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1. Introduction 

KORN'S inequalities for integrals of quadratic functionals subject to certain 
side conditions have played a fundamental role in the development of elasticity 
theory (see e.g. [I-14]). The Korn inequalities are essential in establishing co- 
erciveness of the differential operators of linear elastostatics and thus form the 
basis for existence results in that theory [9]. Among other areas in elasticity where 
consideration of Korn's inequalities arise we cite, for example, fundamental 
studies on the mathematical foundations of finite elements [15-17], stability 
theory [11] and qualitative analyses of solution behavior, such as those involved 
in the investigation of Saint-Venant's principle [18-20]. In the latter two areas 
of application in particular, information on the optimal constants appearing in 
the inequalities, the Korn constants, is of importance. Thus several investigations 
have been concerned with evaluating the Korn constants for specific domains 
and with obtaining bounds for these constants [4-6, 8, 12-13]. 

Our purpose in this paper is to draw attention to an equivalence, for two 
dimensional simply-connected domains, between Korn's inequality (in the second 
case; see w 2 here) and two other inequalities for quadratic functionals which have 
received comparatively little attention in the literature. The first of these is an 
inequality due apparently to K. O. FRmORICHS [2], between the real and imaginary 
parts of an analytic function (or equivalently, between a harmonic function and 
its conjugate) defined on a two-dimensional domain R. Thus if w(z) = f + ig 
(z = xl + ix2) is analytic on R, Friedrichs' inequality reads 

f f 2  dA ~ I '  f g2 dA, (1.1) 
R R 

provided 
f f d A  ---- 0. (1.2) 

R 

Here / '  > 0 is a constant which depends only on the shape of the domain R. 
The best possible constant in (1.1) will be denoted by/ 'R. 
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The third inequality that we consider is of recent origin, due to BABUSKA & 
AZlZ [15] in 1972. This result, which may be interpreted as a representation theo- 
rem, involves not only an inequality between certain quadratic functionals but 
also the existence of a vector potential field associated with functions of  zero mean 
value over a plane domain. We state the result of BABU~KA-AZlZ as follows: 

Theorem 1 (BABUSKA-AZIZ [15]). Let R be a Lipschitz domain in the plane and 
let q be a function bounded on R such that 

f q dA = O. (1.3) 
R 

Then there exist a vector function 0)~ (continuous on the closure R ~  R + ~R 
o f  R and with square-integrable first derivatives) and a constant C depending only 
on R such that 

0)~,~ = q in R, 0)~ = 0 on ?R, (1.4) 

0) 2 f 0)~,~0)~,~ dA ~= C f ~,~ dA. (1.5) 
R R 

Here the usual Cartesian tensor notation is used, with summation over repeated 
subscripts implied. Theorem 1 was established by BABU~KA & AzIz in [15, pp. 
172-174] under less stringent smoothness hypotheses. (See also ODEN & REDDY 
[16, pp. 230-232].) In these references, this result is used in establishing mathema- 
tical foundations for the finite element method for incompressible elastic media. 
A version of Theorem 1, valid for both two and three dimensions, was stated and 
proved by LADYZHENSKAYA & SOLONNIKOV [21, pp. 265--266] in the course of 
investigations concerning existence of solutions of the Stokes and Navier-Stokes 
equations with finite energies. 

We observe that the inequality (1.5) of Theorem 1 is of a different nature from 
Korn's  or Friedrichs' inequality. Thus, while the latter two inequalities must hold 
for all functions of a certain class, Theorem 1 merely guarantees the existence of 
a vector field 0)~ and a constant C for which (1.4), (1.5) hold. There may be other 
functions satisfying (1.4) for which (1.5) does not hold. 

For a given value of q satisfying (1.3), the best possible constant C for which 
(1.5) holds will be denoted by CR. The constant CR depends only on the shape 
of R. In a recent study of the spatial evolution to fully developed flow of solutions 
of the stationary Stokes and Navier-Stokes equations in cylindrical pipes, HORGAN 
& WHEELER [22] have obtained an estimate for the rate of exponential flow 
development which depends on CR, where R is taken to be the cross-section of 
the pipe. 

In this paper, following a brief discussion of the foregoing inequalities of 
Korn, Friedrichs and Babu~ka-Aziz in w 2-4, we show in w 5 that these inequalities 
are equivalent for the case of two-dimensional simply-connected domains. (For 
such domains, the equivalence between Korn's and Friedrichs' inequality was 
established by HORGAN [13]). Moreover a simple relation (see equation (5.5) 
below) between the optimal constants occurring in each of the three inequalities 
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is provided. Thus, for a given domain, knowledge of  the value of any one of these 
constants (or an upper bound for this quantity) may be used to obtain similar 
information for the remaining two constants. It appears that upper bounds for the 
optimal constant FR appearing in (1.1) are easiest to obtain. Such results for star- 
shaped domains are established in w 6, The paper concludes with a brief discussion 
of  applications to problems in linear elasticity and viscous flows. 

