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11.1 Volume Integral Equations in Acoustic Scattering

Volume integral equations have been used as a theoretical tool in scattering
theory for a long time. A classical application is an existence proof for the
scattering problem based on the theory of Fredholm integral equations. This
approach is described for acoustic and electromagnetic scattering in the books
by Colton and Kress [CoKr83, CoKr98] where volume integral equations ap-
pear under the name “Lippmann-Schwinger equations”.

In electromagnetic scattering by penetrable objects, the volume integral
equation (VIE) method has also been used for numerical computations. In par-
ticular the class of discretization methods known as “discrete dipole approxi-
mation” [PuPe73, DrFl94] has become a standard tool in computational optics
applied to atmospheric sciences, astrophysics and recently to nano-science un-
der the keyword “optical tweezers”, see the survey article [YuHo07] and the
literature quoted there. In sharp contrast to the abundance of articles by physi-
cists describing and analyzing applications of the VIE method, the mathemat-
ical literature on the subject consists only of a few articles. An early spectral
analysis of a VIE for magnetic problems was given in [FrPa84], and more
recently [Ki07, KiLe09] have found sufficient conditions for well-posedness of
the VIE in electromagnetic and acoustic scattering with variable coefficients.
In [CoDK10, CoDS12], we investigated the essential spectrum of the VIE in
electromagnetic scattering under general conditions on the complex-valued
coefficients, finding necessary and sufficient conditions for well-posedness in
the sense of Fredholm in the physically relevant energy spaces. A detailed
presentation of these results can be found in the thesis [Sa14]. Publications
based on the thesis are in preparation. Curiously, whereas the study of VIE
in electromagnetic scattering has thus been completed as far as questions of
Fredholm properties are concerned, the simpler case of acoustic scattering
does not seem to have been covered in the same depth. It is the purpose of
the present paper to close this gap.
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The basic idea of the VIE method in scattering by a penetrable object
is to consider the effect of the scatterer as a perturbation of a whole-space
constant coefficient problem and to solve the latter by convolution with the
whole-space fundamental solution. In the acoustic case, we consider the scalar
linear elliptic equation

div a(x)∇u+ k(x)2u = f in Rd (11.1)

where we suppose that the (in general complex-valued) coefficients a and k
are constant outside of a compact set:

a(x) ≡ 1, k(x) ≡ k ∈ C outside of the bounded domain Ω.

and f has compact support. We further assume that u satisfies the outgoing
Sommerfeld radiation condition. It is well known that under very mild condi-
tions on the regularity of the coefficients a and k, there is at most one solution
of this problem.

We then rewrite (11.1) as a perturbed Helmholtz equation.

(∆+ k2)u = f − divα∇u− βu (11.2)

with
α(x) = a(x)− 1, β(x) = k(x)2 − k2 .

Let now Gk be the outgoing full-space fundamental solution of the Helm-
holtz equation, i.e. the unique distribution in Rd satisfying (∆+ k2)Gk = −δ
and the Sommerfeld radiation condition. In dimension d = 3, we have

Gk(x) =
eik|x|

4π|x|
.

We obtain the VIE from the following well known lemma.

Lemma 1. Let u be a distribution in Rd satisfying −(∆ + k2)u = v, where
v has compact support, and the Sommerfeld radiation condition. Then u =
Gk ∗v, and if v is an integrable function, the convolution can be written as an
integral:

u(x) =

∫
Gk(x− y) v(y) dy .

Applying this lemma to (11.2), we obtain the equation

u = −Gk ∗ f + divGk ∗ (α∇u) +Gk ∗ (βu),

valid in the distributional sense on Rd. This can be written as a VIE

u(x)− div

∫
Ω

Gk(x− y)α(y)∇u(y) dy −
∫
Ω

Gk(x− y)β(y)u(y) dy = uinc(x)

(11.3)
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where we use the notation

uinc(x) := −
∫
Gk(x− y)f(y) dy .

