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Summary. We consider spline collocation methods for a class of parabolic
pseudodifferential operators. We show optimal order convergence results in
a large scale of anisotropic Sobolev spaces. The results cover for example
the case of the single layer heat operator equation when the spatial domain
is a disc.
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1. Introduction

The integral equation method for the solution of parabolic problems is known
already for a long time, for the early literature see [23, 21, 28, 29, 30]. The
reasons which recommend this method instead of the domain methods are
similar as in the elliptic case. The main arguments are: In the level of the
numerical implementation there is a reduction in the dimension of the matrix
equation to be solved. The method is very suitable for exterior problems.
Moreover, by using the direct method the unknown function is a quantity of
physical interest.

In contrast to the elliptic case, there does not exist any general theory for
the numerical solution of the parabolic boundary integral equations. There
are results which are limited to special examples. The equations of the second
kind have been studied in the works of Onishi [25], and Costabel, Onishi,
Wendland [10]. For the equations of the first kind, there are satisfactory
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results only for the Galerkin solution of the single layer heat equation [8,
24]. The computationally more attractive collocation method is not yet fully
understood. Hamina and Saranen [15] were able to show convergence of the
spline collocation for the single layer heat equation in the case of the circle.
These results have been extended Ayr#llainen and Saranen [19, 20] to the
case of a general domain with smooth boundary when the arclength is used
as parametrization. However, the convergence results which they obtained
are not of optimal order. For a different approach using time discretization
for parabolic boundary integral equations we refer to [22].

In the study of the numerical methods for parabolic boundary integral
equations, it is useful to know which other representations for the operators
are available in addition to the natural kernel representation. In the elliptic
case, application of the theory of pseudodifferential operators has turned out
be very efficient and a large variety of general results have been obtained
by this framework. It seems now possible to analyze numerical schemes for
parabolic boundary integral equations with the help of parabolic pseudod-
ifferential operators acting in anisotropic Sobolev spaces.

The present paper gives a starting point in this direction; we obtain op-
timal order convergence results for the spline collocation method for the
class of operators which we call of convolutional type. In practical terms
this class covers equations given on circular boundaries. In future works we
will discuss more general types of operators which cover the case of general
smooth boundaries and even moving domains.

It is worth mentioning that even in the case of elliptic problems, the
stability and convergence of spline collocation in higher dimensions is not
generally known. To our knowledge, there are results only for some special
cases, where the equation is given on a torus [3, 32, 9], square or cube [11,
31]. For the spline collocation in the one dimensional case we refer to the
basic papers [4, 5, 33, 34]. In our case the integral equation is given on a
cylindrical domain. For the discretization we use uniform meshes and the
analysis of the collocation equations is based mainly on Fourier techniques.
However, it was not a priori obvious how to handle efficiently the collocation
problem in this situation, where the mesh is infinite in one direction.

For the numerical solution, one considers a problem on afinite time inter-
val, which leads to the solution of a finite-dimensional system of equations.
For the numerical analysis, however, it turned out that one cannot treat this
finite-dimensional problem directly, so we had to choose a differentway. The
basic idea of our approach is to consider first the “whole space problem”,
i. e. the problem with the infinite time axis, for a properly chosen princi-
pal part of the operator. For the solution of this whole space problem, we
apply discrete Fourier transforms in both the space and the time direction.
With respect to the space variable, this is the conventional discrete Fourier
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transform method for periodic functions (or sequences). With respect to
the time variable, this transform is a periodic function which is defined for
a class of non-periodic functions (sequences) on the whole time interval.
Now the discretized whole-space problem is an infinite-dimensional system
of equations which requires different tools from those used traditionally.

One of the main properties which makes the analysis of the collocation
method possible is the coercivity of the parabolic boundary integral operators
in an anisotropic Sobolev space. The discrete analogue of this property,
namely the ellipticity of the numerical symbol, implies the stability of the
method. This ellipticity requires a complicated proof in the case of splines
of even degree (see the Appendix). A similar situation is known from the
analysis of the higher dimensional spline collocation for elliptic equations,
see Costabel and McLean [9]. For the stability and optimal order estimates
we need to impose the well-known condition relating the space and time
step sizesh; ~ hZ = h?. Although we have focused here on parabolic
boundary integral equations, it seems that our method may be useful for the
analysis of elliptic problems in the non-periodic case, too.

In addition to the basic optimal order convergence results, we obtain im-
proved error estimates when using even degree splines in the space direction.
These results extend the observation of Saranen [33] to the parabolic case.
They are useful in particular when heat potentials are approximated by the
collocation method for boundary densities. The basic examples covered by
our work are the single layer and the hypersingular heat operators. In order
to preserve the vanishing initial condition of the heat equation, we have to
use splines of low degree in the time direction: only piecewise constant or
piecewise linear continuous splines are considered. With this restriction of
the order of the method, we obtain convergence of atiér ) for the single
layer operator an@(h?) for the hypersingular heat operator.

2. Preliminaries

In the following analysis we use anisotropic Sobolev spaces of functions
(distributions)u (6, t) which are 1-periodic with respect to the spatial vari-
abled. Fors € R let H2 = H®2(RyxR,) to be the anisotropic space
with the norm||ul[; s given by

1 1 N 2
Il = 5 3 [0+l 2 o,

neZp
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where

1
2
a(n,n) = / /e_i"%e_i"tu(ﬁ, t)dtdo .
_1R
2
We also need the corresponding spaces of functions, where the vanishing

initial condition att = 0 and finite time interval are taken into account. For
this we putR?2. := Ry x (0, T) and define

H*3 = {u € H>2|suppu C Ryx[0,00)},
HY2(RT) = {u = Ulg,yx(—oor) : U € H 2}
The norm of the spaceg® 3 (R2.) is given by the usual infimum norm,
[ulls, s = mf{I|U]]s © u=Ulgyx(—oorry: U € A5}
In the following we consider operators which are\@iterra type By the
definition the operatol is of Volterra type, if the following property is

satisfied for alt € R: if « vanishes in the domain < ¢, thenLu also has
this property. We assume that the operdidakes the form

(2.1a) L=A+0B,

where the main patdl is given by

1 N
(210)  Au(®,) = 5 Z/a(nm)ﬂ(n’n)emzwemtdn
neZR

and the symbad (&, ) satisfies the following conditions with € R, ¢y >
0, and a numbed < v < 1,

(2.1c) a € C*(R?),

(2.1d) a(A&, A1) = Ma(g,m), A > 1, [¢] +[n]2 > 7,

(2.1€) Ren(&,n) > co(le] + [n]2)%, [l + [nl= > 7,

(2.1f) The mapping; — a(§,n) has a polynomially bounded analytic

continuation

into the domaire = 1 — io, 0 > 0 which is continuous fos > 0,
~ s ~ s—pB+96 .
(2.19) B : H>5(R2) — H*~0+5"5"(R2.) is bounded for @ < § < 1
the operatoB is of Volterra type,

(2.1h) L : %3 (R2) — H*~%3" (R2) is an isomorphism.

Remark 2.1The functiona(&, n), €] + ]n\% > ~ is the calledprincipal
symbolof the operator.. Note that (2.1d) implies the upper bound

(2.2) la(€,m) < er(l€] + n12)%,  [€] + Inlz > .
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Inthe case of the classical parabolic boundary integral operators the principal
symbola (¢, n) is defined for all(&, n) # (0,0) which means that can be
taken to be arbitrarily small. This fact has some importance later when
discussing the collocation method.

Remark 2.2Condition (2.1e) describes the coercivity of the operator. It is
essential for the numerical analysis, in particular for the stability of numer-
ical approximations. This property does not appear in the general theory of
pseudodifferential operators of Volterra type in [26, 27].

Remark 2.3Condition (2.1f) describes the Volterra propertyAf{26].

