
CONVERGENCE OF A SIMPLE DISCRETIZATION OF
THE FINITE HILBERT TRANSFORMATION

MARTIN COSTABEL

ABSTRACT. For a singular integral equation on an interval of the real line, we study the behavior
of the error of a delta-delta discretization. We show that the convergence is non-uniform, between
order O(h2) in the interior of the interval and a boundary layer where the consistency error does
not tend to zero.

1. INTRODUCTION

Let a, b ∈ R with a < b. On the interval Ω = (a, b) we consider the singular integral equation,
abbreviated as (λI− AΩ)u = f ,

(1.1) λu(x)− p.v.

∫
Ω

u(y)

iπ(x− y)
dy = f(x) , x ∈ Ω .

We discretize it in the simplest imaginable fashion. We choose N ∈ N defining the mesh width
h = 1

N
and fix some origin aN ∈ R, thus defining the infinite regular grid

ΣN = {xN
m = aN +mh | m ∈ Z}

and its finite counterpart ΣN ∩ Ω indexed by

ωN = {m ∈ Z | xN
m ∈ Ω} ,

and consider the system

(1.2) λum − 1

iπN

∑
n∈ωN ,m̸=n

un

xN
m − xN

n

= f(xN
m) , (m ∈ ωN) .

This system can easily be programmed and solved with a couple of lines of code, without any
knowledge of analysis, and it produces surprisingly good results, see Figure 1 for some examples
for which the exact solution of the integral equation is known. These examples are introduced
below in Section 2.3 and further analyzed numerically in Section 4.

This simple delta-delta scheme is similar to Lifanov’s method of discrete vortices [1], except that
we take the same grid for the quadrature points and the evaluation points, and we put zero on the
diagonal.
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FIGURE 1. 3 examples: Exact solutions and their computed p/w constant approximations

There is also a similarity to the fully discrete Calderón calculus analyzed in [5], although the
differences, namely that we consider an open interval and not a closed curve and that our integral
operator is strongly singular, are too important to try a similar analysis.

Note that the approximation scheme (1.2) for the integral equation (1.1) is not a projection method
(or Petrov-Galerkin scheme) in any meaningful sense, although it has the form (except for the di-
agonal term) of a Galerkin scheme with Dirac deltas as test and trial functions. This has the
negative consequence that some tools are not available that one would like to use in order to
generalize results proved for the model singular integral equation (1.1) to equations with more
general strongly singular kernels, a variable multiplier λ instead of a constant, or equations with
lower order terms. These tools use the persistence of stability under compact perturbations of the
operator, and this is known for projection methods and also for more general discrete approxima-
tion schemes in the Stummel-Vainikko sense, see for example [10]. But it seems that our simple
scheme does not fit into any of these frameworks.

The question of a convergence proof for the delta-delta approximation (1.2) came up in the context
of our recent research into the error analysis of higher-dimensional simple discretization meth-
ods for strongly singular volume integral equations related to the Discrete Dipole Approximation
(DDA). The latter has been a standard tool in computational electrodynamics for half a century
[7, 11, 2], with a wide range of applications from interstellar dust clouds to nano-particles. Despite
the popularity of DDA in computational physics, there is very little known about its mathematical
properties, but we have now some results about its stability [4, 3]. In order to complete the conver-
gence proof, one needs estimates for the consistency error, and for gaining insight on the behavior
of this, the one-dimensional example (1.1), (1.2) presented itself as a “toy problem”, where the
error analysis should be more transparent, while still showing some essential peculiarities of the
more complicated higher-dimensional situation. It turns out that this is indeed the case, but that
the results are interesting by themselves, and we present this in the following.

2. STABILITY

Numerical stability of the system (1.2), which we abbreviate as (λI− TN)UN = FN , means that
there exists a bound of UN by FN uniform in N , that is, a uniform resolvent estimate in some
operator norm ∥(λI− TN)−1∥ ≤ CS for all N .
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2.1. Stability in ℓ2. Such a stability estimate has been proved in [4], and although most of it is
based on quite well known arguments, for the sake of completeness we quote the result and the
main points of its proof here.