The fact that the coefficients α and β vanish outside of Ω permits to consider
the integral equation (11.3) on any domain Ω̂ satisfying Ω ⊂ Ω̂ ⊂ Rd. Once
u solves (11.3) on Ω̂, one can use the same formula (11.3) to extend u outside
of Ω̂. It is clear that the resulting function u will not depend on Ω̂ and will be
a solution of the original scattering problem (11.1). In the following we will
make the minimal choice Ω̂ = Ω and therefore consider (11.3) as an integral
equation on Ω. We shall abbreviate this integral equation as

u−Au = uinc (11.4)

with

Au(x) = div

∫
Ω

Gk(x− y)α(y)∇u(y) dy +
∫
Ω

Gk(x− y)β(y)u(y) dy . (11.5)

Assuming that Ω is a bounded Lipschitz domain, one can consider the VIE
(11.4) in the standard Sobolev spaces Hs(Ω). The natural energy space as-
sociated with the second order PDE (11.1) is H1(Ω), but other values of s
can be interesting, too, in particular s = 0, i.e. the space L2(Ω), which seems
naturally associated with the apparent structure of (11.4) as a second kind in-
tegral equation and may be useful for analyzing certain numerical algorithms
for its solution.

The convolution with Gk is a pseudodifferential operator of order −2, map-
ping distributions with compact support and Sobolev regularity s toHs+2

loc (Rd)
for any s ∈ R, which implies immediately boundedness of the operator A in
low order Sobolev spaces:

Proposition 1. Let α, β ∈ L∞(Ω). Then

A : H1(Ω)→ H1(Ω) is bounded .

If in addition ∇α ∈ L∞(Ω), then A is a bounded operator in L2(Ω).

Another immediate observation is that the second integral operator in (11.5)
maps L2 to H2, and is therefore compact as an operator in L2 and in H1.
This is relevant if a(x) is constant everywhere, since then α ≡ 0 and the first
integral operator in (11.5), which is not compact, in general, is absent.

Theorem 1. Let a(x) = 1 in Rd and k ∈ L∞(Rd). Then the VIE (11.3) is
a second kind Fredholm integral equation with a weakly singular kernel and
the Fredholm alternative holds: The operator I− A is a Fredholm operator of
index zero in L2(Ω) and in H1(Ω).
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11.2 Smooth Coefficients

Besides the case of the Laplace operator addressed in Theorem 1, another
situation is well known and is studied for example in the book [CoKr83]. This
is the case of a coefficient a(x) that is smooth on all of Rd. In this case, α = 0
on the boundary Γ = ∂Ω, and the first integral operator in (11.5) can be
transformed by integration by parts.

divGk ∗ (α∇u)(x) = −div

∫
Ω

∇y
(
Gk(x− y)α(y)

)
u(y) dy

= ∆

∫
Ω

Gk(x− y)α(y)u(y) dy − div

∫
Ω

Gk(x− y)(∇α)(y)u(y) dy

= −α(x)u(x)−k2
∫
Ω

Gk(x−y)α(y)u(y) dy−div
∫
Ω

Gk(x−y)(∇α)(y)u(y) dy.

This allows to write the VIE (11.3) in an equivalent form that shows its nature
as a Fredholm integral equation of the second kind with a weakly singular
kernel.

a(x)u(x)−
∫
Ω

Gk(x− y)(β(y)− k2α(y))u(y) dy

+ div

∫
Ω

Gk(x− y)(∇α)(y)u(y) dy −
∫
Ω

Gk(x− y)β(y)u(y) dy = uinc(x)

(11.6)

Theorem 2. Let a ∈ C1(Rd) and k ∈ L∞(Rd). Then the operator I− A is a
Fredholm operator of index zero in L2(Ω) and in H1(Ω) if and only if a(x) 6= 0
for all x ∈ Ω.

11.3 Piecewise Smooth Coefficients

In obstacle scattering, the case of a globally smooth coefficient a(x) is not nat-
ural. There one expects rather a sharp interface where the material properties
change discontinuously. We thus assume that the coefficient a is piecewise C1,
which means that α ∈ C1(Ω).

