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Synopsis
We study a boundary integral equation method for transmission problems for strongly elliptic
differential operators, which yields a strongly elliptic system of pseudodifferential operators and which
therefore can be used for numerical computations with Galerkin's procedure. The method is shown to
work for the vector Helmholtz equation in R3 with electromagnetic transmission conditions. We
propose a slightly modified system of boundary values in order for the corresponding bilinear form to
be coercive over H1. We analyse the boundary integral equations using the calculus of
pseudodifferential operators. Here the concept of the principal symbol is used to derive existence and
regularity results for the solution.

1. Introduction

The usefulness of strongly elliptic pseudodifferential operators for numerical
methods is now well established ([9,13,23,29,30,11]). For boundary value
problems, there are many papers dealing with the analytical and computational
aspects of various examples demonstrating this fact. The so-called "direct
method" leads easily from a strongly elliptic boundary value problem to a
strongly elliptic system of pseudodifferential equations on the boundary. This
method is now well understood and also has, by its simplicity, a wide range of
applications to mixed boundary value problems and to problems with irregular
boundaries [3]. This is one advantage of such first kind integral equations
compared to the traditionally-preferred Fredholm integral equations of the
second kind. For the latter equations, there is no generally applicable method of
derivation, and they lose their Fredholm properties as soon as the coefficients or
the boundaries are not smooth. Other advantages of the direct method are that
the solutions have direct physical meaning, and the appropriate norm is the
energy norm. Therefore the corresponding boundary element methods share
several nice properties of the usual finite element methods [31].
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For acoustic transmission problems, the authors showed in [4] that for the case
of the Helmholtz equation the direct method also leads to strongly elliptic
boundary integral equations. This was done using the symbols of the operators
defined by local Fourier transformation in the case of smooth boundaries in any
dimension, respectively by local Mellin transformation in the case of a two-
dimensional domain with corners (see also [26]).

In the present paper, we show how to derive strongly elliptic boundary integral
equations for a general class of strongly elliptic transmission problems, by the
direct method. We then apply this to electromagnetic transmission problems. To
do this we must have a bilinear form, connected with the boundary data through
Green's first theorem, that is, coercive over all of H1, whereas the usual energy
form is not [8]. To achieve this, we use a modification of the boundary data which
gives rise to a transmission problem equivalent to the original one. Then we
compute the kernels of the integral operators and their principal symbols which
show clearly how the proposed modification transforms the system of operators
into a strongly elliptic one. This kind of transformation of the boundary integral
operators was first used by MacCamy and Stephan in [18] for the perfect
conductor problem, i.e. the exterior boundary value problem for Maxwell's
equations with given electric data.

Under the assumption of uniqueness we derive existence of the solution of our
integral equation on the transmission manifold. Since the general electromagnetic
transmission problem is equivalent to our boundary integral equation, we have an
analytic solution procedure via the integral equation; in connection with
Galerkin's method we even have a numerical solution procedure by boundary
elements. Our system of operators for the transmission problem contains the
systems which can be used for electric and magnetic boundary value problems
and for screen scattering problems with electric and with magnetic boundary data.
For all these cases we therefore have strong ellipticity of the corresponding
boundary integral equations. For screen problems, these and corresponding
symbols are the starting point of an analysis of singularities at the screen edge,
see [25,24].

2. The direct method for transmission problems
The "direct method" for strongly elliptic boundary value problems was studied

in [5]. Here we present a related analysis of transmission problems. We see that
the case of the scalar Helmholtz equation studied in [4] is representative of a
general class of transmission problems. A similar analysis is possible for very
general combinations of boundary and transmission conditions [21].

Let Qj be a bounded domain in W with boundary TeC°° and Qz^BrVQj.
We consider the following transmission problem:

P1M1 = 0 inQj , (2.1)
P2u2 = 0 in Q2, (2.2)

u2 satisfies some "radiation condition", see (2.17),
R2y2u2-R1y1u1 = u0 on T. (2.3)

Here, for j = 1,2, P} are elliptic differential operators of order 2m with C°°
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coefficients, for simplicity both denned throughout W; YJUJ are the Cauchy data
of M, on F from Q,:

; yjUj = (UJ, dnUj, . . . , d%"~\)\T, (2.4)
where 3n means the normal derivative with respect to the normal pointing from
Q1 to Q2; RjYj a r e systems of 2m differential operators with C°° coefficients:

2 m - l

{RiYiui)i= 2 RfdfojV, (2.5)
Ar=O

where Rf are tangential differential operators of order
oxdRf = i-k. (2.6)

We assume that Rf are Dirichlet systems of order 2m (see [17]), which implies,
as well as (2.6), that the lower triangular matrix

D ( T>ik\
"•j ~ \"-j )i,k=0,...,2m-l

is invertible, the inverse also being a tangential differential operator.
In order to transform the transmission problem to a problem on the boundary,

we must assume that we know fundamental solutions G, for the differential
operators Pjt i.e. two-sided inverses on the space %' of distributions with compact
support on U". This hypothesis immediately makes available a "second Green
formula" and a "representation formula" as follows: Let

2m

P = y Pi 3' (2 7)
1=0

be the representation of Ps near T with_differential operators Pjt of order 2m — /
which are tangential on T. Let M; e Co(Q;), fi : = PjUl\Ql, and u° be the extension of
Uj by zero outside Q;. If we apply Pj in the distributional sense to u°, the result
differs from/? by a distribution supported by T [6 (23.48.13.4)], [1]:

2m-l 2m-l-it
PjU?=f°+(-iy 2 2 P,.k+l+13lnUj®dk

n6r. (2.8)
*:=0 /=0

Multipole layers v <8> dk5r appear here, defined by

(v <8> 3k
ndT, 4>) : = j v 3'nk(j> do for (j> € Co(W), (2.9)

where do is the (n — l)-dimensional surface measure on T, and d'n is the transpose
of the differential operator 3n. Thus (2.8) is a distributional formulation of
Green's second formula. By applying the relation GjPjU° = u° to (2.8), we obtain
the representation formula:

2m-l 2m-l-k
u° = Gjf° + (-iy 2 2 Kjk(Phk+l+13'nUj). (2.10)

k=0 1=0

Here the multipole potential operators Kjk are defined by

) for 0 e C°(r), (2.11)

where G>(A:, y) is the kernel of G;.
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If we introduce the matrices

9,:={P,,k+i+xJ%\Zk with Pjk: = 0 for k>2m,

then we find from (2.10) by taking Cauchy data, that

YjUj = YjGjfJ + ( - \)%<3>jYjUj. (2.13)

The operator

Cj\={-\)%<3>j (2.14)

is the so-called "Calderdn projector". Its properties are known [22]:
LEMMA 2.1. The operator Cj is a pseudodifferential operator Cj = {Cf)^Zl witn

orders ord Cf = i — k. Thus it is a continuous operator from
2m-l

qcs FT rjm—k—V2+sfr\ fy -I e\
Jt .— [[ tl (V) K^-1-3)

into itself for any s eU. If' P1 = P2 then

d + C2 = l. (2.16)

Here H*(T) is the usual Sobolev space on F.
From (2.13) it follows immediately that C, are projection operators: Cf = Cj.