Proposition 2.1. The matrix TN of the system (1.2) is selfadjoint with its eigenvalues in C =
[−1, 1]. For λ ∈ C the discretization method (1.2) is stable in the ℓ2 norm if and only if the
integral operator λI− AΩ is boundedly invertible in L2(Ω), and this is equivalent to λ ̸∈ C. For
such λ, there is an estimate for the operator norms

(2.1) ∥(λI− TN)−1∥L(ℓ2(ωN )) ≤ dist(λ, C)−1 = ∥(λI− AΩ)
−1∥L(L2(Ω)) .

The arguments are based on Fourier analysis and on a Lax-Milgram or Galerkin style use of the
notion of numerical range. We recall the definition of the numerical range W (B) of a bounded
linear operator B in Hilbert space, namely the range of values on the unit sphere of the sesquilinear
form associated with B

(2.2) W (B) = {(u,Bu)|∥u∥ = 1} .
This is a bounded set contained in the disk with radius ∥B∥, convex by the Toeplitz-Hausdorff
theorem, and its closure contains the spectrum of B. Writing for any u of norm one and z =
(u,Bu) the estimate

dist(λ,W (B)) ≤ |λ− z| = |(u, λu−Bu)| ≤ ∥(λI−B)u∥ ,
one immediately gets the resolvent estimate in the operator norm

(2.3) ∥(λI−B)−1∥ ≤ dist(λ,W (B))−1 .

Considering that the restriction to a subspace does not increase the numerical range, one gets the
same resolvent estimate for operators defined from B by restricting the sesquilinear form to a
subspace. This is the Lax-Milgram argument for stability of Galerkin methods, and it applies here
both to the integral equation (1.1) and the discrete system (1.2).

The integral operator AΩ in (1.1) and the system matrix TN in (1.2) have this feature in common:
They are both projections to bounded sets of translation invariant (i.e. convolution) operators, and
these can be diagonalized by Fourier analysis.

The finite Hilbert transformation AΩ is the restriction to Ω of the Hilbert transformation A on R,
that is the convolution with the kernel K defined as the distribution

K(x) =
1

iπ
p.v.

1

x

that has the Fourier transform
K̂(ξ) = sign ξ (ξ ∈ R) .

From the Plancherel theorem follows that the convolution operator A acting in the Hilbert space
L2(R) is equivalent to the operator of multiplication with its symbol K̂ in L2(R). It follows in
particular that A is a selfadjoint involution and its spectrum consists of two eigenvalues ±1 of
infinite multiplicity.

This implies W (AΩ) ⊂ W (A) = C and the resolvent estimate

∥(λI− AΩ)
−1∥L(L2(Ω)) ≤ dist(λ, C)−1 .
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On the discrete side there is a parallel argument using Fourier series instead of the Fourier trans-
form. The system matrix TN is a finite section of a (bi-)infinite Toeplitz matrix T that, owing
to

1

iπN

1

xN
m − xN

n

=
1

iπ(m− n)
,

is independent of N ,

(2.4) T =
( 1

iπ(m− n)

)
m,n∈Z with zero on the diagonal.

Let σT be its symbol (characteristic function) defined by the Fourier series

σT (τ) =
∑
m∈Z

1

iπm
eimτ =

∞∑
m=1

2 sinmτ

πm
= sign τ − τ

π
(τ ̸= 0) , σT (0) = 0 .

Then by the Plancherel theorem it follows that the discrete convolution operator defined by T
acting on ℓ2(Z) is equivalent to the operator of multiplication with σT in L2(−π, π). Therefore
both its spectrum and the closure of its numerical range W (T ) are equal to C = [−1, 1]. Since
TN arises from T by restriction to ℓ2(ωN), we get the inclusion W (TN) ⊂ C and the uniform
resolvent estimate in (2.1).

With these simple arguments, we have proved Proposition 2.1, except for two points: The assertion
that stability implies that λ ̸∈ C, and the last equality in (2.1), where we would only get an
inequality.

For the first point we use the fact that whereas the system (1.2)

(2.5) (λI− TN)UN = FN ,

when considered as an approximation scheme for the integral equation (1.1) (λI−AΩ)u = f , is not
a projection method, it is indeed a standard Galerkin scheme when considered as an approximation
scheme for the infinite system

(2.6) (λI− T )U = F in ℓ2(Z) .