Remark 2.4Particular examples of operators which satisfy assumption (2.1)
are the single layer heat operatgt & —1) and the hypersingular heat
operator ¢ = 1) when the spatial domain is a disc. For the general domains
with smooth boundary (2.1) covers the equations of the second kind. In these
cases we may choose= 1.

From (2.2) it follows that4 defines a continuous mappinty: H*% —
H5=8557, Moreover, using the Volterra property we deduce tHat:
H3(R2) — H*%"3" (R2) is well-defined and bounded. For a more gen-
eral class of operators including those described by the assumption (2.1),
see [26, 27].

Example 2.1Let E(-, -) be the fundamental solution of the heat equation
and consider the single layer heat operator

(a) Lrup(x,t) ://up(y,T)E(a:—y,t—T)dsydT
0T

on the smooth closed curié. Having the parametric representatiom-
x(0) of I" we putu(6,t) = ur(xz(0),t) and define the operator

t 1
() Lu(6,1) = / / u($, 7)E(2(8) — £(). t — 7))l (&) |de dr.
0 0

If I"is a circle with radiug:, then the operatak has the principal symbol

(©) a(§,m) =

r
2(¢f? +inr?)2

The operatorL satisfies all the assumptions (2.1a-h), see [2, 8, 16, 24].
The formula (c) for the principal symbol can be determined by using [27],
or more directly applying Laplace transform to the kernel representation

(b) and utilizing the asymptotic formulae of [1] for the appearing Bessel
functions.
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Example 2.2Further examples of operators satisfying conditions (2.1) of
arbitrarily high order can be obtained by defining

1 . .
A4m+5u(9, t) = % Z /(n4 + n?)m(anQ + 177)6/211(?7,, n)emQﬂO-i—mtdn )
n#0 p

Herem is a nonnegative integer2 < 8 < 2, a > 0. The order ofAy,,, ;3
is4m + .

Of particular importance are these operators with= 0. The principal
symbol is in this case

(2.3) ag(€,n) = (al¢? +in)*2.

Note that the coercivity condition (2.1e) is satisfied for (2.3) if and only if
18] < 2.
For shortness we write the representation (2.1b) as

1

(2.4) Au(zx) = o

| a@iteac,
ZxR
wherex = (0,t), ¢ = (n,n), (x,{) = n2w0 + nt, and the integration
notation [ d¢ means the summation with respect of the first variable and
integration with respect the second variable.

For our analysis the following modification dfis useful. We introduce
the modified symbol.. (¢, n) putting
(2.5)

L1+ &)a(l,m) + (1 - ©a(-1,7), [l <1, neR,
_ 2 2
&M= e, € >1, neR

and defined, by the formula (2.1b) replacingwith a.. Now we have

(2.6a) A, H%2 — H5 2060 s an tsomorphism,
1

(2.6D) Rea.(§,n) > co (L+[¢] + [nl2)", &neR,

(2.6¢) Re (A.ulu) > ¢ ||u\|i7%, we H®? o= g,

whereasA need not to have these properties. Her), u € H>2, v €
H~*~2 denotes the natural continuation of th&inner product.

3. Collocation problem
Let N be a positive integer anld, > 0. We introduce the uniform meshes

{0k = kho},k € Z, hy = % and{t; = lh;},l € Z. If we are especially
interested on the approximate solution on the intef¥al’], it is natural
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to chooseh; = %, M € N. In the following analysis we apply spline

collocation at the nodal points of the mesh. For this,ﬂ%t be the space

of all 1-periodic smoothest splines of degrée € Ny subordinate to the
mesh{6}, if dy is an odd integer, and subordinate to the shifted mesh
{(k+ %)he}, if dg isan eveninteger. Correspondingly,\l%@t be the space of
(non-periodic) splines of degrdgonR. Observe that functions Mhdtt have

no growth condition at infinity. For our purpose it is more convenient to use
the spaces;" = V;* N L(R). These spaces are infinite-dimensional and,
assumingV > dyp+1,the spaceS,‘fZ areN-dimensional. For approximation

of functionsu(#, t) we use the tensor product spa&f% X S,‘fz.
In this section we consider collocation approximation of the equation

(3.1) Au = f.
The collocation problem is: find;, € S,‘fz X S;‘fz such that
(3.2) Aup(xg) = f(ze), KELNXZ

wherez, = (0y,4), k = (k1) andZy = {n € Z| - § < n < Z}.
Observe that no initial condition is imposed in this whole space setting.
We shall show that under certain assumptions the collocation equations are
uniquely solvable. For the analysis we apply Fourier techniques. We recall
the Fourier representation of spline functions. kebe the characteristic
function of the unit interva(—3, 3 ). We define the basic functiong! ; of

Syt by Xt (1) = wh(h,~ 7 1), | € Z, wherew® is thed, +1-fold
convolution ofw. Correspondingly, we have the 1-periodic basic splines
i ., k € Zy and the basis functions? = ¢{° , x xit' |, K € Zy x Z

for SZZ xs;'f:. Functionu,, € S;‘fz xSZ: has the unique representation =
up{cx} = 3 cxtfl  suchthafe,} € L?(Zy xZ). HereL?(ZyxZ) is the
space of the double sequengdes|x € ZyxZ} suchthad_, ., - lce|? <

oo. Using the Fourier transforfiFw)(n) = % we obtain

%(C) — e_i<$~7<>@/b\,‘f(c)
(3.3) = hghye =0 [(Fo)(2mhon)]® ! [(Fw) (hen)) ™,

whereyd = %,(0,0)- By (3.3) we get the following recurrence relation for

the Fourier coefficients of the spline functiomg € S,‘ifg X S,Cfi
(3.4)

n d9+1
Tyt pNn+q2) = <—1>*”~p’q[ } [

ah(nv 77)7

dt-‘rl
n+pN ]

n+q3E
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wherek,, ; = p(dyp+1) + ¢q(d:+1). The essential tool in our analysis is the
discrete Fourier transform together with a generalized version of the Poisson
formula for functions inH* . For the case of ordinary Sobolev spaces see
[6]. We need the following Sobolev embedding result for anisotropic spaces
[20]. We recall shortly also the proof of this basic result.

Theorem 3.1 Assumes > % If u e Hs,g, thenu is a continuous bounded
function inRy x R; and the embedding[s’g C C(Ry xRy) is continuous
such that

(3.5) sup  |u(0,t)] < c(s)||ullss, we H®2.
(avt)ERBXRt 2

Proof. One easily verifies that the function

2/1+|n|+|n| ) 2dy, seR

neZp

is finite if and only ifs > 5. Let C7§ be the space of the smooth functions
u(6,t) which are 1-periodic with respect thand vanish identically for
sufficient larget. Since this space is dense i it is enough to prove
(3.5) foru € Cfj. By using the Fourier representatiomnofind the Cauchy-
Schwarz inequality, we obtain

0.0 < 3= 3 [latnmln < Y5l 5.0

nez R

The classical Poisson formula extends for functiors H*3, s > 3.1n
this connection we introduce the discrete Fourier transform for sequences
and functions. Having a sequence= {c.} € L2(ZN x 7)) the discrete
Fourier transforn(¢), ¢ € ZyxRy,, Ry, = (=7, 1) of cis defined as

(3.6) EQ) =hohy Y cwe O (€ ZyxRy,.
I{EZNXZ

We havec € L?(Zy xRy, ) and the mapping — & from L?(Zy x Z) to
L?(Zn xRy,) is an isomorphism such that

(3.7) (cld)n= %(Q@L?(ZNtht)a
where the inner-products are defined by
(383.) (Q ‘ Cl)h = hohy Z CKZCZK )
KELNXZL
(3.8b) (el D) amyy = [ HOLOL.

ZNXRht
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The inverse mapping — c is given by

1

“or

(3.9) Cr / () Qd¢, ke Zyx Z.