For Qj we can take closures in Sobolev spaces in (2.10), whereas for the exterior
domain Q2 we have (2.10) at first only for functions w2 with compact support. But
we can use (2.10) for

Qf: = Q2 n {x e U" | \x\ ^ R} (R large enough).

Then (2.10) holds for Q, if and only if the terms coming from Q2\Qf and from
3Q2\F ={*eR" | | ; c | = .R} tend to zero as R -> °°. For f2 = 0 this means

lim 2 f d'n'(y)G2(-,y)(P2,k+l+13l
nu2)(y)do(y)^0foTallxeQ2.

R—*™ k+l+lS2m J\y\=R
(2.17)

Analogously to the classical situation of the Helmholtz and Maxwell equations,
we call this a "radiation condition".

We can now define the solution spaces for (2.1), (2.2):

DEFINITION 2.2.

L\ := {«! e Hm+S{QX) | PJMJ = 0 in Q J
L2 := {u2 e Hm+S(Q2) \ P2u2 = 0 in Q2 and u2 satisfies (2.17)}.

Note that the ellipticity of P2 implies u2e CC°(Q2), so that the integral in (2.17)
makes sense. If we use the well-known mapping properties of the potential
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operators K]k ([1], [6]), we obtain

LEMMA 2.3. Let s eU. For v e Ws the following are equivalent:

(i) CjV = v.
(ii) Cjg = v for some g e Xs.
(Hi) v = YjUj for some u, e L).

In this case, u, is given by the representation formula

u,: = Kj&jv in Q, (2.18)

where Kj is the vector (KJ0, . . . , Kjam-\).

Thus we can write problem (2.1)-(2.3) in the equivalent form

(1-COyxH^O, (2.19)
(l-C2)y2M2 = 0, (2.20)

R2y2u2-R1y1u1 = u0. (2.21)

This is a system of dm equations on the boundary for the Am unknowns

We emphasise here that up to now everything remains true if we consider «j
and u2 as vector-valued functions with N components and Px and P2 as
(iV x JV)-systems of differential operators. The matrices Rj} 9j, 3Kj, Cj} etc., must
then be block matrices of (N x iV)-blocks. System (2.19), (2.20), (2.21) is then a
(6mN x 4mA0-system.

From this system we can extract a quadratic subsystem by eliminating R2y2u2
from (2.21) and multiplying (2.19), (2.20) by RY and R2, respectively. We obtain

0, (2.22)
(1 - C2)R1y1u1 = - ( 1 - C2)u0, (2.23)

with
Cj-^RjCjRf1 (/ = 1,2). (2.24)

Now we subtract (2.22) from (2.23) and obtain the quadratic system

Hv = - (1 - C2)u0 with H:=CX-C2 (2.25)

for the unknown v = Rxy\Ur.
We have the following equivalence theorem:

THEOREM 2.4. Let u0 e Xs be given.
(i) If Uj e Lsj(j = 1,2) solve the transmission problem (2.1), (2.2), (2.3) then

v = RiYiUx e W solves the equation (2.25).
(ii) IfveW solves (2.25) then with

v^C^v; v2:= C2(v + u0) (2.26)
and

uj: = KffR-'vj in Q, (see (2.18)), (2.27)

Uj e Uj solve the problem (2.1), (2.2), (2.3).

Proof, (i) This follows from the derivation of (2.25) above.
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(ii) We use Lemma 2.3 which, from (2.26), gives that (for; = 1, 2) (1 - C,>;- = 0,

hence Vj = RjYjPj f°r some w; e Uj. It remains to show (2.3):
From (2.26) and (2.25) it follows that

v2~vx = (C2- CJv + C2u0 = -Hv + C2u0 = (1 - C2 + C2)w0 = «o- E

Now we formulate the assumptions which will imply the strong ellipticity of the
operator H. They consist essentially of the strong ellipticity of the boundary value
problems on Qx and Q2 and of two other boundary value problems obtained from
interchanging the domains Qi and Q2.

We require the existence of a "first Green formula" for Ps and Rj\ Let

(Bj\
gm-l

or1 K }

and B)v := 2 Bfvk for v e C°(T; Cm), Q) correspondingly.

ASSUMPTION 2^. For j_= 1, 2, there exists a sesquilinear form <!>,: (w, v)
$;(u, V) on CQ(QJ) x Co(Q;) such that

J r m-1
uj. PjUj dx = Re ^{Uj, Uj) + ( - i y Re 2 * / W • eJ7y«y do (2.29)

n, Jr i=o

for Uj e CJ(Qy).
ASSUMPTION 2.6. (a) (Continuity). For every bounded subset

exists C > 0 such that (for; = 1, 2)
there

for all w, v e C%(Qj n /C).
(b) (Garding's inequality) For every bounded subset K c Un there exist A > 0,

ceU, e > 0 such that

Re «D;(M, M) ^ A UMII^^.) - c ||u|||r-->(a/) (2-30)
for allueC%(&,nK).

It is classical (see e.g. [17]) that these assumptions are satisfied for many
strongly elliptic boundary value problems. For example, let Pj be of second order,
i.e.

(2.31)

with smooth coefficients af, bf, and c;; (dk = d/dXk)-
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Green's first formula (2.29) holds with

= ff ( 5 ^ • af 3*« + 2 « • 6* a*w + fi . cyi;) dx (2.32)
and

B;YjUj = u\r

QJY,ui=dyiu\r,
with the conormal derivative

3vu= 2 »,af 3*u. (2.34)

Here M may be an /V-vector and af, bf, and c, (iV x AQ-matrices. The
representation (2.31) is not unique, and, contrary to the scalar case, in the
vector-valued case the validity of Assumption 2.6(b) depends on the choice of this
divergence representation. This is what happens for the case of electromagnetic
problems, see Section 3.