One can then still carry out the partial integration as in the previous
section, but there will appear an additional term on the boundary Γ = ∂Ω:

divGk ∗ (α∇u)(x)

= −div

∫
Ω

∇y
(
Gk(x− y)α(y)

)
u(y) dy +div

∫
Γ

n(y)Gk(x− y)α(y)u(y) ds(y)

= −α(x)u(x)−k2
∫
Ω

Gk(x−y)α(y)u(y) dy−div
∫
Ω

Gk(x−y)(∇α)(y)u(y) dy

−
∫
Γ

∂n(y)Gk(x− y)α(y)u(y) ds(y) .
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The additional term is just the Helmholtz double layer potential with density
αu, which we can abbreviate as Dγ(αu) . Here γ : H1(Ω) → H

1
2 (Γ ) is the

trace operator. We obtain our volume integral operator in the form

(I−A)u(x) = a(x)u(x) +A1u(x) + Dγ(αu)(x) (11.7)

with

A1u(x) = −k2
∫
Ω

Gk(x− y)α(y)u(y) dy

+ div

∫
Ω

Gk(x− y)(∇α)(y)u(y) dy −
∫
Ω

Gk(x− y)β(y)u(y) dy .

The operator A1 is bounded from L2(Ω) to H1(Ω), hence compact as an
operator in H1(Ω).

The operator u 7→ Dγ(αu) is bounded in H1(Ω) but not compact, in
general. It is also not continuous with respect to the L2(Ω)-norm of u. This
implies that the operator I−A, despite being generated from a pseudodiffer-
ential operator of order zero, does not have a continuous extension to L2(Ω)
from the dense subspace H1(Ω). It does have a continuous extension to L2(Ω)
from the subspace H1

0 (Ω), but this is a different operator, where the last term
in (11.7) is missing.

11.3.1 Extension to a Boundary-Domain System

From the VIE (11.4) with the integral operator written in the form (11.7), we
can get an equation on the boundary by taking the trace on Γ :

aγu+ γA1u+ γDγ(αu) = γuinc . (11.8)

We now treat the trace γu as if it was an additional unknown, denoted by
φ, and consider the two equations (11.4) and (11.8) as a coupled boundary-
domain integral equation system.

Taking into account the jump relation for the double layer potential

γDφ = − 1
2φ+Kφ,

where K is the Helmholtz double layer potential operator evaluated on Γ , as
well as the fact that the commutator [K,α] between K and the multiplication
by α is compact in the trace space H

1
2 (Γ ), we can write this coupled system

in the following matrix form.(
aI+A1 D(γα·)
γA1

1
2 (1 + a)I+ αK + [K,α]

)(
u
φ

)
=

(
uinc

ψ

)
(11.9)

It is easy to see that this system is equivalent to the original VIE in the
following sense.
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Proposition 2. Let Ω be a bounded Lipschitz domain with boundary Γ . Let
α ∈ C1(Ω) and β ∈ L∞(Ω), and let uinc ∈ H1(Ω) be given.

If u ∈ H1(Ω) is a solution of the VIE (11.4), then
(
u
φ

)
=

(
u
γu

)
solves the

coupled system (11.9) with ψ = γuinc.

Conversely, let ψ ∈ H 1
2 (Γ ) be given and

(
u
φ

)
∈ H1(Ω)×H 1

2 (Γ ) be a solution

of the coupled system (11.9). If ψ = γuinc, and if γa 6= 0 a.e. on Γ , then
φ = γu, and u is a solution of the VIE (11.4).

Proof. The construction of the coupled system shows that it is satisfied by
any solution of the VIE and its trace on the boundary. To show the converse,
one subtracts the trace of the first equation in (11.9) from the second and
finds

γa
(
γu− φ

)
= 0.

Since we assume that γa does not vanish on a set of positive measure, φ = γu
follows.

11.3.2 Lipschitz Boundary

The system (11.9) is easier to analyze than the original VIE (11.4). This is due
to the fact that now the main difficulty is pushed to the boundary integral op-
erator K, which is a well-studied classical boundary integral operator [Co88].
Indeed, splitting off the operators that we already have identified as compact
operators, and taking into account that the coupling operator φ 7→ D(γαφ) is
bounded from H

1
2 (Γ ) to H1(Γ ) [Co88], we see that the Fredholm alternative

holds for the system (11.9) (and therefore for the VIE (11.4)) if and only if
the operator

Â =

(
aI D(γα·)
0 1

2 (1 + a)I+ αK

)
is a Fredholm operator of index zero in the space H1(Ω) ×H 1

2 (Γ ). This, in
turn, is the case if and only if both

aI : H1(Ω)→ H1(Ω) and
1

2
(1 + a)I+ αK : H

1
2 (Γ )→ H

1
2 (Γ )

are Fredholm of index zero. We have shown the following result.