As such, it converges whenever it is stable; in detail: Denote by PN the orthogonal projection
operator in ℓ2(Z) onto the subspace of sequences vanishing outside ωN , identified with ℓ2(ωN),
so that we can write (λI − TN)PN = PN(λI − T )PN . If we take as the origin aN of the grid a
fixed point inside Ω, then

lim
N→∞

PNU = U in ℓ2(Z) for any U.

If UN and U satisfy (2.5), (2.6) with FN = PNF , then we have the identity

U − UN =
(
I− (λI− TN)−1PN(λI− T )

)
(U − PNU) .

Now let λ ∈ C be such that the scheme (2.5) is stable,

∥(λI− TN)−1∥ ≤ CS .

Then ∥U − UN∥ ≤
(
1 + CS∥λI − T∥

)
∥U − PNU∥ (this is the quasi-optimality of the Galerkin

scheme, Céa’s lemma), hence UN → U , and because of ∥UN∥ ≤ CS∥F∥, we find in the limit

∥U∥ ≤ CS∥F∥ .
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This implies that λI− T is invertible with the norm of the inverse bounded by C−1
S , hence λ ̸∈ C,

in fact dist(λ, C) ≥ C−1
S .

For the second point, we recall that the finite Hilbert transformation and its spectral theory is a
well-studied classical object. In particular it can be diagonalized by a generalized Fourier trans-
formation [6] implying that as soon as Ω is a proper subinterval of R (even a half line), its action
in L2(Ω) is unitarily equivalent to the operator of multiplication by σ in L2(−1, 1) with σ(ξ) = ξ.
Both its spectrum and the closure of its numerical range W (AΩ) are therefore equal to C, which
shows the last equality in (2.1).

2.2. Solution behavior. The simplicity of the statement of Proposition 2.1 is somewhat deceptive
and hides a more complicated situation: Whereas the solvability of the finite system (1.2) is, of
course, independent of the norm we choose in the space of sequences, the latter only being used to
describe the stability, this is quite different for the solvability of the integral equation (1.1). Here,
owing to the singular behavior of the solution at the endpoints of Ω, the spectrum of the finite
Hilbert transform depends on the function space. The generalized eigenfunctions

gξ(x) =
1
π

√
b−a

2(x−a)(b−x)
e

i
2π

log ξ+1
1−ξ

log x−a
b−x

for which it is shown in [6] that they diagonalize the operator via the Hilbert space isomorphism
f 7→ F : L2(a, b) → L2(−1, 1) with the transform pair

F (ξ) = 1√
1−ξ2

∫ b

a

gξ(x)f(x)dx, f(x) =

∫ 1

−1

gξ(x)F (ξ) dξ√
1−ξ2

such that AΩf is transformed to ξF (ξ), are genuine eigenfunctions in Lp(Ω) with p < 2. More
precisely, one considers the arcs of circles

Cα0 = {λ ∈ C | λ+1
λ−1

= e2πiα,Reα = α0}

which connect the points −1 and 1 inside the unit circle if 1
4
< α0 < 3

4
and outside if α0 ∈

(0, 1
4
) ∪ (3

4
, 1). Then the spectrum of AΩ in Lp(a, b) is the domain between C1− 1

p
and C 1

p
. Its

interior consists of eigenvalues. For an eigenvalue λ, define the exponent α by the above relation

α = 1
2πi

log λ+1
λ−1

or equivalently λ = −i cotπα, 1− 1
p
< Reα < 1

p
.

Then the corresponding eigenfunction in Lp(a, b) is

u(x) = (x− a)−α(b− x)α−1.

The spectrum in the dual space L
p

p−1 (Ω) is the same set. Thus for p < 2 the solution of (1.1)
exists, in general, but is not unique, and for p > 2 it is unique, but does not exist for all right
hand sides. Only for p = 2, the two arcs of circle degenerate to the interval C, and for λ ∈ C the
operator λI− AΩ in L2(Ω) is injective with dense range.

Thus, the delta-delta discretization manages to mimick the solution behavior of the singular inte-
gral equation for the specific value p = 2.