The boundary integral in (2.29) corresponds to the natural duality on the
"energy space" %° with respect to the L2(T; C2m) scalar product:

For v, w e C°°(F; Cm) with

let
2m-lJ" an-i

X v~k- W2m-i-kdo. (2.35)
r k=o

This then extends by continuity to v, w € $f° (cf. (2.15)), and we have

J r m — \ m — \ __^ -»

S ^ . 2 > + I Qfi.Bfw do,r *=o *=o >
in particular for v = w

{Rjv, Rjv)^ = 2Re I "2 Bfi-Qfvdo. (2.36)
•>r k=o

We need to consider two more boundary value problems defined by inter-
changing the interior and exterior domains. Thus we write

Pl:=P2onQ1) Pi:=PlOnQ2,\
Ki.— K2, K.2-—K.I. J

ASSUMPTION 2.7. Assumptions 2.5, 2.6 are satisfied if Pj is replaced by P] and
Rjby R]forj = l,2.

Under these assumptions, we can infer the strong ellipticity of our boundary
integral operator H, as follows:

THEOREM 2.8. Let Assumptions 2.5, 2,6, 2.7 be satisfied. Then there exists a
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compact operator C: %?—*%? and a constant /? > 0 such that

Re(v, (H + C)v)xo^P \\v\\2xo for all v e 3^. (2.38)

Here ||u||2^= E ^ o 1 ||v*||«--*->«<r).
Proof. We first consider the special case

P1 = P2, R1 = R2. (2.39)

In this case, one finds from (2.16), (2.24) that

C1 + C2 = l. (2.40)
It suffices to show (2.38) for v e C°(F; Cm) c %°. Define u,- (j = 1, 2) by the

representation formula (2.27):
Uj = xKffiR^v inQj, (2.41)

where x e C%(W) satisfies ^ = l o n a neighbourhood of Qt. Then from (2.24) and
(2.14) we see that, for the Cauchy data,

(2.42)
holds.

Thus, by the definition of H in (2.25),

Hv = -(R1Y1U1 + R2Y2U2)- (2.43)
By (2.40) we have

v = R2Y2U2~ RiYiui- (2-44)
Thus the trace lemma gives

Hlieog C(\\Ul\\2
H^ai) + ||M2||^(Q2)). (2.45)

By Garding's inequality (2.30), the right-hand side can be further estimated by
C cC
— Re (<&i(wi, «i) + <I>2(«2) u2)) + -r- (II"lll/f-'fa,) + ll^ll//'"-''^,))- (2-46)A A

Note that supp u2^K where K = supp x is bounded.
From (2.41) it follows that the ||-||Hm-«-terms in (2.46) can be estimated by

|| Tlu llstr0 with a compact operator 71: 5if°—> 2£°. Such an estimate is also possible
for ||/2M2||#'(Q2) f°r a n v f e "̂ » because P2u2 = 0 where x = 1 o r / = 0 holds, thus
P2u2e Co(U"), and its support has a positive distance from F, so that the kernel
of the operator PJXKJSPJRJ1 defining it is smooth. Thus

= II T2v |||« for some compact T2: dK0-^- 3%°.u2. P2U2 dx

Now we apply Green's first theorem (2.29) to (2.46) and use (2.36). With
= 0, we obtain

r — (-iy
Re *y(H/f «,) = Re u-. P^ dx — {R^u,, RJYJUJ)^,

Jo, ^
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hence

||v ||2*o ^ || TlV \\l« + || T2v Hi, + — {(R1y1u1, RmuJxo - (R2y2u2, R2y2u2)^}.

(2.47)
On the other hand, we find, from (2.43), (2.44), that

(v, Av)%o = {-R1y1ul + R2y2u2, - /

- {R2y2u2,
+ 2i Im (RiYiUu R2Y2u2)^.

By taking real parts, we conclude from (2.47) that

After subsuming all compact parts into a single one, we arrive at (2.38).
Now we abandon hypothesis (2.39). By what we have shown so far, we know

that Garding's inequality (2.38) holds in particular for the case where P2 and R2
are replaced by P\ and R\, respectively, because by (2.37) hypothesis (2.39) is
then satisfied. We denote the corresponding Calder6n projector by C\, and the
corresponding boundary integral operator by

Similarly, if we replace Pt and Rx by P\ and R\, then (2.39) is satisfied and
therefore Garding's inequality holds. We denote the corresponding Calderdn
projector by C\ and the boundary integral operator by

H\:=C\-C2.
Now from (2.40), it follows that

Cx + C\ = 1 = C\ + C2,
hence

H\ = 2C1-1; Hf
2=l-2C2

and finally
Hi). (2.48)

Therefore, the Garding inequality (2.38) for H follows by adding the two Garding
inequalities for H\ and H\. •

3. A coercive bilinear form for electromagnetic problems
The time-harmonic scattering of electromagnetic fields by a penetrable body Qt

in the case of isotropic homogeneous materials is described by Maxwell's
equations (see [20]):

curl E = ioifxH; curl H =-imeE in Qx U Q2, (3.1)
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with the transmission conditions

[ « x £ ] r = 0; [itXH]r = 0 on V (3.2)
and the radiation condition

0}li-^-xHsc + kEsc = o(\x\-1); EK = O(\x\~1) as |*|-»•«>. (3.3)
\x\

Here [v]r:= v | ^ - v\^ denotes the jump of v across T.
We assume that the coefficient functions e, jU, and k are constant on Qj and on

Q2, and co is the constant frequency:
£ = £,, ^ = ^ , k = kj on Q;(y = l, 2); k2 = o)2e^i.

We further assume ([20]) that
Ree ; >0 , Ime,aO; arg/t, e [0, ^ ) ; arg a> e [0, ^ ) ; ju;->0. (3.4)

The total fields E are decomposed into
E = Ein + Ex; H = Hin + //sc,

where the incoming fields Ein and Hin are supposed to satisfy (3.1), and the
scattered fields £sc and //sc appear in the radiation condition (3.3). The unique
solvability of (3.1)-(3.3) is shown in [16], [20].