ZNXR}Lt

If the point values{u(x,)} of the functionu are given andu(z,)} €
L?*(Zy x 7,), then the discrete Fourier transformuofs defined by

(3.10) () =hoht > u(zp)e O (€ Zyx Ry,
HEZNXZ

The next two theorems are very essential for our work. Applying these the-
orems we get an effective formulation for collocation equations on uniform
meshes.

Theorem 3.2 (Poisson formula). Assume that e H*2, s > 2 and
hot > 0. Then{u(z,)} € L*(Zy x Z) and we have

(8.11a) a(¢) = > aln+pN,n+q3), in L*(Zy xRy,),
P,QEZL

(3.11b) 2mhghy Y Ju(ew)® = [alf2(zm,,) < (s o) [JullZ s,

KRELNXZ

where (3.11b) holds fab < h; < hg.

Proof. Supposethat € C{. By applying the discrete Fourier transform for
1-periodic functions and the Poisson summation formula for non-periodic
functions we have

% S° (O, e 20 = S an4pN, ), (-, 1) is F-coefficient

k€l N PEL
hed u(®, t)e” ™ = "a(0,n+ q3%), (@(6,-) is F-transform
leZ qEZL

which imply (3.11a) for functions i€'75. By (3.7) we have

(3.12)
7/ht

orhohe Y Ju(aa)P= > N a(n+pN,g+ q25) Py =: T.

KELNXZ nGZNiﬂ_/ht p.q

We will show that (3.12) extends tH*2, s > g by continuity. To this
end we estimate the right-hand side of (3.12) for functiens H*3.
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Fors > %, ho: > 0 there is a positive numbexs, ho;) such that for all
(n,n) € ZnxRy,, 0 < hy < hg holds

iy —2s
>~ (In+pN|+ In+qF=|2) " < c(s, hor)-
(p,q)#(0,0)

By this estimate we obtailt < ||u|[§ o + (s, ko) T1 Where

1 N
Ti=3Y [ 3 (n+pNl+[n+ a2 ) aln+pN, -+ g2 di
n€LNE,,, (p,9)#(0,0)

< clfull?;.

Thus we have proved for € H*3, 0 < hy < hoy, 5 > 3
w/ht

2
(3813) > [ D atntpNon+ a3 dn < (s hor) lJull? 5.
TLEZN_ﬂ_/ht pq

Next we show thaf{u(z.)} € L?(Zy x Z) for u € H*3, s > 3. Take
a sequencéu,,} € C53 such that{u, } converges ta, in H*2. Applying
(3.12), (3.13) tou,, — u,, we find that{u,(z.)} is a Cauchy sequence in
L?*(ZnxZ) and has alimi{u,.} € L?(ZyxZ). By the Sobolevembedding
follows u(z,) = w., hence{u(z,)} € L*(Zy x Z). By a limiting process
we finally obtain that (3.11a), (3.11b) are valid foe H*2, s > % O
Theorem 3.2 does not give accurate results when applied to functions
Asup, up € Si? x Sy, There holdsS;? x S ¢ H*2, s < min{dy +
%, 2d;+1},and Theorem 3.2 implies thdt u, is continuous and the discrete
Fourier transformA, uy, is defined if3 < min{dp — 1,2d; — 5}. We can
replace this condition with the following

(3.14a) B < min{dy, 2d;}.
In addition, we assume that one of the following conditions is satisfied

(3.14b) Integerdy, d; are odd,

(3.14c) dy+d; is odd,| 5| < 2, B > —dy—1, the principal symbol is as in
(2.3),

(3.14d) Integersly, d; are even, (2.3) holds with = —1.

We defineN? = {(p, q) e NZ| (p, q¢) # (0,0)}. AssumingA\>1, u>1, v <

min{\—1,2(u—1)}, one easily verifies

1
(3.15) Y p+q2)"(1+p) Ml+q) " < oo
(p,9)ENZ
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Theorem 3.3 Assume (3.14) and let, {c.} € S;‘fz X S,‘f:. ThenA,uy, is

continuous, the discrete Fourier transfom is defined and we have

—~—

(3.16) A*uh =

1 =4 d
hghng*wh‘

Proof. From (3.3) we deduce

(3.17) an(Q) = g8 YO, (EZxR.

Observe that is a (N, i—f)—periodic function andy;, € L*(Z x R). Intro-
ducing¢,q = ¢ + (N, ¢7), p,q € Z we have
1

(3.18) A,up(z)

- 2mhghy Z / a*(vaQ)@/b\Z(Cp,q)é(g)ei@’cp’qﬂg

psq ZNXRht

For fixed N, h; there holds

(38.19) [as (Gpg)¥f (Gpg)| < € (1+[pl+1a]®)P (1]p) ™~ (1-+]g]) =~

for ¢ € Zy x Ry, . The continuity of4,u(x) follows by using (3.15), the
continuity and uniform boundedness of the functieft&¢»< and the fact
that theL?(Zy x Ry, )-functioné(¢) is absolutely integrable ovéry x Ry,

. Introducing the temporary notation

a0 = 3 aulGpa)(=1) |

n :|d9+1 |: n i|dt+1/‘E
n+pN n+q3r "

we have for the collocation points= z,,

(3.20) A () = %,;ht /Z QO

By this formula the valuesi,u,(z,) are the Fourier coefficients of the
L*(Znx Ry,)-functiongz—-a$ & Therefore{ A.uy,(z,)} € L*(Znx Z)
andA, u;, is well-defined. But using the definition (3.10) fdr.u;, and (3.9)
we obtain

1 Lo (O)eltms0)
(3.21) Aup () = — Aup(C)e"\*=5dC.

27T ZNXR}Lt
Since{e!(*=<)} is a complete basis di?(Zy x Ry, ), (3.20), (3.21) imply

/T*\u/h = gm0 ¢ Finally, choosingu;, = 4 we getA.yjl = af which
yields (3.16). O
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To obtain solvability of the problem (3.2) we analyze the funcﬂnmg
which can be considered as an approximatiomﬁlpi/)g. Henceforthe, cq
denote general positive constants which are independent of the discretization

parameters. Observe thaf hgh; < wg(c) < chght, ¢ € ZNXRy,.
Furthermore, there holds for dlle ZnxRp,

(3.223) co hohy |7 < |AWE(C)] < chohy [C)°,
(3.22b) ReA/*\w%(C) > co hohe [€)°,

where|¢| = |n| + |n|'/2 with |n| = max{1, |n|}. Under some additional
assumptions we show that the properties (3.22) remain valid \mﬁlﬁ

is replaced b%*wi‘f . Moreover, we estimate the approximation error. We
impose the condition

(3.23) V¥ /m <vi=hih;t < v < oo,

wherey is the parameter appearing in (2.2). As it was pointed out in Remark
2.1 the constany can be taken arbitrary small for the classical parabolic
boundary integral operators. Having the condition (3.23) we can use the
common parametér = hy and have theh; ~ h2. This condition is well-
known in connection of the parabolic problems.

Lemma 3.4 Assume (3.14) and (3.23). Abbreviatihg- min{dy, 2d; + 1}
we have for all € ZyxRy,,

(3.24a) co W3¢1P < |AE(Q)] < eh¥[C)P,
(3.24b) Re A.48(C) > co h3[C,

(3.240)  |A(0) — A(Q)] < e [hlc] TP A <)),

Proof. We have

—~—

A0 = A(0)
di+1 P

Z n d9+1 77
n O P R =) IR 5}
(n.0)7(0.0) ntpN TG

We assume that (3.14b) is valid. The proof for the cases (3.14c) and (3.14d)
is given in the appendix. If botty andd, are odd, theit—1)"»« = 41, and

we obtain the stability estimate (or “ellipticity of the numerical symbol”)
(3.24b) by (2.1e),

Re A f(¢) > Re A U(C) > co hohul()’.
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In order to prove the consistency estimate (3.24c), we consider the dis-
cretization error writing

(3.25) A(C) — A (O) = T(OW(C),
whereT = T1 + T2 + T3 with

n dg+1
T = a —1)k»0 ,
=Y Gu(- B

n di+1
1= a1 ]
q;ﬁo 77+qh7t

:| di+1

=Y a*<<p,q><—1>ﬁp’q[

I

27
p,q#0 n+pN N+ ah,
Assumen # 0. Using (2.1d), (2.2) we obtain for alp, q) # (0,0)

lax(Cp,g)| = a(Cpq)| = Nﬁ’a@ + > v(q2m + hyn))|
1 1
<eNP(Ip+ 2| + [v(g2m + him)|2)” < ¢ NP (1p| + |q|2)”,

sincelp + | + [v(q27 + htn)ﬁ > v if v > 42/x. Therefore by (3.15),
do > 3, 2dy > 8

1

oo
d d 3 1
Tl < e NGO han*H 37 0+ 02) s s
p,q=1

< Ch_ﬁ|hﬂ|d9+1|h27’]|dt+1.