For AΩ, it is also known how to write the resolvent explicitly as a singular integral operator with
weight, involving multiplication by powers of the distance to the points a and b, see for example



6 MARTIN COSTABEL

[8] or [9]. For the discrete version TN , such explicit formulas for the diagonalization and resolvent
do not seem to be available.

2.3. Exact solutions. Examples where both u and f are explicitly known functions can be ob-
tained from function-theoretic arguments. For u ∈ L1(a, b) define the Cauchy integral for z ∈
C \ [a, b]

w(z) =
1

2πi

∫ b

a

u(y)

y − z
dy .

Then w is holomorphic in C \ [a, b], behaves as O(|z|−1) as |z| → ∞, and satisfies on Ω = (a, b)
the jump relations

(2.7) w+ − w− = u ; w+ + w− = AΩu, where w±(x) = lim
ε→0+

w(x± iε) .

Therefore the integral equation (1.1) is equivalent to the jump condition

(λ− 1)w+ − (λ+ 1)w− = f .

Reciprocally, any function w that is holomorphic outside [a, b], vanishes at infinity and has square
integrable upper and lower traces on the branch cut [a, b] provides a solution u to the integral
equation (1.1) with right hand side f , if u and f are defined from the traces w± via formulas (2.7).

For example, the function w0(z) = log z−a
z−b

is (or can be chosen to be) holomorphic in C \ [a, b],
is O(|z|−1) at infinity, and has the upper and lower traces

w0,+(x) = log x−a
b−x

− iπ , w0,−(x) = log x−a
b−x

+ iπ

Since these traces belong to L2(a, b), the jump u0(x) = −2πi solves the integral equation (1.1) if
we choose the right hand side f0(x) = −2πiλ− 2 log x−a

b−x
.

Another example is w1(x) =
√

(z − a)(z − b)−z+ a+b
2

that has the right branch cut and behavior
at infinity. Traces on (a, b) are

w1,+(x) = i
√

(x− a)(b− x)− x+ a+b
2

, w1,−(x) = −i
√

(x− a)(b− x)− x+ a+b
2

The jump u1(x) = 2i
√

(x− a)(b− x) therefore solves the integral equation (1.1) if we choose
the right hand side f1(x) = 2iλ

√
(x− a)(b− x) + 2x− a− b.

Other examples can be obtained by applying an entire analytic function F to the preceding exam-
ple functions w, provided F (0) = 0. For a third example, we take the function F (w) = eαw − 1
and apply it to the first example above, that is, we choose an exponent α ∈ C and define
w2(z) = eα log z−a

z−b − 1 =
(
z−a
z−b

)α − 1.
The traces on the branch cut w2,±(x) = (x − a)α(b − x)−αe∓iπα − 1 belong to L2(a, b) if
α ∈ (−1

2
, 1
2
). The corresponding exact solution u2 and right hand side f2 are given by

u2(x) = −2i sin πα
(x− a

b− x

)α

with AΩu2(x) = 2 cos πα
(x− a

b− x

)α

−2 and f2 = λu2−AΩu2 .

Note that if λ = i cotπα, then f2 is a constant function.
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3. ERROR ESTIMATES

3.1. Approximate solutions. For sake of simplicity we assume from now on that the length of
Ω is a multiple of h and that the origin aN is chosen such that the boundary points a and b are
midpoints of the mesh.

(3.1) b− a = Mh , M ∈ N , ωN = {1, . . . ,M} , xN
1 = a+ h

2
, xN

M = b− h
2
.

When no confusion is possible, we omit superscripts N and write the discrete system as

(3.2) λum − 1

iπN

M∑
n=1
n̸=m

un

xn − xm

= fm , m ∈ ωN .

In the spirit of Lifanov’s method of discrete vortices [1], the delta-delta scheme can be considered
as a Nyström-type quadrature method, where the integral in (1.1) is replaced by its approximation
by the midpoint rule. The approximate solution u(N) satisfies the modified equation

(3.3) λu(N)(x)− 1

iπ

∑
n∈ωN

1

N

u(N)(xn)

xn − x
= f(x) ,

and its evaluation in the gridpoints x = xm gives the system (3.2) for the nodal values um =
u(N)(xm).

Alternatively, one can also consider the delta-delta scheme as a one-point quadrature approxima-
tion of a collocation method with piecewise constant trial functions. This is the popular point of
view for DDA, see for example the error analysis in [12].