If we define

ii = u1 = E in Qx; u = u2 = Esc in Q2; uo = Ein, (3.5)
then the components of u satisfy the Helmholtz equation:

(A + A:?)M1 = 0 inQx; (A + A:!)M2 = 0 in Q2. (3.6)
We consider the transmission conditions (compare [16])

M1T "" M2T ~ M0T;

Ax div « ! — k2 div w2 = A2 div u0;
£]H . u1 — e2n. u2 = £2n . Ho',

— it x curl«! n x curlu2= — n x curlM0,
Ml l"2 A*2

(3.7)

where vT:= -nx(nx v) denote the tangential components of v, and the
radiation condition

X X
— X cur lM 2 —— d i v u 2 +ik2u2 = o{\x\~x) as \x\—»°°. (3.8)

The coefficients A; =£0 in (3.7) are specified later.
Let us now study the equivalence of the transmission problems (3.1)-(3.3) and

(3.6)-(3.8). Because we only need standard applications of Green's formulae, we
do not specify the precise smoothness requirements. Even weak solutions in

I.) are allowed.
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We first show that (3.1)-(3.3) imply (3.6)-(3.8), for any choice of A1( A2:
By the definition (3.5), it is clear that Maxwell's equations (3.1) imply the

Helmholtz equations (3.6), and div E = 0 shows that the radiation condition (3.8)
follows from (3.3). Also the first, second, and fourth of the transmission
conditions (3.7) are satisfied. In order to show the third condition in (3.7), we
choose a test function q> e Co(R3) and obtain

(3.9)
0 = grad cp . [n x H]T do = — grad q). curl H dx

= ico grad q>. eE dx = —ico q>[en . E]r do.
JS2,UQ2 Jr

From this we find [en . E]r = 0, which is the third condition in (3.7).
Conversely, assume that (3.6)-(3.8) are satisfied. Furthermore, assume that u0

satisfies (A + kl)u0 = 0 and div w0
 = 0> E is defined by (3.5), and H is defined by

H = (lAeoju) curl E. Then (3.1)-(3.3) will be satisfied if and only if div Mj = 0 and
div uz = 0. Therefore we define

p:= p1:= ki2di\u1 in Q^; p : = p2:—k^2di\U2(=k^2div(uo + u2)) in Q2-
Then p satisfies

(A + &2)p = 0 inQjUQj (3.10)

and
f = k2klp2 onT. (3.11)

Furthermore, from the radiation condition (3.8), it follows ([14], [25]) that u2 can
be represented in Q2 by the Stratton-Chu representation formula (see Lemma
4.3, below). This implies in particular that p satisfies a Sommerfeld type radiation
condition

- ^ . g r a d p - ^ 2 p = O ( |^ r 1 ) ; p = O(|^r1) as |x|^oo. (3.12)
\x\

In addition, a second transmission condition for p holds:
Define Eo: = E + grad p in Qj U Q2- Then

div Eo = div E + Ap = div u - k2p = 0 in Qj U Q2.
Hence

curl H = curl curl Eo = —icoeEn.
icon

Thus the pair (Eo, H) satisfies Maxwell's equations (3.1) and the transmission
condition [fix HJr = 0. We conclude as above (3.9) that [sn.Eo]r = 0.
Subtracting [en. E]r = 0, we find

£X dnpx = e2 dnp2 on T. (3.13)
Thus we have reduced the question of equivalence of the two transmission
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problems to the question of unique solvability of the scalar transmission problem
(3.10)-(3.13). Sufficient conditions for this uniqueness are well-known. For
example, from [4, Proposition 4.7] it follows that either one of the following two
conditions implies p = 0:

and Im A1A2£7e2 î = 0 and ImA1A1£^£2 = 0; (3.14)
Im k2 > 0 or k2 = 0, and if there exist four numbers a, /?, y, 5 ̂  01
with -ak1T1-pk2Ii + yk1T1kl + dX2elkl = O, I (3.15)
then at least one of the numbers a, (i, y, 8 has to be zero. J

Notable special cases of these conditions are:

(i) If Aj = £i and A2 = £2, then p = 0 follows,
(ii) If Ax = 1/nisl and A2 = \l[i2T2, then p = 0 follows.

(Hi) If all coefficients e, A, and k2 are real, then p = 0 follows,
(iv) The periodic eddy current problem:

Here £i = io/a>, CD>0, and a > 0 is the electric conductivity in Qj. Also £2>0,
hence

k2>0.

Therefore, (3.14) reduces to the conditions

I m ^ O and R e ^ O . (3.16)
Ai Ax

Note that Im (kl/kl) > 0, so that in this case the natural choice
k = k~2 (3.17)

does not necessarily imply p = 0. The choices (i) or (ii) above, however, will also
work in this case.

(v) The choice (3.17) always leads to a solution of the transmission problem
(3.1)-(3.3)^ Namely, in this case define Eo as above by Eo = E + grad p, then the
pair (Eo, H) satisfies Maxwell's equations (3.1) as well as the transmission
conditions (3.2). However, as seen in (iv) above, the solution of the problem
(3.6)-(3.8) might then be non-unique.

Besides the "physical" transmission problem, for mathematical simplicity we
also consider the corresponding problem where all the coefficients A, e, and /z are
equal to unity, i.e. the transmission conditions

"IT - «2T = «OT;

div Mj — div u2 = div u0;

n . Mi — n . M2 = n . u0;

n X curl Mj — n X curl u2 = n X curl u0.

(3.18)

Now we wish to apply the theory developed in Section 2 to the present case.
We have the differential operators

Pj: = - (A + kj) = curl curl - grad div - kj. (3.19)
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This representation leads to the conormal derivatives (cf. (2.31), (2.34))

dvu := dVlu = dV2u = -n X curl u + n. div u (3.20)
and to the well-known [14] Green formula (cf. (2.29), (2.32))

— I M,-. (A + kj)Wj dx = (curl M; . curl vP, + div M, div vP, — kj£j. vv;) dx
Ja, Jo,

+ ( - i y I Sj. ( -« X curl ivy + n div wj) do (3.21)

for My, Hy e C Q ( Q ; ; C3).
So we have the sesquilinear forms

4>7(M, vP) = I (curl M . curl w + div u div w — kfu . w) dx (3.22)

and the boundary operators
Bu := Bxu = B2u = M|F;

_ , , , „ , „ . „ , _ , , (3.23)
dvu/ r Qu:=Q1u = Q2u = dvu\r.