The other terms have the bountf§| < ch™?|hn|%t!, |Ty| < ch™?
[h?n|%+1. These upper bounds remain valid also fior= 0 and we ob-

tain |T| < ch~?[h|¢[]*"" which yields

(326)  1AGHQO — Al < e [l A,
Sinced+1—3 > 1 andh|¢| is uniformly bounded iZ yxRp,, , (3.26) implies
(3.27) A < e A

Using (3.27), (3.24b), (3.22a) we get (3.24a) and (3.24c). a

We assume that for the functigithere holdsf = {f(z.)} € L*(Zn x

Z). Then using the representatiop = up{c, } for uy, € Sﬁg XSZE, we can
give the collocation problem in the form
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where A, is defined byA.c = {(A.up)(z.)}. Observe thatd, depends
on the parameterd, N and hy. It turns out thatA, : L*(Zy x Z) —
L?*(Zy x 7Z) is an isomorphism. In particular, the collocation problem is
uniquely solvable. To prove that result, we introducel#{Zy x Z) the
discrete norm$]g|]s,§;h, s € R such that

’|Q 727

: / R ¢
2 2s 2
5,3, ¢|*7le(¢)]7dC.
h o ZxRa, |7| ’ ( )’

The discrete anisotropic Sobolev spaHé’% is the spacel?(Zy x Z)
endowed with norny|c||; s.,. Observe that for fixed parameteté and
h; all the norms| ]QH&%W ,s € R, are equivalent. Witk = 0 we have
|lclls,s:n = llc||n- Moreover we have

(3.29) (el d)nl <lells,gin lldl|—s,~5:n, s € R

Using these norms we can describe the mapping properties, ofery
much analogously with the continuous case. In addition to the whole space
problem (3.2) we consider the corresponding problem where the vanishing
initial condition is taken into account. In the case of this latter problem we
assume thad; = 0 or d; = 1. We define
S’Zz ={ve Sgﬂ suppv C [0,00)}.
Under our assumption concerning the degigthere holds
5% 5 S — fuy, = up{ce} € 8% xS%|c e L*(Znx 7)}
ho he h h1Ck he hel € N 5
whereL?(Zyx Z) = {c € L*(Znyx Z)| cxy = 0, k,1 € Z, 1 < 0}. We set

B2 ={ce H?|ce [X(Zyx L)}
The half space problem with the vanishing initial condition is given by: for

f=Aw, ue H" findu, € S5 x S such that

(3.30) Aup(zg) = f(zy), K€ZyxN

Theorem 3.5 Assume (3.14) and (3.23).dfe H*2, s > 3+ 3, then the
collocation problem (3.2) has a unique solution. If, in additieng 72
andd; = 0 or d; = 1, then the problem (3.30) is uniquely solvable and the
solutions of (3.2) and (3.30) coincide.
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Proof. Consider the problem (3.2). We show that the operdtor H,Sf —

3. 1(s—
H,‘j Pr3(s=0) is an isomorphism. First we prove the continuity. We have
(3.31) Ave = Aguy, = e Ay,

By (3.24a), (3.31) we get the required continuity,

el ygm <c [ 1P PIATOP
2 NXRp,

2 o
s,55h"

<e /Z e, [SPEOPAS < el

Now, the equation (3.28) is equivalent with the problem: find H}?%
such that

(3.32) (Awcld)n = (f|d)n, de H2.

Since A, : H"* — H, 2 is continuous, the left-hand side of (3.32)

defines a bounded sesquilinear forrrHﬁ"% X HZ"%. Moreover, by (3.7),
(3.31),

P

— Y (A ole _ 1 d( VA2
(Aeel ol = (A Do, = g [ AGHOROPLC

Using (3.24b) we get

(3.33)  Re(Asc|c)n > o / <IPE(Q)PdC > co llcl[2 .

ZNXRp,
The unique solvability of (3.32) follows from the theorem of Lax and Mil-
gram. MoreoverA, : H,'? — H,“”? is an isomorphism such that
A fllassn = llellaain < ¢o'lIf]]—a—a:s- This proves the assertion
for the case of (3.2). It € H*2 we have by the Volterra property that
/e flhfa’*%. The problem (3.30) is equivalent with the equation (3.28)
such thatc € FIZ“’%. By the Volterra property ofd, and the continuity of
A.uy, it follows that A, mapsf;’? into the spacé?z_ﬁ’%(s_ﬁ)

formulation (3.32) in the subspad?é,?aﬁ? we obtain the unique solution
as in the previous case. But this solution satisfies also the equation (3.32)
and therefore coincides with the whole-space solution. O

. Using the
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Remark 3.1In fact we have an explicit formula for the Fourier coefficients of
the collocation solution and it will be used in the next section. By Theorem
3.2 and Theorem 3.3 the collocation problem is equivalent with the equation

(3.34) Ayup = f,  iNZyxRy,.

By (3.16) this becomes

1 - ~

~ d _
(3.35) e AL = f.

By Lemma 3.4 the functior@/L\q_/;;f)—1 is well-defined and@)—l €
L>(ZnxRp,). Sincef L?(ZnxRy,) equation (3.35) has unique solution
CcE€E L2(ZNXR}“),

(3.36) &= hghy (A .

Using (3.17) we obtain iy x Ry,

(3.37) ap, = P (AL

The values ofiy, for ¢ ¢ ZnxRy, can be determined by using the recurrence

relation (3.4) or directly from (3.37) when the discrete Fourier transforms
on the right-hand side are definedZnx R by (N, %)-periodic extension.

Remark 3.2In the case of whole space problem the Volterra property of the
operator is not used. Our method can be applied also to elliptic problems.

4. Convergence

Here we prove convergence results for the collocation starting with the whole
space problem

(4.1) Asup(xy) = Asu(zy), Kk € ZnXZ.

Theorem 4.1 Assume the conditions of Theorem 3.5u IE HS’%,s >
3+ 3, then the collocation solution;, € S;‘fg xS;‘fZ satisfies

(4.2) [|u — uth% < chmin{s—t, J—H_t}HuHs’% :

wheret < 5,3 <t < d+ 3,d = min{dp, 2d; + 3}, d = min{dy, 2d; +1}.
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Proof. It suffices to estimate the following three terms

Ti= [ [¢Pla(¢) — an(Q)]*dC,

ZNXRht

= [ PP, Ts= [ |¢*la(¢)Pdc,

(ZNXRp, )¢ (ZnxRp, )¢

where(Zy x Ry, )¢ = (Z x R) \ (Zn x Ry, ). For the last term one easily
obtains

(4.3) Ty < ch?CD||ul)? s, t<s.
59

Using formula (3.37) fori, we getinZy x Ry,

- —_—

(A — A i v (Au— A
A9 A

U —up =

)

which yields by Lemma 3.4 fof € Zy x Ry,

(4.4a) [a(Q)=an(Q)] < e [BI¢] T a1 +e ¢~ Avu(Q) - Avu(Q)],

(4.4b) [an ()] < cla(Q)] + el¢| | Au(¢) — Awu(C)]-

Thus we obtaif; < ¢(T71; + T12), where
d+1-0)
Tu= [ 1P P e
ZNXRht
To= [ G () - Auo) P
ZNXRht
ForT7; we have

(4.5) T :h2(st)/ [h’g]2(J+1_B_(s_t))|£’28m(4)’2d€7

ZNXRht

< ch2<8*f>|yu\|§7%, s—t<d+1-3.