Theorem 3. Let Ω be a bounded Lipschitz domain with boundary Γ . Let α ∈
C1(Ω) and β ∈ L∞(Ω). Then for the VIE (11.3) the Fredholm alternative
holds in H1(Ω) if and only if

(i) a(x) 6= 0 in Ω and
(ii) 1

2 (1 + a)I+ αK is Fredholm of index zero in H
1
2 (Γ ).
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Condition (ii) can be made more precise by using information about the es-
sential spectrum of the operator 1

2 I +K. This operator differs by a compact
operator from the corresponding operator for k = 0, i.e. the trace of the
harmonic double layer potential operator. The latter is known to be a posi-
tive selfadjoint contraction in H

1
2 (Γ ) if this space is equipped with a suitable

scalar product, see [Co07].
Therefore its essential spectrum, which is also the essential spectrum of

the operator 1
2 I +K, is a compact subset Σ of the open interval (0, 1). It is

known that for any Lipschitz boundary 1
2 ∈ Σ, that for smooth boundaries

Σ = { 12}, and that for polygons in R2, Σ is an interval depending on the
corner angles.

If the coefficient function a is piecewise constant, so that α = a − 1 is a
constant on Γ , the operator 1

2 (1 + a)I+ αK is either the identity if α = 0 or
a multiple of the operator σI− ( 12 I+K) with

1 + a

2(1− a)
= σ − 1

2
⇐⇒ a =

σ − 1

σ
. (11.10)

It follows that the operator 1
2 (1 + a)I+ αK is Fredholm of index zero if and

only if σ 6= Σ.
If the function α is not constant on Γ , one can use the fact that the

operator K commutes modulo compact operators with multiplications by C1

functions and apply standard localization procedures. The result is that if for
each point x ∈ Γ , the number σ from (11.10) does not belong to the essential
spectrum Σ, then the operator 1

2 (1 + a)I+ αK is Fredholm. This condition

∀x ∈ Γ :
1

1− a(x)
6∈ Σ (11.11)

is, in general, only a sufficient condition. In order to obtain a necessary con-
dition, one would need a “localized” version Σx of Σ, which is only known in
some cases, namely when Γ has a suitable tangent cone at x.

We summarize this discussion.

Theorem 4. Assume the hypotheses of Theorem 3. Let Σ ⊂ (0, 1) be the
essential spectrum of the operator 1

2 I + K in H
1
2 (Γ ). If the coefficient a ∈

C1(Ω) is constant on Γ , then the volume integral operator I−A is Fredholm
of index zero in H1(Ω) if and only if

(i) a(x) 6= 0 in Ω and
(ii) a(x) 6= σ−1

σ for x ∈ Γ, σ ∈ Σ .

If a is not constant on Γ , then the conditions (i) and (ii) imply that the volume
integral operator is Fredholm in H1(Ω).
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11.3.3 Smooth Boundary

If Γ is smooth (C1+ε with ε > 0), then the boundary integral operator K has
a weakly singular kernel and is compact in H

1
2 (Γ ). This implies that Σ = { 12}

in Theorem 4. But it also implies directly that the operator 1
2 (1 + a)I + αK

is Fredholm of index zero if and only if 1 + a does not vanish. We obtain
immediately as a corollary of Theorem 3 the following result.

Theorem 5. Let Ω be a bounded smooth (Lyapunov) domain. Let α ∈ C1(Ω)
and β ∈ L∞(Ω). Then for the VIE (11.3) the Fredholm alternative holds in
H1(Ω) if and only if

(i) a(x) 6= 0 in Ω and
(ii) a(x) 6= −1 on Γ .

The conditions on the coefficient a(x) obtained in Theorem 5 have been known
for a long time as conditions for Fredholm properties of the scattering problem
(11.1). In [CoSt85], the case of piecewise constant coefficients was treated. Us-
ing the method of boundary integral equations, the case of smooth boundaries
in any dimension and the case of polygons in dimension two was studied. In
the thesis [Ch12] and the paper [BBCC12], variational methods for the inter-
face problem were used to obtain the same conditions in the case of smooth
domains and also necessary and sufficient conditions for some non-smooth
domains.
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