By separating tangential and normal components and defining (on r ) the Cauchy
data

v:=n.u; v :=uT:=u-n(n . u) =-nx(nxu);
ip:=divu; tp := — n x curlM,

Green's first formula (3.21) reads

f lf.Ru2dx = ^.(M1, M2) + (- iy f (u1!/*2 + $T.rP2) do. (3.25)
Jn, Jr

The corresponding second Green's formula, obtained by antisymmetrising
(3.25), and representation formula ("Stratton-Chu formula", see Section 4),
obtained by inserting a fundamental solution in the latter, are also well known.
Hence one can derive boundary integral equations by the method described in
Section 2. Assumptions 2.5 and 2.6(a) are satisfied. Assumption 2.6(b) does not
hold, however, since for harmonic vector fields u we have

*,(«,«) = - f kf\u\2dx,

which cannot be estimated from below by UMII^Q^C')- This well-known fact
([8], [25]) implies here that the boundary integral operator H is not strongly
elliptic. There is, however, a strongly elliptic boundary integral operator for the
transmission problem (3.6), (3.18). This gives, as the solution of the correspond-
ing equation (2.25), not directly the set of Cauchy data as defined by (3.18) or
(3.24) but a modified set. This modified set of Cauchy data is entirely equivalent
to the original one in the sense that each set can be computed from the other one
by application of tangential differential operators. We propose the following
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modification:

V' := ip - d i v v = divw -divTw, "I
xj>' := V> + gradT u = - n X curl u - n x (n x (grad («. u))). I

Thus the "electric" boundary operators are modified by

\xj)'J ~ \xj>-divTv/ \tp) ~ \ip' + divTv) ^' '
and the "magnetic" boundary operators by

\ ^ 7 \ ^ + gradTu/ \rj>) \^ ' -grad T u/
This modification of the Cauchy data was suggested by corresponding modifica-

tions of boundary integral operators in the case of boundary value problems in
[18], which led to strongly elliptic operators.

We shall now show that with these modified boundary operators the cor-
responding bilinear forms <5;' which are now defined by Green's first formula,
satisfy Garding's inequality, i.e. Assumption 2.6(b). Then all hypotheses of
Theorem 2.8 are satisfied and this theorem proves the strong ellipticity of the
corresponding boundary integral operator, which corresponds to the transmission
problem (3.6), (3.18), (3.8).

We shall come back to the "physical" transmission conditions (3.7) in Section
5.

THEOREM 3.1. Define the sesquilinear form <&• (/ = 1, 2) by

f ¥. Pju2dx = tyiu1, a2) + ( - iy f ( u V 2 + o 1 . n>12) do, (3.29)

where Ps are defined by (3.19) and v, ij)', v, xp' by (3.26). Then 4>;' is coercive over
H\QJ; C3), i.e. there exist X > 0, C e U such that

Re <!>;(«, U) i= A \\u\\2
HKa,e) - C \\G\\h(a,O) (3.30)

for all u € Co(O); C3).
Proof. There holds for u e CQ(Q^; C3) on T:

div u — divT u = div (u — wT) = div ((n . u)n) = dn(n . u) + (n. w) divn;
grad (ii. u) — n X curl n = dnu + (w. grad)n + u x curl n.

This gives
vx()' + v . ij>' = (div u - divT u){n . u) + (grad (n. u) - n x curl u). aT

= (dn(u. u))(n . u) + div n(n . u)(n . u) + {dnu)~aT

+ uT. (u. grad)« + uT. (u x curl n)
= dnu. (n(n .u)) + u. 9nn(n . u) + (anu)5T

+ div n \n . u\2 + uT.{u. grad)n + uT . (n X curl n)
= (dnu).a + b(u) (3.31)
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with

b(u) = («. u)u . dnii + \n. u\2 div n + uT .((it. grad)w + u x curl n).
In particular (this requires T e C2)

hence

iC, Hwl&i+.pj.) (e>0). (3.32)

From definition (3.29) and (3.31), with Green's first formula for the scalar
potential equation, now follows:

<*>;(«,a) = - I a.Audx-(-iyla. dnado

- \ kj\u\2dx-{-iy\b(u)do
•>i2j Jr

= WuWHKn,;^)- \\u\\h(a,;c>)

Together with (3.22) for some e e (0, %), this gives (3.30). •

4. The integral operators and their symbols
In this section we derive a boundary integral equation procedure to solve the

transmission problem (3.6), (3.18), (3.8). First we give some additional notation.
For s e R we denote by H^Q,) = tf*(Q,; C3), respectively HS(T) = HS(T; C3), the
Sobolev spaces formed by vector fields u with components which belong to
Hs(Qj), respectively HS(T). As indicated by (3.24) we can decompose H*(r) into
two subspaces generated by the tangential fields to T and the normal fields to T,

HS(T) = THS(T) 0 NHS(T)
with
THS(T) = {ue H*(T) | (n. u) = 0}, NHS(T) = {u e HJ(r) \u = nv, ve HS(T)}.

The most general case where (3.6), (3.18), (3.8) can be converted into a
variational problem (see Theorem 3.1) is when

(MOT, div u0, n x curl u0, n . u0) e TH^T) + H~i(T) X TH'^T) x H$(T) =: X°.
Then we look for ii e Lj (/ = 1, 2) where

L1:={«6H1(Q1) |(A + A:2)u = 0in Q J , j
L2:={ueHl(Q2) \ (A + kl)u = 0 in Q2, u satisfies (3.8)}. J ^ ' ^

According to (3.24), (3.25), the Cauchy data for (3.6), (3.18), (3.8) are defined
as follows:

DEFINITION 4.1. Let u e Ljt j = 1, 2. Then the Cauchy data (v, ip, t/>, v) e %C° of
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Ka.u(x) := 2 curl, j <£,(*, y)«
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ii are denned via (3.25) by the traces

v :=—n x (n x u ) \ r , ty : = d i v w | r , \[> : = — n x c u r l « | r , v:=n.u\r.
Before we give our solution procedure, let us briefly recall the idea of layer

potentials by introducing the fundamental solution
eikj\x-y\

•^''-SF^j (42)

of (A + kj)u = 0 in Q,;; = 1, 2.
DEFINITION 4.2. Let ii e C°°(T; C3). Then for any complex number kj, (0 3i

arg kj < jt) and for x e Q; we define

(4.3)

The same definition of the single and double layer potential is valid for arbitrary
distributions u on F, since for x ¥= T the above kernel <E>; is a C°°-function on T.

With these potentials there holds the Stratton-Chu representation formula for
the solution of the homogeneous Helmholtz equation in Q; (for classical solutions
see [14], for weak solutions see [25]).