For¢ = (n,n), ¢’ = (n/,n/) we denote’ ~ Cif n = n+pN, 1/ = n+q5=.
By using (2.2) we can conclude

la. ()] < c|¢)P, forall (' ~ ¢, ¢ #¢, ¢ € Zyx Ry,
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Thus we obtain

[Au(C) — AP =Y aa(d)|

e
(4.6) <e ) PN TP a) P
¢'~¢ ¢/~C
¢ #¢ ¢#¢

Moreover,

1 - 1
coh ™ (Ipl + 1g/2) <[] < eh N (|p| + |q|2)

and we get fos — 3 > 2,

1
(4.7) Z |C |2(6 < ch26=0) Z (\p|+|q|§)2(ﬁ—s) < e h2s=8),

¢In¢ ,Q)#(0,0
1, (p,a)#(0,0)

From (4.6), (4.7) it follows

(4.8) [Au(Q) = Au(Q) < e 27D 3 [P

¢'~¢
¢'#¢

Using|¢|?=9) < ¢ K23~ for ( € Zn x Rp,, t > 3 we estimate

49)  Tip<ch?G / Au(C) — Aou(Q)Pd¢
ZNXRht
< chh) ¢'1*la(¢)Pd¢
. ;’ *|a(¢)|?
¢'#¢

<P ulfs, 28, s> 5+3.

For Ty we recall the recurrence relations (3.4) for the Fourier coefficients of
spline functionsy, € S,sz ><S,Cf;5 and obtain

(410) [an(¢)] < e [ (L -+ [p) @1+ fg) @D jan (0]
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Applying (4.10), (3.15) we get far < d + &

L= [ 3PP

ZN X Rp, g/

#C
_ 2(d+1 1 _
<ch 2t / [mg] (d+1) Z (p+q2)2t(1 +p) 2(dp+1)
Zy % Rp, (p,q)ENZ

(1 + )72 |y, (€)PdC
< ¢ pAdH1-) / 1C[2H D, () 2dC.

ZNXRht

For further estimation df; we use (4.4b), (3.24c) to gét < c(T21 +1»2),
where

@4.11) Ty = KA / A Da(¢)2dg

ZNXRht

_ h2(s—t) / [h‘g‘]2(J+178)’£’23‘,a(<)’2dc

AN XRht

<e hz(s—t)HuHi%7 s<d+1.
For the other term we obtain by (4.8) fer G > %, B<d+1,

(4.12) Tyy = K2+ / P Au(C) — Avu(C)|2dC

ZNXRht
. 2d1 s
< ¢ p2sD / L e S e
B
<eren [ ST CPa) P
i, 4

< e RO 2 5.

Putting the estimates (4.3), (4.5), (4.9), (4.11) and (4.12) together we find
the error estimate (4.2). O

Remark 4.1 The constant in the error estimate (4.2) depends on the op-
erator A,. More precisely, it depends on the constafitsc; and~, § of

the estimates (2.1), (2.2). It will be important, for instance in localization
arguments for operators with variable coefficients, that it depentjson
these constants and not otherwiseAn



436 M. Costabel, J. Saranen

Next we discuss the collocation problem on the finite intejval’]. This
problem is given by: for. € H*3 (R3) find u;, € Sj x S;*[0, 7] such that

(4.13) Lup(zy) = Lu(zy), k€ Zyx{l,---,M}.

HereM € N, h; = % In order to guarantee that the point values, (=)
are defined we impose in addition to (3.14) the condition

(4.14) B<d+6—1.

Observe that in the practical cases whére- 1, (4.14) is valid already
by (3.14). In the following proof we will apply the decompositidn =
A+ B = A, + B,. One can easily verify thatl — A, defines a bounded
operatorA — A, : H%> — H*AtL36-A+D) Sinced < § < 1 the
operatorB, = B + A — A, preserves the smoothing property Bfsuch
thatB, : F*3 (R2Z) — H*A+5"5"(R2,) is bounded. Now the condition
(4.14) implies the continuity of the functior$uy,, B.uy,.

Theorem 4.2 Assume (2.1), (3.14), (3.23), (4.14) and tiiat= O or d; = 1.
Ifue H>2(R%), s > B+ % then the problem (4.13) has a unique solution
for sufficiently smalh, and we have

(415) =l < eIy

wheret < s, 3 <t<d+ 3.

Proof. We look first the case of the operatdy where (4.13) reads
(4.16) Acup (i) = Asu(zy), k€ Zyx{l,---,M}.

Foru € H*3(R%) let U € H*2 be any extension ofi such thatu =

Ul Rryx(—o0,1)- By Theorem 3.5 there exists a unique solufighe S,‘fgxg‘,‘f;
of the problem

(417) A*Uh(l',{) = A*U(lt,{), Kk € Znx N.

By Theorem 3.5}, is also solution of the corresponding whole space
problem. Puttingu;, = Up|g, (-0, r) @nd using the Volterra property of
A, we find thatuy, is a solution of (4.16). Applying Theorem 4.1 we get

= unlly 20 < [IU = Unllye < e h* U5 s
which yields

(418) [fu—uplly s <™ inf |Ullys = ek full, pir
U‘Rg X (=00, T)=u
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forg<t<d+3, B+3 <s<d+1Ifu=0,itfollows from (4.18)
thatu;, = 0. This implies the existence of a unique solution for (4.16) since
it reduces to finite system of equations given by a square matrix. Consider
now the general case = A + B = A, + B,. Assume that, is a solution

of (4.13). Introducingv := u + A; ! B, (u — uy,) we find

(4.19) Agup () = Avw(zy), k€ Zyx{l, -, M}
Moreover

w—up = (I + A7 B (u—up) = A7 L(u — up,)
which yields

w—up = (A7) (w — up) = (L7VAL) (w0 — up).
By the mapping properties df and A, we obtain
(4.20) l|lu — up,

t,%;T sc Hw — Up t,%;T'

Write w = u + v, v = A7'B,(u — uyp) and letu), v, € Sgg ngi [0, 7]
be the collocation solutions such that

Al (z) = Asu(zy), K € Znx{1,---, M},

Aop(xg) = Awo(zy), K€ Zyx{l,---,M}.
Sinceu) + vy, is a collocation solution ofy onR%. with the operator,, the
unique solvability of (4.19) implies;, = u$ + vj,. There holdsy — uj, =
u —ul) +v — vy, and by (4.18) we get
(421) = wunll,ep < |l —udll, e.p+ [0 = vll, .7

< ch*Nulla gz + [0 = vll, 17
Puttinge = min{d+1—t, 4} andp = min{d + 1,¢ + 6} we obtain for the
valuesB <t<d+3,8+3 <s<d+1
(4.22) 10 = vally, 20 < e B7IIAT Bilu = up)ll 2.
< ch?|fu—upllye.r

if additionally ¢t + 6 > (6 + % Taking0 < h < hg small enough we
obtain from (4.20-22) the required estimate. Thus we proved (4.15) under
the restrictiont > 3+ 3 — 6. Assumes < t < 3+ 3 — 4. By (4.14) we

haves + % <d+ % + 4, and we can choose such thatg + % <7<
d+ 3 +46, 7 < s. This time we estimate

o= onlly sz < e B Nollr g < e R fu = unll_y sy
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Since + 3 — 6 < 7 — & < d + § we can use the already obtained result
(4.15) to have

(423) o= wnlly s < BT ull s < e B full s

Combining (4.21), (4.23) we get (4.15) also for< ¢t < 6 + % — 6. The
existence of the unique collocation solution follows by the same argument
as in the case of the operatdy. O

Remark 4.21n practical applications only choices with low order splines
are of interest. To illustrate our results consider some examples. For the
single layer heat operatog(= —1) we can chooséy > 0, d; = 0, 1.