Let χj be the characteristic function of the interval Ij = [xj − h
2
, xj +

h
2
]. We consider the space

of piecewise constant functions SN,0(ωN) = span{χj | j ∈ ωN}.

Then the collocation scheme is: Find uN ∈ SN,0(ωN) such that

(3.4) λuN(xm)−
1

iπ

∫
Ω

uN(y)

y − xm

dy = f(xm) , m ∈ ωN .

From this we get our system (3.2) by taking the un as the coefficients of uN in the basis of the χn,

uN =
∑
n∈ωN

unχn,

and for the off-diagonal matrix elements AΩχn(xm) approximating the integrals by a one-point
quadrature rule: ∫

χk(y)

y − xm

dy ∼

0 if m = n
1

xn − xm

1

N
if m ̸= n

After this replacement of the integrals, the system (3.4) becomes (3.2). For the diagonal elements,
note that the Cauchy principal value integral

∫ χn(y)
y−xn

dy vanishes for symmetry reasons.

Notice that even if the coefficients (un) in (3.3) and (3.4) are the same, the approximate solutions
uN and u(N) are not the same: uN in (3.4) is a piecewise constant function, whereas u(N), which
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for λ ̸= 0 is defined by (3.3) once the uk are known, is a sum of the possibly smooth function f
and a rational function with simple poles in the grid points.

3.2. Consistency error. We define the consistency error as the vector cN [u] with components

(3.5) cNm[u] =
1

iπ

(∫ b

a

u(y)

y − xm

dy − h
∑

n∈ωN\{m}

u(xn)

xn − xm

)
, m ∈ ωN .

It can be written as cN [u] = (RNAΩ − TNRN)u, where RN is the restriction operator that maps
a function u to its nodal values U = (u(xm))m∈ωN .

Thus it is the quadrature error for the midpoint rectangle rule applied to the Cauchy singular
integral. This quadrature error has been estimated under various assumptions on the function u
in [1, Section 1.3], from which we borrow some ideas. We study here only the case where u is
Hölder continuous up to the boundary, u ∈ Cα([a, b]) for some α ∈ (0, 1].

In the applications of the singular integral equation (1.1) studied in [1], mainly from fluid dy-
namics, more general functions u with singularities at the boundary points a and b need to be
considered. But since we want to emphasize the analogy with the volume integral equation of the
DDA method, and solutions of the latter tend to be smooth up to (smooth points of) the boundary,
the simple situation of u ∈ Cα([a, b]) will be sufficient for our purpose.

An advantage of this simplification is that we can get convergence results in an easy way from
combining the consistency estimates of this section with the stability estimates of the preceding
section. Convergence results for the case of solutions with singularities seem to require a much
more complicated analysis, see [1, Chapter 7].

We consider first the case where u is constant.

Lemma 3.1. Let

sj =

∫ b

a

dy

y − xj

−
∑

k∈ωN\{j}

h

xk − xj

.

Then for all j ∈ ωN

(3.6) |sj| ≤
h2

8

∣∣ 1

(xj − a)2
− 1

(b− xj)2
∣∣ = |a+b

2
− xj|(b− a)

( h

2(xj − a)(b− xj)

)2
.

Proof. We split

sj =
∑

k∈ωN\{j}

sjk with sjk =

∫
Ik

dy

y − xj

− h

xk − xj

.

First we observe that there are cancellations: sjk + sjk′ = 0 for k′ + k = 2j, because of the
antisymmetry of the kernel. Therefore

sj =
∑
k∈Aj

sjk with Aj =

{
{k | 2xj − a+ h

2
< xk < b} if xj ≤ a+b

2
,

{k | a < xk < 2xj − b− h
2
} if xj ≥ a+b

2
.
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Then we apply the classical error representation for the midpoint rule∫ h
2

−h
2

f(t)dt− hf(0) =

∫ h
2

−h
2

1
2
(h
2
− |t|)2f ′′(t)dt ,

valid for any C2 function, to the function f(t) = 1
t+xk−xj

. Consider the case xj ≤ a+b
2

. Then for
the relevant indices k, we have xk > xj and therefore f ′′(t) = 2(t+ xk − xj)

−3 > 0. Hence

0 < sjk <
h2

8

∫
Ik

2dy

(y − xj)3
=⇒ 0 < sj <

h2

8

∫ b

2xj−a

2dy

(y − xj)3
=

h2

8

(
− 1

(b− xj)2
+

1

(xj − a)2
)
.