LEMMA 4.3. For u e L; with Cauchy data (v, ip, ty, v) e $f° and for x e Q;,
j = 1,2, there holds

u(x) = ̂  ( - curl VQ.(n x v) + Va.(nip) + Va$ + grad Vav)(x). (4.4)

In order to formulate the boundary values (jump relations) for the potential
(4.4) we define the following boundary integral operators:

DEFINITION 4.4. Let u be a C°° vector field on T. Then for x e T and Xj e Q;

Vju{x):=-2\^{x,y)u{y)do{y),

Kju(x) := 2 curlT f <D,(x, y)(n x u)(y) do{y),
JT

D}u(x) := lim (n x curl curl Va.(n x u)){x,),
x,->x

and, correspondingly, for u e C°°(F)

(4.5)

K,u(x) := - 2 f u{y) dniy)%{x, y) do(y),
JT

K;U(X) := - 2 f u{y) dn(x)^{x, y) do(x).Jr J

(4.6)
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Using the well-known jump relations for smooth layers ([10], [2]) and

approximating the Cauchy data in <ff° by smooth functions, we find for the traces
of the potential (4.4) a system of second kind Fredholm integral equations on
the boundary F:
2 ( - i y ( - n x (n x fi))|r = ( ( - i y - K,)v -nx(nx V,(nij>)) + V$ + gradT V,v,

2( - iy div u\T = ( ( - i y - Kj)y + Vj divT \p - kfV,v,
2 ( - i y ( - « x curl «) | r = DjV -fix curl Vj(nq) + (-1)'$ -fix Kj(n X \p),

2( - iy« . « | r = -n. curl V,(n xv) + n. VJ(ni/>) + n.V;ip + ( ( - l ) y + K-)v.
(4.7)

The right-hand side of (4.7) defines (up to a factor 2(—1);) the Calderon
projection operator C, (cf. Lemma 2.1 and equation (2.24)) for the problem
(3.6), (3.18), (3.8). Thus it is a matrix of pseudodifferential operators whose
principal symbol we shall now compute. As is known from the calculus of
pseudodifferential operators, the principal symbol gives easy criteria for con-
tinuity of the operators in Sobolev spaces, for their ellipticity (Fredholm
properties) and also strong ellipticity. By introducing a basis of orthonormal
coordinates in the cotangent bundle T*(T) (see [7, p. 255]), for the
pseudodifferential operators on the closed, smooth, bounded manifold F we
obtain the same principal symbols as in the half-space case. Thus we may simply
assume that F is a plane. Then the principal symbols of the pseudodifferential
operators in (4.7) are easily obtained by use of Fourier transformation.

Let Qx coincide with IR J := {x e U31 x = (xx, x2, x3), x3 < 0} and Q with
U^ := {x e U3 \ x3 > 0} and n = (0, 0, 1), yielding fixa = (-a2, «i) for any vector
a = (a1,a2,a3)eR3.

In the following lemma we list the principal symbols of those pseudodifferential
operators on F which arise in our solution procedure. The orders of the operators
are those given by Lemma 2.1, namely —1,0, or +1, respectively. Thus, for
example, the operator Ks has a vanishing principal symbol, because in our
Agmon-Douglis-Nirenberg-elliptic system (4.7), Kj is considered as an operator
of order 0, whereas it is in fact a pseudodifferential operator of order — 1.

LEMMA 4.5. For any IfeR2, §¥=(0,0) with | | | = VfF+H for the principal
symbols om of order m there holds:

a_1(V/)(f) = - | | i ; ffoW(f) = 0 = ao(x;)(S); ao(n x •)(£) = (J

a1(gradT)(?) = / ( | ) ; a,{n . curl)(§) = ,-(-|2, &); a1(divT)(§) = ifa,
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; i l 2

= o0(—gTadj n . curl V/(n x •))(?)
= -cro(-gradT n . Vjii divT)(§).

Proof. The general calculus of pseudodifferential operators ([7], [27]) shows
that the pseudodifferential operators on a smooth manifold T have the same
principal symbols as the corresponding operators of the half-space case.
Furthermore, exchanging points of integration and restriction in the boundary
integral operators causes perturbations of lower order only. In particular, we
know from [19] that WjU :=nVj(n. u)- Vj(n. n)u defines a pseudodifferential
operator of order - 2 . Similarly, o^ti X V,(n •))(!) = o^{Vj{n X (« •)))(!) = 0.

From [13] and [19], a_1(V^)(|) = - 1 / | | | follows by taking the Fourier
transform of the fundamental solution of the Laplacian 1/(4^: \x —y\) which is the
leading term in the Taylor series expansion of (4.2). From the identity
AM = grad div u — curl curl u we obtain, for any smooth tangential field v,

DjV = kj(n x Vj{n xii)) + n x grad V, divT (n x v).

Thus

a^DyXI) = <7i(n x gradT)(^). a_j(V^)(§). ax(divT (n x •))(§)

yields the result for Oi(Dj)(^). The other symbols are computed similarly. •
Applying the general results of Section 2, we see that the Calderon projector

from the system (4.7) has the form

Cj = i(l + (-iyAj), (4.8)

where the operator Aj is given by

(4 9)
DjV - n x curl Vj(n%l>) -fix Kj{n x -/X '

\-n. curl Vj(n xv) + n. Vj(ntp) + n . Vjip + K)v,

The operator H from (2.25) is given by

H = Cl-C2=-1
2(A1+A2). (4.10)

Hence with Lemma 4.5 its principal symbol is given by

0 1 0
0 0 1

0 i|i i|2

-ilx 0 0
- i | 2 0 0
1 0 0
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Thus, // : ffi-* d)Cs is continuous for any real * where

x fl»"l(r) X THS~^(T) x / F
We remark that the off-diagonal blocks of o{H){%) in (4.11), namely the

matrices

1 ig2 I, M = -i-\ -£& %\ - i § 2 I, (4.12)

are also the principal symbols of the integral operators which arise via the direct
method for the "electric" and "magnetic" boundary value problems, respectively
[25], [24].

The natural duality on 3if° is given by

w + vx} do (4.13)

for smooth elements in 2K° (cf. (2.35)); this also corresponds to Green's formula
(3.25).