With piecewise constants we obtain linear convergence fothaorm,
whereasly = 1, d; = 0 gives quadratic convergence rate. Also the choice
dp = 3, d; = 1 might be of interest, since it yields the r&¢h*) (assuming
sufficient regularity on the solution). For the hypersingular heat operator
(6 =1)we may usely > 2, d, = 1. W{th dy = 3 we get the convergence

rateO(h?) for the L2 norm and thed 2 norm.

Remark 4.3 As in the case of the elliptic problems, we obtain improved

convergence results fcﬂt’% norms witht < 3 when using splines of even
degree. The highest convergence rates for the single layer heat operator
are obtained in thé7=%~1 norm, withdy = d; = 0: O(h?) and with

dg = 2, d; = 1: O(h®). For the hypersingular operator, we obtain with

dp = 2, dy = 1: O(h3) in the L? norm.

More generally, we have the following result.

Theorem 4.3 Assume the conditions of Theorem 4.2 wiitkc 6 < 1 in
(2.1g) and thatly is even. Then fos > 3+ 3,¢ < d + 1, ¢ < s, we have
for sufficiently smalh,

|s,‘%;T7

(4:24) e = unll g < € B

with @ = min{s— ¢, s— 8, d+1—1t, d+2-3,d+1—p3+6}, where
d = min{dy, 2d; }.

Proof. We first note that the perturbation operat®ror equivalentlyB,)
affects the improved convergence result (4.24) ondy<f 1 since we have

d <d.

The proof will now be done in three steps. The main observation is that for
evendy, the consistency estimate (3.24c) of Lemma 3.4 can be improved:

—

(4.25) A(C) — A0 < e [Ie] 7271 At (0)].
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The proof of (4.25) will be the first step.
We consider the functiof(¢) defined in (3.25) in the proof of Lemma 3.4:

Z . d9+1 ,'7 di+1
T(C) = a*(Cpﬂ)(_l)nm [ } [ 2Tr] '
(p.0)#(0,0) ntpN T+ ah

It suffices to consider the case # 0. Definingé = % € [—3,1] and
T = hyn € [—m, n] and using the homogeneity of we have thed’(¢) =

NBF(¢, 7) with

Z 5 do+1 - di+1
F&m)= a(§+p, v(T+2mq)) (1) { } { ] :
(p,)(0,0) §+p T+2mq

By (3.15), this series converges together with all its derivatives and therefore
Fis aC* function on[—3, 1] x [, 7]. Since(—1)*r« = (—1)*-rs and

a(—z,y) = a(z,y), we have

F(~&1)= > a(~¢—pv(r+2mg)(~1)™

(p,a)#(0,0)
_5 d9+1 - di+1
(e
=F(¢ 7).
Therefore there exists a functigh € C>°([—1, 1] x [~ 7]) such that

1
F(&,7) = G(€%,7). Using the fact thab|¢| = [¢| + (v[7])2, we see that
the estimate (3.24c) means

(4.26) F(€,7)| < e (€2 + 7))@+ 1)/2,

Let G(z,y) = Pa(x,y) + O((2? + y?){@+1)/2) pe the Taylor expansion of
G at the origin where

d
Py(z,y) = > apzty®*
k=0

is the lowest-order non-zero term. From the estimate (4.26) follows that

d> % = min{d";l, di+1}.

Sinced is an integer andy is even, this implies immediately

d > min{%}2 d,41} =44 1.
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Thus (4.26) can be improved to
(4.27) F(,7)| < e (€ + ) (4272,
hence B
_ d+2
T < eh ™ [hI¢]?,

and thus the estimate (4.25) is shown.

As a second step, we reconsider the proof of Theorem 4.1. This means
that we want to show the estimate (4.24) for the case where the perturbation
B, is absent. Then we have to look at the error for the finite intékyal
The following estimates from the proof of Theorem 4.1 are already compat-
ible with (4.24):

Tip < ch?min{s=hs=0) [Jul? s
D)
Ty < ch?min{s—t7 d+1—t} HuHi s
)
Typ + Ty < ch*571) [ul]? 5.
)

The only term that needs improvemenfis. Using (4.25), we can improve
the estimate (4.4a) to
(4.28)

[(¢) — a(Q)] < ¢ [BIS P Pa(O)] +el¢ Pl Au(¢) — Au().

We change therefore the definitionDf; to
d+2-6), .
Tu= [ G P e
ZNXR;Lt

and we see that now
T < ek ullfs, fors—t<d+2-p.

This completes the proof of (4.24) for this case. As for the finite interval
R2,, we obtain with exactly the same argument as in (4.18), that (4.24) is
valid, even ford = 1 which corresponds to the case where the perturbation
is not present.

In the final step, we incorporate the perturbati®n
Using the notations of the proof of Theorem 4.2, we obtain, as we have just
shown,

(429) HU . u%”t,%;T < Chmin{S—t,S—ﬂ,d_—O—l—t,ci+2—/3} Hu

8,551
and takingt = 3, s = d + 1in (4.23),

d+1+6—
(4.30) llv— Uh||g,§;:r < chdt1lt ﬁ||u||g+1,%;T'
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The assertion (4.24) follows now by combining (4.20), (4.21), (4.29) and
(4.30). 0

Let us now consider the estimate (4.24) in more detail. The first ob-
servation is that if the parameterands both lie in the range allowed by
Theorem 4.2, namelg < t < d+ 3, 3+ 3 < s < d+ 1, then (4.24)
coincides with (4.15). Further, in order to obtain a higher convergence rate
than allowed by (4.25), one has to take valtesds satisfyingt < 4 and
s > d + 1 simultaneously. This implies that an improved estimate occurs if
and only if there holds

(4.31) d+1-p3<d+2-08, ie0<d—d+1.

Onthe other hand, we haxieg d, and thus (4.31) becomés< d—d+1 <

1. But sinced andd are integers, (4.31) holds if and onlydf= d. As we
consider only the two value = 0 andd; = 1, all the cases where an
improvement occurs are contained in the following list:

(4.32) dg=0,d,=0; dyp=0,dy=1; dg=2,dy=1.

Finally, we can write the improved estimates in a symmetric form; we si-
multaneously take =3 —rands =d+ 1+ 7,7 > 0.
Now Theorem 4.3 takes the following equivalent but more explicit form.

Theorem 4.4 Assume the conditions of Theorem 4.2 Withkc 6 < 1 in
(2.1g) and thatly is even. Thenin addition to the optimal order result (4.15),
there holds the suboptimal estimate

d- _
(4.33) [|u — uhHB_T’BQ;T;T <ch +147 ’6|‘u||J+1+T,J+;+T;T’

if 0 < 7 < ¢ and(dy, d;) satisfies one of the conditions (4.32). The highest
convergence rate i + 1 — 3 + 4. The order of the improvement is 1.

Remark 4.4fthe orders of the operatoL is positive, we obtain animproved
convergence with respectto the non-negative nofmsuy, | 1577 [P ULS
K 2 b

7 <min{g3,4d}. If 5 <0, we obtain improved convergence results only for
some norms of negative order. But such results are still of interest as in the
elliptic case. An application is given below.

