6x3 + (13 − 4d1)x2 + (2d1 − 5)x+ 6d1 .

The partial derivative ofq(x) with respect tod1 is (x + 1)(6 − 4x) which
is positive. It remains to show thatq(x) is positive ford1 = 1/2 in order to
obtain its positivity for alld1 ≥ 1/2.
Ford1 = 1/2, we find

q(x) = −12x4 + 6x3 + 11x2 − 4x+ 3
= 6(1 + 2x)(1 − x)x2 + x2 + (2x− 1)2 + 2

which is clearly positive for allx ∈ (0, 1). This concludes the proof for the
third case. ut
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