Therefore, with respect to this sesquilinear form, the operator H in (4.10) is
strongly elliptic, i.e. satisfies a Garding inequality, if and only if the matrices E
and M in (4.12) define positive definite quadratic forms on C3, i.e. their
selfadjoint parts are positive definite matrices. That this is not the case can easily
be seen as follows: from equations (4.11)—(4.13) we see that in the half-space
case, i.e. on the symbol level, there holds for *P := (v, ip, $, v)T,

Furthermore, the selfadjoint parts of both M and E are singular matrices:

1 I II "life

' ^ \ 0 0
Note that the matrices E and M themselves are non-singular which corresponds

to the ellipticity of the corresponding pseudodifferential operator. Likewise, the
operator H in (4.10) is an elliptic pseudodifferential operator and hence a
Fredholm operator in the space dK\ s e U..

Thus, using standard arguments from the calculus of elliptic pseudodifferential
operators, one can derive a priori estimates for H and thus obtain regularity
results for the solution W e Xs of the system

W = 1
2(1-A2)WO (4.15)

for given Wo e 2T with A, in (4.9), / = 1, 2.
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We note that equation (4.15) follows from (2.22)-(2.25) together with the

Calderdn projector (4.8). Therefore, application of Theorem 2.4 shows that the
solution of (4.15) is the set of the Cauchy data of the refracted field in (3.6),
(3.18) (see also [25], [4]).

According to the general results in [23], the least squares method for
(4.15) - with regular finite elements on the interface manifold T - converges with
quasi-optimal order. However, its convergence rate is considerably smaller
compared with that of the Galerkin method. Therefore, we are more interested in
a suitable Galerkin procedure. Unfortunately, H is not strongly elliptic with
respect to the energy form (•, -)a» in (4.13), as we have shown above. But strong
ellipticity is necessary and sufficient for the convergence of general Galerkin
procedures [12], [28], [29], [30].

In order to obtain a strongly elliptic boundary integral operator for the
transmission problem (3.6), (3.18), (3.8), we modify the Cauchy data as in (3.26)
and insert them into the system (4.7). For the new Cauchy data

u (4.16)\jr ;= (j5; xl>', ip', V) e Si, ip' '.= ip — divx v,

with v, ip, ip, v as in Definition 4.1, the system (4.7) takes the form

2{-\yv = ( ( - i y - Kj)v + (Vj(n divT v))T +

+ Vjip' — Vj gradT v + gradT VjV,

2(—ly'V' = /̂W + ((~1) ; ~ ^y)'1/'' ~ divT (VjHy

+ Vj divT ij>' — divT V^^' + M/V,

2(—1)V' = ÂCf + gradT n . Vj(nxp') — fix curl

+ ( - i y ' $ ' - n X -^/(n X ^ ' ) + gradT n . VJ^' + /?;-t;,

2 ( - i y t ; = -n . curl V (̂n X v) + n . Vj(n divT v)

+ n . Vj(n%l>') + n . Vjip' - n .Vj gradT v + ( ( -1 ) ; + K-)v,

with

LjV := divT KjH — Kj divT v — div (Vj(n divT u))T,
1: = divT Vj gradT v — Vj divT gradT u — ^V^-u — divT gradT VjV,

i :=DjV -fix curl Vj(n divT £»)

+ gradT(-« . curl Vj(n X v)) + gradT n. Vt{n divT v),

RjV :=nx Kj(n x gradT v) - gradT n . Vj gradT v + gradT /C;'u.

Therefore the operator H' from (2.25) has the form

(4.17)

(4.18)

(4.19)
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where

V

-KjV + (Vj(n divT v))r + (Vj(nip'))T + V^' - Vj gradT v + gradT VjV
LjV — Kjip' — divT (Vjn%l)'))T + Vj divT \j>' — divT Vj^>' + Mji>

+ gradT n . V^nty') -fix curl Vj(nip')
—n x Kj(n x ip') + gradT n .

-n . curl Vj(n xv) + n. Vj(n divT v) + n . Vj(ntp')
+n.Vj\p' -n.Vj gradT v + K-VJ

(4.20)
Hence with Lemma 4.5 and equation (4.11) the principal symbol of H' is given

by

(4.21)

f 0
0
0

l § l 2

0
t 0

0
0
0
0

m2

0

0
0
0
0
0
1

1
0
0
0
0
0

0
1
0
0
0
0

0
0

II
0
0
0

The principal symbol shows that H' is continuous from ffl into itself for any
real s. Furthermore, its off-diagonal blocks

(m-1 o o \ /in o o \
E' = \ 0 l^l"1 0 , M'= 0 III 0 , (4.22)

\ 0 0 HI / \ 0 0 HI- 1 /
obviously define positive quadratic forms on C3. We note that E' and M' are used
in [25], [24] to derive the "edge behaviour" of the "electric" and the "magnetic"
fields, respectively, since the components of the fields are decoupled in first
order, i.e. they are only coupled via compact perturbations in (4.20).

From standard results on pseudodifferential operators [27], [30] we deduce that
the form (4.21) of the principal symbol o{H') implies the coerciveness of H' in
the sense of a Garding inequality in dK°.

LEMMA 4.6. There exists a real y > 0 such that (with the duality (4.13))

Re OP, tf'V)*.a y m** ~ \kOP, W)l (4.23)
for all We 3if° with a compact bilinear form k{-, •) on %° x %°.

Proof. The arguments following (4.13) show that in the half-space case (4.14)
holds with E' and M' instead of E and M yielding (4.23) due to (4.22). The
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compact bilinear form k(-, •) arises in (4.23) since H' acts on functions on a
bounded manifold T which causes a compact perturbation to the half-space
situation. •

Now we concentrate on the connection between our strongly elliptic
pseudodifferential operator H' and the original interface problem (3.6), (3.18),
(3.8). Following (2.22)-(2.25), for (3.6), (3.18), (3.8) we obtain the system of
integral equations

H'W = - (1 - C'2y¥'o with H':=C[-C2, (4.24)
where WQ := (v0, i/>o> $'> vo)T a r e the modified Cauchy data (4.16) of the incident
field M0 and Cj = ^(1 + (- l)M/) is the Calderon projector (corresponding to the
wave number kj) of Aj in (4.20). Application of Theorem 2.4 to (4.24) yields the
following equivalence between the transmission problem (3.6), (3.18), (3.8) and
the boundary integral equations (4.24). (The proof is identical to the proof of
Theorem 2.4 and is therefore omitted.)