Example 4.1 Consider the single layer heat potential which is given for
x ¢ I by

(o, t) = / / w(é, ) E(x — o).t — ) |2/ (6)| do dt’

1

2
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For the notations see Example 2.1. Assume that we have determined the
collocation solutionuy(¢,t), (¢,t) € R2 by using the single layer heat
equation. Then we have the approximate heat potentidl for < T

o(e.t) = [ [ (6.0~ ().t~ 1) 1 (@) ot

1

2

Applying (4.33) withg = —1, 6 = 1 we get

—LT = 17
(4.34) c=c(z,t).

d
[@(w, ) = Bp (2, )] < ellu —unll_y 7 < h P lull g, aso

Thus we have the following improved rates for the heat potential

(4.35)
|®(z,t) — Pp(x,t)| < ¢ {h3’ it dy=dy=0o0rdy=0andd, =1,

RS, if dg=2andd;, =1.

The maximal order of improvement is 1.

5. Appendix. Stability: Splines of even degree

We want to show the positivity estimate (3.24b) under the hypotheses (3.14c)
or (3.14d).

We assume first that the degrées even andiy is odd. In addition, we
assume that the principal symbol has the special form (2.3)with: 5 <
2.
In the sum

(51) aS(Q) = Y aulGa) (=11 |
p.q

n d9+1 77 di+1—~
]
n+p n+qs,

we have(—1)#»e = (—1)7. Since both Re.(&,n) and@({,n) are even
functions of¢ andrn, we may assume thatandn in (5.1) are positive. For
the same reason, it suffices to consider the sum

(5.2)

O = Y alGua)-1

p>0,¢>0

n d9+1 7] di+1—~
< =] o),
n+p n+as,

If we can show that this has positive real part, then the 3 remaining sums
overp > 0,qg < 0, overp < 0,¢q > 0, and overp < 0,q < 0 will have
positive real part, too, since they can be written as sums of the form (5.2)
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(with n replaced byV —n and/orn replaced by% —n).

We write -
d9+1
)= ] Zsaq
o n+pN
with
s (n+pN, n+225)) [—1__]*"
st psai ]
p,2q B PN, 2G5, 77+QCI%

77 di+1
5.3 — ag(n+pN,n+(2 +121[—

We shall show now that fof > 0 the positive function
(5.4)
17det1 ) -
T g(1) = Reag(§,7) [—} has a negative derivative for> 0.
T

According to the homogeneity assumption (2.3), we can simplify (5.4) by
assuming that|¢|? = 1, and we compute then with= tan ¢, ¢ € (0, 3)

0 3
/ — . 3 5 7dt71
9(7)—Re[8T(1+17)27— }
= [1+ir[ 5742 Re[ (iB7/2 — (dy + 1)(1 + i) (3]
This can be written in the following two equivalent forms:

g1+ i7'|7§+17'd’5+2

- coslgb{(dt +1) COSGW 5 5 sin ¢ sin ¢(§ — 1)}
= Cgsld){(dt—i-l—)cosqbf’ 2cosq§cosqﬁ( 1)}

The first expression on the right hand side is easily seen to be negative for
B € [—2,0] and the second fg# € [0, 2] Thus (5.4) is shown.

If we set{ = n + pN andr = n + 2q in (5.4), we obtain immediately
that ReS), o, = n%*1(g() — (T—l—zf)) > Oforallp,q > 0.

It remains to estimate

di+1
S = 2 4 B/2 _ 2 +i(n+ 2m\\68/2 | T
0,0 = (an” +in) (an® +i(n ht)) [TI‘F %7;}
o —B2((e2 B2 (2 g2 T Wt
hOR (€ + )7 — (€ il +2m) R T,

where we sef? = an?h; andt = nh;. With (3.23) we see that
€7 elo, 5 x[0,7=Q
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We see thaf (¢2,7) = h,/”/? ReSy ¢ is a continuous function 0@\ { (0, 0)}
and positive there, as we have seen before. At the origin, we obtain with
di +1> ﬁ/2

liminf |€2 + ir| %2 f(€2,7) = liminf |2 + ir| /2 Re(¢? +i7)?/2 > 0.

This implies that o\ {(0,0)}, f(€2,7) > ¢|¢2 +ir|?/? with somec > 0.
Hence

(5.5) ReSoo > chy P2[¢% +ir|"? > o|¢|”.

Thus (3.24b) is shown for this case.

As a second case, we assume now that odd anddy is even. The
principal symbol has the special form (2.3) witl2 < 3 < 2. In addition,
we have—(dg + 1) < 8 < dy + 1, which is restrictive only ifly = 0, or if
|B] > 1. We have again the formula (5.2), but now1)"»« = (—1)?. We
can therefore write

e 7 di+1—~ o©
QO =Y O S
p=0 77+th7§ q=0

where once again the terms in the second sum are differences

n ]d9+1

Sapq = ap(n+2pN,n+q77)) [n+2pN

o n dg+1
— ag(n+(2p—|—1)N, U+QH) [m}

Thus withé = n + 2pN, 7 =1+ q% andg(¢) = Reag(&, 7)€% 1 we
have

ReSy.q =n®t!(g(¢) — g(£+ N)).
We will finish the proof for this second case as above by showinggtisat
a decreasing function. By writing = % we find

T

g9(€) = Re¢~ @ (q|¢]? +ir)7/2
— Ao+1)/2(3=do=1)/2 Rgo—(do+1)/2 (o 4 §)5/2,

It remains therefore to show that the function
(5.6)
o — h(o) = Reo(@+1/2(541)8/2 has a negative derivative for> 0.

Leto = cot ¢, ¢ € (0, 5). We find

i dy+ 1
Wio)= o=l +ili R (2 -t

(o —I—i))ei‘b(g_l)}.



Parabolic boundary integral equations 445

In order to see that this is negative, we have to use a slightly different substi-
tution from the one used in the first case above. Thus we further introduce
¥ € (0,0) by —2¢ = ¢(5 — 1) ands = tan ). We have then

_1- 52 —26

Hence we compute

h/(()')ad 2+3 |O’ + 1‘ +1
= i g L 1= B0l — ) + 2ds + 1)5)
B m&d@ +1—B)(0+6(1—08)) + (dg + 1 +5)5}.

This last formulation shows clearly that(o) < 0.

We have thus shown that R&(¢) > ReSy 0¢2(¢) > 0. The estimate (5.5)
for ReS)  follows by the same argument as above in the first case.

For the third and final case we assume that (3.14d) holds, i. e.dpoth
anddy are even. In the sum (5.2), we have npwl )"« = (—1)P*4. The
sum is therefore alternating in both directions, and we group the summands
by four:

++ § SQp 2%
p,g=0

where we define

S2p 2q —

( 2 N 2 2 ) n d9+1 fr] di+1
w200 e ]
BT EPEL I 24 ) | L opN 0+ 202

o n dotlp g qdetl
—ag(n+(2p+1)N, 77+2qh )[n+(2p+1)N} [n+2q2”}
ht

(n+2pN, n+ (2q+1) 25y [ )%™ ’7 A

- ap(n+ sl }

PR n+2pN n+(2¢+1)
)|: n :|d9+1

he’ ln+(2p+1)N

+ ag(n+(2p+1)N,n+(2¢+ 1)

n :|dt+1
n+(2q+1)3%



446 M. Costabel, J. Saranen

Wlth§ =n+2pN, 7 =n+ 2q andg(g, T) = Reaﬁ(gﬂ-)gf(deﬂ)
7~ (d+1) we have

RGSQP 2q

ot (g6, 7) — g(64N,7) — (€74 oF

byt
E+N 7'+h 82
d9+1 dt+1
/ / 656 Tt e

As above in the first two cases, we will be able to conclude the positivity of
Re Sy, 2, and therefore the estimate (3.24b) td(¢) if we show that the
mixed derivative

>+g(£+N,r+i—”))
t

0? . y
(5.7) @g(ﬁm) is positive for¢, 7 > 0.

We seto = a&?,dy = (dp +1)/2,ds = d;y + 1, andy = 3/2, and we
compute

> —dip—ds (o +ir)7
000T

= gl 4 iT)7_2{d2(d1 —y)o? 4 dy (v — do)T?