Likewise, for xj ≥ a+b
2

, the second derivative is always negative, and we obtain

0 > sj >
h2

8

∫ 2xj−b

a

2dy

(y − xj)3
=

h2

8

(
− 1

(b− xj)2
+

1

(xj − a)2
)
.

□

The lemma means that for xj in any compact subinterval of (a, b), the sj converge to zero as
O(h2). But when xj tends to a or b as h → 0, then sj will have non-zero limits. For example for
x1 = a + h

2
, one finds s1 → log 2 − γ, where γ = 0.5772.. is Euler’s constant. For this case, the

estimate (3.6) gives sj ≤ 1
2

in the limit.

Another way to express this behavior is that for a given error threshold ϵ, the points xj where |sj|
exceeds ϵ are confined to a boundary layer of thickness h/

√
2ϵ.

Proposition 3.2. Let 0 < α ≤ 1. For u ∈ Cα([a, b]) let cNj [u] be defined by (3.5). Then

(3.7) |cNj [u]| ≤ C
(
hα| log h|∥u∥Cα([a,b]) + |u(xj)|

h2

(xj − a)2(b− xj)2

)
.

Here the constant C depends on a, b but not on h = 1
N

nor on u.
If, in addition, u(a) = u(b) = 0 holds, then the estimate simplifies to

(3.8) |cNj [u]| ≤ C hα| log h|∥u∥Cα([a,b]) .

Proof. Split

iπcNj [u] = cjj +
∑
k ̸=j

cjk + u(xj)sj with

cjj =

∫
Ij

u(y)

y − xj

dy, cjk =

∫
Ik

(u(y)− u(xj)

y − xj

− u(xk)− u(xj)

xk − xj

)
dy

and sj as defined and estimated in Lemma 3.1.
For cjj we find

|cjj| =
∣∣ ∫

Ij

u(y)− u(xj)

y − xj

dy
∣∣ ≤ ∫

Ij

|y − xj|α−1dy ∥u∥Cα([a,b]) ≤ hα ∥u∥Cα([a,b]) .
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For the term u(xj)sj we use the estimate from Lemma 3.1. It remains to estimate
∑

k ̸=j cjk. Write

cjk = c0jk + c1jk with c0jk =

∫
Ik

u(y)− u(xk)

y − xj

dy , c1jk =

∫
Ik

(
u(xk)− u(xj)

)(
1

y−xj
− 1

xk−xj

)
dy.

Then∣∣∣∑
k ̸=j

c0jk

∣∣∣ ≤ (h
2

)α∥u∥Cα([a,b])

(∫ xj−h
2

a

dy

xj − y
+

∫ b

xj+
h
2

dy

y − xj

)
≤ C hα| log h| ∥u∥Cα([a,b]) .

Finally, c1jk =
∫
Ik

(
u(xk)− u(xj)

)
xk−y

(y−xj)(xk−xj)
dy can be estimated as

|c1jk| ≤ ∥u∥Cα

∫
Ik

|xk − y|
|y − xj|xk − xj|1−α

dy ≤ C ∥u∥Cα h2 |xk − xj|α−2 = C ∥u∥Cα hα |k − j|α−2.

For α < 1, the infinite series
∑

k∈Z\{j} |k − j|α−2 converges, so that∣∣∣∑
k ̸=j

c1jk

∣∣∣ ≤ C hα ∥u∥Cα .

For α = 1, we would pick up an extra factor of logN = | log h|.
The estimate (3.7) is proved.
Finally, if u(a) = u(b) = 0, then |u(xj)| ≤ C ∥u∥Cα(xj − a)α(b− xj)

α, hence

|u(xj)|
h2

(xj − a)2(b− xj)2
≤ C hα∥u∥Cα

( h

(xj − a)(b− xj)

)2−α
.