THEOREM 4.7. Let uoe W be given.
(i) / / iij e Lj (j = 1,2) as defined in (4.1) solve the transmission problem (3.6),

(3.18), (3.8), then
((MJ)T, div «! — divT («i)T, —n X curl ux + gradT (n . Hi), n . u^)T e 3^

solves the equation (4.24).
(ii) IfW := (v, v ' , n>', v)T€̂  solves (4.24) with W'0:=(v0, Vo, Vo, ^0)T, i.e.

then with
»P;:=C;W, W2:=C2(W + ^i) (4.25)

and
Uj — KjSPjR-1^; inQj (see (2.18)), (4.26)

Uj € Lj solve the transmission problem (3.6), (3.18), (3.8).
Remark. In (4.26), w, is given by the Stratton-Chu formula (4.4) applied to

(Vj, ijjj, ipj, Vj) which are connected with *¥• via (4.16), (3.27), (3.28). By
Garding's inequality (4.23), H' is a Fredholm operator of index zero from %t°
into itself and thus also from 2if into itself for any s. Therefore we obtain
existence of a solution of (4.24) as soon as we know its uniqueness, and Theorem
4.7 then implies the existence of a solution of the transmission problem. For the
question of unique solvability of the transmission problem (3.6), (3.18), (3.8) and
therefore of our boundary integral equation (4.24) we refer to [2,4,15,20,25]. In
the case of the "physical" transmission conditions (3.7), we discuss this question
in more detail in Section 5. From the discussion in [4] and [25] we have the
following result:

PROPOSITION 4.8. Assume that the homogeneous transmission problem (3.6),
(3.18), (3.8) and an associated homogeneous adjoint problem with interchanged
wave numbers have only the trivial solution in Lj (defined in (4.1)). Then for given
% £ % " there exists exactly one solution XV' e ks of the integral equation (4.24)
yielding exactly one solution of (3.6), (3.18), (3.8) via (4.26).
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5. Integral equations for the electromagnetic transmission problem

In this section we study the integral equations corresponding to the "physical"
transmission conditions (3.7). Instead of repeating all the arguments of the
preceding section, we only point out the necessary modifications.

We define, according to (3.7), the "physical" Cauchy data on T:

Vj: = EjVj = e ,n. H, ; dj = u/T;
- » 1 - 1 , ~

xpj: = kjtj),- = Ay div uj; ^ : = — V; = x curl w,.
M; My J

We want to use the results of the previous section. Therefore we write

W:=(v, i//, y, v)T; V, := {v,, yjt %, v,)T.

Thus, with the obvious block notation, we have

W; = B;AP; B, = diag(l, A , - , £ , ) . (5.2)

Now we can insert these Cauchy data into the representation formula as before
and obtain, instead of (4.8), the Calder6n projectors

C, = !(l + (-iyA,); A^B^BJK (5.3)
The boundary integral operators A, are given explicitly in (4.9). The procedure
described in the previous section then leads to a boundary integral equation
corresponding to (2.25). The matrix of integral operators is given by

H = CX-C2 = -\{AX + A2) = - K B ^ f i r 1 + B2A2B^). (5.4)
From Lemma 4.5 and (4.11) we find the principal symbol (in block form)

(5-5)
\iri \j i

with
0 i&eA
fie i%2ee\, M = T^7| -|i|2Mm £iMm -i^K\- (5-6)

'^K o /
Here we used the abbreviations

£e=^(—+ —); K = ^ M + AM); V = ( i +

1/1

(5.7)

Again, as in the previous section, the matrices E and M are, in general, not
positive, hence the operator H will not be strongly elliptic. Therefore we modify
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the Cauchy data (5.1) analogously to (3.26), (4.16):

v;:=(iJy,#,fco;)T

with
ty) := rj^ - divT v,- = r\k$) + (r/A; - 1) divT v} = rjkjipj - divT 5,-;

^;' :='$j + § gradT fy = — $,' + ( #e, ) gradT Vj = — ty + 0ey- gradT uy; (5.8)

Here we introduce two new complex parameters r) and # which will be fixed
later on (see (5.11) and (5.13)). It turns out that they can always be chosen in
such a way that the resulting boundary integral operator is strongly elliptic.

It is obvious how to insert these constants into the system of integral equations
(4.17). Therefore we need not repeat this explicit representation here. In short
notation, the modified system of integral operators is

H' = C[ - C2 = -\{A[ + A2) = -XB'yA'iB'i-1 + B'2A'2B'2X), (5.9)

with A] as defined in (4.20) and, according to (5.8),
1 0 0 0

-l)divT r)h 0 0(
0 0
0 0 0

with the obvious block notation.
For the computation of the principal symbols, we can take advantage of (4.21),

(4.22). The result is
0

«*')<!) = (£
with E' = h{E[ + E2); M' = \{M[ + M'2) and

/ lij 0

; = - o „, iai2 j ; M; = (E;r\
151 \

where
a = i&Ej)'1 - fif; b = fij(rikj - 1); c = a + b + ^j.

For simplicity, we now make the choices,

Xj = (jiiyiy)"1 (compare case (ii) of Section 3), (5.10)
and

i? = (r))-1. (5.11)
This gives b = a,c = c; hence, with dt = 2 Re (rj£]~1) - ju;, e; = ^fyr)'1 - 1|2, one
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obtains

0 0
Hi 0
0 d y | |

l£|2-e,£l 0
0

Because we assumed |U; > 0, the positivity of both matrices depends only on the
positivity of dj.

LEMMA 5.1. The operator H' is strongly elliptic, i.e. there exists ay>0 such that
Re OP, H'W)^ y |HP|||<, - \k(\pt xp)\ (5.12)

for allW e ffi° with a compact bilinear form k(-, •) on ffl° x $f°, if and only if
1

and
(5.13)

2 Re t)(e1 + e2) > i«i |£i|2 + \i2 \
Remark. Condition (5.13) can always be satisfied by a suitable choice of rj,

under assumption (3.4) and also, for the eddy current problem (see case (iv) in
Section 3), even by a large enough real rj.

Let us write the system of integral equations as
fft = -(l-QW; (5.14)

We summarise the results of this section in the following theorem.
THEOREM 5.2. Let the assumptions (3.4), (5.10), (5.11), and (5.13) for the

coefficients be satisfied. Then for given Wo := (v0, \p0, $0, vo)T e dK°, the transmis-
sion problem (3.6)-(3.8) has a unique solution u with M,eL;,/ = 1, 2. This
solution corresponds via (5.1), (5.8) to the unique solution W' e d%° of the system
(5.14) of boundary integral equations. The boundary integral equations are a
strongly elliptic system of pseudodijferential equations on T.
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