+i(2dydy — (dy + da)y + (v — 1))07}.

h(o, 1) :=

We can now assume that = 1, and we setr = tan¢, x = cos¢ =
|1+ i7|~1. We obtain

p = 721 +ir|77Reh(1,7)
(58) = cosPpeos(y — 26 {da(d — ) + i (v — da)7*}
—sin ¢ cos psin(y — 2)¢ {2d1d2 — (dy + da)y + (v — 1)} .
Now we use the identities

cos(y—2)¢p = 2cos ¢ cos(y—1)¢p — cosy¢
= (4cos®¢p—1) cosyp — 2 cos ¢ cos(y+1)¢p
sin ¢ cos ¢ sin(y—2)¢ = %(— cos Yo + cos 2¢ cos(y—2) )
= (4cos*¢p—3cos?¢) cos yo
+ (=2 cos®p+cos p) cos(y+1)¢

and transform (5.8) into

p = qi(z) cosyp + ga(x) cos(y + 1)¢
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with

q(x) = —4y(y — Da' + (2(dy — d2)y + 3y(y — 1))2* + di(da — 7)
@2(x) =29(y — 1)a® + ((d2 — dr)y — (v — 1)z

From this form of the expressign it would not be too hard to show its
positivity for negativey and sufficiently largei;, d2, while for positive
~ one would use a different expression involviags(y — 1)¢. We shall,
however, concentrate now on the case at hand, nathely-1 andd; = 0,
thatisy = —1/2 anddy = 1, and we want to show that> 0 holds for all
x € (0,1)andalld; > 1/2.

We have in this case

p = (q1(z) + ¢2(x)) COS% =: q(f) cos

IS

with the polynomial

q(z) = —122* + 62° + (13 — 4dy)2? + (2d;, — 5)z + 6d; .

The partial derivative of(x) with respect tal; is (x + 1)(6 — 4z) which
is positive. It remains to show thafz) is positive ford; = 1/2 in order to
obtain its positivity for alld; > 1/2.

Fordy; = 1/2, we find

q(z) = =122 + 623 + 1122 — 42 + 3
=6(1+22)(1 —x)2® + 22 + (22 — 1)? +2

which is clearly positive for ali: € (0,1). This concludes the proof for the
third case. O

References

1.

2.

Abramowitz, M., Stegun, I.A. (1971): Handbook of Mathematical Functions with For-
mulas, Graphs and Mathematical Tables. GPO, Washington

Arnold, D.N., Noon, P.J. (1989): Coercivity of the single layer heat potential. J. Comput.
Math.7, 100-104

Arnold, D.N., Saranen, J. (1984): On the asymptotic convergence of spline collocation
methods for partial differential equations. SIAM J. Numer. A24].459-472

Arnold, D.N., Wendland, W.L. (1983): On the asymptotic convergence of collocation
methods Math. Comptl, 349-381

Arnold, D.N., Wendland, W.L. (1985): The convergence of spline collocation for
strongly elliptic equations on curves. Numer. Matfi, 317-343

Bramble, J.H., Hilbert, S.R. (1970): Estimation of linear functionals on Sobolev spaces
with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal.
7,112-124

Brown, R. (1988): Layer potentials and boundary value problems for the heat equation
on Lipschitz cylinders. University of Minnesota, Ph.D Thesis



448 M. Costabel, J. Saranen

8. Costabel, M. (1990): Boundary integral operators for the heat equation. Integral Equa-
tions. Operator Theor¥3, 498-552

9. Costabel, M., McLean, W. (1992): Spline collocation for strongly elliptic equations on
the torus Numer. Matl62, 511-538

10. Costabel, M., Onishi, K., Wendland, W.L. (1987): A boundary element collocation
method for the Neumann problem of the heat equation. In: Engl, H.W., Groetsch, C.W.
(eds.) Inverse and lll-Posed Problems. Academic Press, New York, pp. 369—384

11. Costabel, M., Penzel, F., Schneider, R. (1992): Error analysis of boundary element
collocation method for a screen problemRA. Math. Comp 58, 575-586

12. Fabes, E.B., Riviere, N.M. (1979): Dirichlet and Neumann problems for the heat equa-
tion in C'*-cylinders. Proceedings of Symposia in Pure Mathematics, vol. XXXV, Part
2, pp. 179-196

13. Friedman, A. (1983): Partial differential equations of parabolic type. Robert E. Krieger
Publishing company, Malabar, Florida

14. Hamina, M., Saranen, J. (1992): Spline Collocation Method for the Single Layer Heat
Operator. Boundary Elements XIV, Sevilla, Proceedings, Vol. 1, 349-363

15. Hamina, M., Saranen, J. (1994): On the spline collocation method for the single-layer
heat operator equation. Math. Con2, 41-64

16. Hsiao, G.C., Saranen, J. (1989): Coercivity for the single layer heat operator. Technical
report 89-2, Department of Mathematical Sciences, University of Delaware

17. Hsiao, G.C., Saranen, J. (1989): Boundary integral solution of some heat conduction
problems. Proceedings of the International Conference on Integral Equations and In-
verse Problems, Varna, September 18-23

18. Hsiao, G.C., Saranen, J. (1993): Boundary integral solution of the two-dimensional
heat equation. Math. Methods Appl. 9@, 87-114

19. Hamélainen, J. (1998): Spline collocation for the single layer heat equation. Ann. Acad.
Sci. Fenn. Math. Dissertation&43

20. Hamalainen, J., Saranen, J. (1997): A collocation method for the single layer heat
equation of the first kind. In: Constanda, C., Saranen, J., Seikkala, S. (eds.) Integral
Methods in Science and Engineering, vol 2: Approximation Methods, Longman, Har-
low, pp. 88-92.

21. Ladyzenskaya, O.A., Solonnikov, V.A., Ural’ceva, N.N. (1968): Linear and Quasilin-
ear Equations of Parabolic Type. Translations of the Mathematical Monoggsphs
American Mathematical Society Providence, Rhode Island

22. Ch. Lubich, R. Schneider (1992): Time discretization of parabolic boundary integral
equations. Numer. Matl63, 455-481

23. Mintz, G.M. (1934): Zum dynamischenafimeleitungsproblem. Math. 28, 323-338

24. Noon, J.P. (1988): The single layer heat potential and Galerkin boundary element
methods for the heat equation. University of Maryland, Ph.D. Thesis

25. Onishi, K. (1981): Convergence in the boundary element method for the heat equation.
TRU Math.17, 213-225

26. Piriou, A. (1970): Une classe d'emteurs pseudo-défentiels du type de Volterra.
Ann. Inst. Fourier Grenobl20, 77-94

27. Piriou, A. (1971): Prol@mes aux limites géraux pour des dgateurs diférentiels
paraboliques dans un domaine b@rAnn. Inst. Fourier Grenob21, 59-78

28. Pogorzelski, W. (1951): Sur la solution déduation inégrale dans le probine de
Fourier. Ann. Soc. Math. Polon. Ser. B4, 56—-64

29. Pogorzelski, W. (1956): Sur le préohe de Fourier gérali€. Ann. Polon. Math3,
126-141

30. Pogorzelski, W. (1964): Integral Equatidh$ergamon Press, Oxford



Parabolic boundary integral equations 449

31. Pissdorf, S., Schneider, R. (1991): A spline collocation method for multidimensional
strongly elliptic pseudodifferential operators of order zero. Integral Equations Operator
Theory14, 399-435

32. Pissdorf, S., Schneider, R. (1992): Spline approximation methods for multidimen-
sional periodic pseudodifferential equations. Integral Equations Operator Th&ory
626—672

33. Saranen, J. (1988): The convergence of even degree spline collocation solution for
potential problems in smooth domains of the plane. Numer. M&&h99-512

34. Saranen, J., Wendland, W.L. (1985): On the asymptotic convergence of collocation
methods with spline functions of even degree. Math. Cof6p91-108