The last factor is uniformly bounded, and this completes the proof of (3.8) □

3.3. Discrete error. If u is the solution of the integral equation (1.1) with right hand side f and
UN = (un)n∈ωN is solution of the discrete system (1.2) with fm = f(xm), then we define the
discrete error EN as vector with the components Em = u(xm) − um, m ∈ ωN . It is easy to see
that EN satisfies the discrete system with the consistency error as right hand side,

(3.9) (λI− TN)EN = cN [u] .

By a direct application of our stability and consistency estimates we obtain an estimate for the
discrete error. We choose the situation where the simplified consistency estimate (3.8) holds.

Theorem 3.3. Assume λ ∈ C \ [−1, 1]. Let u be solution of the integral equation (1.1) with right
hand side f and (un)n∈ωN be solution of the discrete system (1.2) with fm = f(xm). If we assume
that u ∈ Cα([a, b]) with 1

2
< α ≤ 1 and u(a) = u(b) = 0, then there is a constant C independent

of N such that the discrete error satisfies

(3.10) ∥EN ∥ℓ2(ωN ) ≤ C N
1
2
−α logN .

Proof. From the error equation (3.9) and our stability estimate (2.1) we obtain

∥EN ∥ℓ2(ωN ) ≤ C ∥cN [u]∥ℓ2(ωN ) .

Now our consistency estimate (3.8) is an ℓ∞(ωN) estimate, so we lose a factor of
√
N :

∥cN ∥ℓ2(ωN ) ≤ |ωN |
1
2∥cN ∥ℓ∞(ωN ) ≤ C N

1
2∥cN ∥ℓ∞(ωN ) ≤ C N

1
2
−α logN∥u∥Cα([a,b]) .
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□

3.4. Convergence in L2.

When the solution u does not vanish on the boundary, we only have the consistency estimate
(3.7), and the consistency error cN [u] will not converge to zero in ℓ∞ and even less in ℓ2, hence
the discrete error will not converge to zero in ℓ2, either. Instead, we can study the error of the
piecewise constant approximation

eN = u− uN with uN =
∑
k∈ωN

ukχk .

Its L2(Ω) norm can be bounded by

∥eN ∥2
L2(a,b)

=
∑
k∈ωN

∫
Ik

|u(y)− uk|2dy

≤ 2
∑
k∈ωN

(∫
Ik

|u(y)− u(xk)|2dy +
∫
Ik

|u(xk)− uk|2dy
)

≤ 2
∑
k∈ωN

(
h2α+1∥u∥2

Cα + h |Ek|2
)

≤ C
(
h2α∥u∥2

Cα([a,b])
+ h ∥EN ∥2

ℓ2(ωn)

)
.

Thus we get convergence as soon as we can show that N− 1
2∥EN∥ℓ2 tends to zero. By our ℓ2

stability estimates, this is equivalent to the fact that N− 1
2∥cN∥ℓ2 tends to zero. For this, as we have

seen before, it would be sufficient that the consistency error ∥cN∥ℓ∞ tends to zero.

But this is not necessary: In fact, assume that the consistency estimate (3.7) is satisfied. It implies

|cNj | ≤ C ∥u∥Cα([a,b])

(
hα| log h|+max

{ h2

(xj − a)2
,

h2

(b− xj)2
})

Now xj − a takes the values h
2
, 3h

2
, 5h

2
,..., and therefore the sum∑
j∈ωN

( h2

(xj − a)2
)2

is bounded independently of N by a constant

C ′ = 16
∞∑
j=0

(2j + 1)−4 < ∞ .

This implies finally

h∥cN ∥2
ℓ2(ωN )

≤ C ∥u∥2
Cα([a,b])

(
h2α| log h|2 + hC ′

)
.

We have proved the following error estimate.
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Theorem 3.4. Assume λ ∈ C \ [−1, 1]. Let u be solution of the integral equation (1.1) with
right hand side f , let UN = (uk)k∈ωN be solution of the discrete system (3.2) with fj = f(xj),
and let uN =

∑
k∈ωN ukχk be the corresponding piecewise constant function. If we assume that

u ∈ Cα([a, b]), then there is a constant C independent of N such that the error eN = u − uN

satisfies
∥eN ∥L2(a,b) ≤ C

(
N−α logN +N− 1

2

)
.

The last term O(
√
h) in this error estimate that prevents the estimate to improve with regularity

above C
1
2 is due to the boundary layer and the choice of the L2 norm for measuring the error. One

could choose Lp for 1 ≤ p ≤ ∞ instead. In the same way as above, one obtains

∥eN ∥Lp(a,b) ≤ C
(
hα∥u∥2

Cα([a,b])
+ h

1
p ∥EN ∥ℓp(ωn)

)
.

This would be best for p = 1, but we are tied to p = 2 because we depend on our stability estimate.

4. NUMERICAL EXPERIMENTS

In this section, we fix arbitrarily the interval [a, b] = [−0.15, 1.35] and choose N as an odd
multiple of 10, so that [a, b] is subdivided in 3N/2 subintervals of length h = 1

N
. We use the 3

examples discussed in section 2.3, where we divide the first example by −2πi, so that u0(x) = 1.
In the second example, we normalize by dividing by 2i, so that u1(x) =

√
(x− a)(b− x). For

the third example, we choose α = 0.25, so that u2(x) =
(

x−a
b−x

) 1
4
/
√
2. In Figure 1, we saw the

3 exact solutions with their computed piecewise constant approximation, computed for N = 10
with λ = 2.

4.1. Behavior of consistency error and discrete error. Knowing the exact solution, we can
define the consistency error cN as in (3.5) and the discrete error EN as in Section 3.3. In Figure 2,
we plot for our 3 examples the absolute values of cN and EN as functions of x ∈ [a, b] for
N = 10, 50, 250, 1250. In the logarithmic scale, one can see the convergence in the interior of
the interval with a power of N , whereas near the boundary points there is either much slower
convergence for example 2, where u1(a) = u1(b) = 0, or no convergence at all for example 1
where the solution u0 does not vanish at the boundary points, thus illustrating the analysis shown
in Section 3. Note that we have not presented an analysis for the case of a singular solution such
as the one in the third example, but the numerical results show a similar behavior as for the other
examples, although the consistency and discrete errors, like the solution itself, tend to infinity near
b.

4.2. Convergence rates. In Figure 3 we plot several error norms as functions of N = 10 × 3j ,
j = 0, ..., 6 in a loglog scale: The ℓ2(ωN) norms of the consistency error cN and the discrete
error EN as well as the ℓ2 norm of the restriction of EN to the interior subinterval [0, 1.2] of
(a, b). Finally the L2(a, b) norm of the error eN of the piecewise constant approximation, which
we compare with the normalized ℓ2 norm of EN , N− 1

2∥EN∥ℓ2(ωN ). What we observe for the
three examples can be compared with the error estimates in Proposition 3.2 and Theorems 3.3
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FIGURE 2. Exact solution u, rhs f, consistency error c and discrete error E

and 3.4, taking into account that we only have global error estimates. Whereas we have seen in
Section 3.2 that the consistency error cN behaves differently in the interior of the domain and near
the boundary, our technique of proof does not allow to infer the same behavior for the discrete
error EN . Yet we see for both examples 1 and 2 a O(N− 1

2 ) behavior for ∥EN
int∥ℓ2 , which would

correspond to an order of O(N−1) for the ℓ∞ norm and also for the L2 error of the corresponding
piecewise constant approximation.

For the global ℓ2 norms of the errors cN and EN we see that in example 1 they do not tend to zero,
in accordance with the behavior near the boundary of estimates (3.6) and (3.7). In example 2, they
are of order O(N− 1

2 ), which reflects again the boundary layer behavior for the approximation of
the function u1, which is Hölder continuous of class C

1
2 there.

The global L2 norm of the error eN is seen to behave as O(N− 1
2 ) in example 1, which corresponds

to Theorem 3.4. In example 2, the behavior is O(N−1), which better than what Theorem 3.4
predicts for a C

1
2 solution. The explanation is that whereas the Theorems 3.3 and 3.4 consider

worst-case scenarios, the solution u1 is in fact C∞ except at the two boundary points, so that
estimate (3.10) may be seen to hold with α = 1.
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FIGURE 3. Error norms, compared to N−1/2 (Ex. 1), N−1 (Ex. 2), N−1/4 (Ex. 3),
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