For  simplicity of  presentation, we assume henceforth that the domain R is 
simply-connected, with C 1 boundary #R. It will be clear from our arguments that 
the results hold for simply-connected Lipschitz domains. 

2 .  K o r n ' s  I n e q u a l i t y  

We refer to [1-14] and the references cited therein for a discussion of  the 
various forms of Korn inequalities which have been investigated in the literature. 
We are concerned here only with Korn 's  inequality in the second case for two- 
dimensional simply-connected domains. Thus, for vector fields u, with compo- 
nents u~ (~ = 1, 2), which have square-integrable first derivatives on a bounded 
plane domain R, we define the quadratic functionals 

D(u) = .f uo,,r dA, (2.1) 
R 

1 U S(u) = ~ -  f ( ~,~ + ua,~) (u~,a + ua,~) dA. (2.2) 

Korn 's  inequality, as established by FRIEDRICHS [2, 3] t states that there exists 
a constant K > 0 such that 

D(u) ~ KS(u) (2.3) 

for all vector fields u satisfying the constraint 

f (u~,a -- ua,~) dA = 0. (2.4) 
R 

The best possible constant in (2.3), which depends on the shape of  the domain 
R, is called Korn's constant in the second case and is denoted by KR. As mentioned 
in the Introduction, several studies have been concerned with examining the 
domain dependence of KR [4-6, 8, 12-13]. 

There are several other forms in which the inequality (2.3), (2.4) may be ex- 
pressed. Introducing the functional 

R(u) 14 f - 1 = (u~,,o u~,~,) (u~,r - ur dA -~ -~  f (u~.2 - u2,1) 2 dA ( 2 . 5 )  
R R 

and noting that 
D(u) = S(u) + R(u), (2.6) 

i For more recent proofs, see [9], [23]. 
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we may write (2.3) as 

or as 

subject to the constraint 

C. O. HORGAN &; L. E. PAYNE 

R(u) ~ (K -- 1) S(u), (2.7) 

R(u) ~ [ ( K -  1)/K] D(u), (2.8) 

f (Ul, 2 - -  I./2,1) dA = 0 .  (2.9) 
R 

Of course, from (2.7) or (2.8) it follows that K >= 1. Three other forms of Korn's 
inequality (in two dimensions) may also be obtained. Under the transformation 

ul = v2, u2 = --vx, (2.10) 

the Dirichlet integral D(u) is invariant, but 

= v1,2 + v~,l + --f(vl,1 -- v2,2) z dA =- 5r (2.11) 

and 

1 
1) dA ~ ~(v).  n(u) = T ~'~ 

Thus (2.3), (2.7), (2.8) may be written as 

D(u) <= K 5a(v), 

~(v) ~ (K -- 1) 5~ 

~t(v) <= ( K -  1)/K D(v), 

respectively, for all vector fields v satisfying the constraint 

fv~,~dA = 0 .  
R 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

3. Friedrichs' Inequafity for Harmonic Functions 

The inequality (1.1), (1.2) relating the real and imaginary parts of an analytic 
function was established by FmEDRICHS [2] in 1937. An obviously equivalent form 
is the inequality 

f h21 dA ~ J~ f h:,z dA (3.1) 
R R 

for all harmonic functions h(xl, x2) such that 

f h,, dA = 0. (3.2) 
R 

Other equivalent versions of this inequality may be found in [2, 13]. 
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It is of interest to note that i f f  and g are conjugate harmonic functions, then 

F = f 2  _ g2, G = 2fg (3.3) 

are also conjugate harmonic. Thus the inequality (I.1), (1.2) yields 

f ( f2 _ g2)2 dA <= .l-' f (2fg) 2 dA, (3.4) 
R R 

provided 

f f 2  dA = f g2 dA. (3.5) 
R R 

Hence, for any two conjugate harmonic functions f ,  g satisfying (3.5), one has 

f ( f* + g*) dA <= 2(2/-' + 1) f f 2 g 2  dA. (3.6) 
R R 

4. The Babu~ka-Aziz Inequality 

The inequality (1.5) may also be written in other forms. Since o~ vanishes 
on the boundary 8R of R, the divergence theorem may be used to write the 
identity 

f o,~,a~o~,a dA = f (o)s,~) 2 am + f ( ,ol ,2  - -  ~o2,1) 2dA. (4. I) 
R R R 

Thus Theorem 1 holds with (1.5) replaced by the inequality 

f (o,1,2 - co2,1) ~ dA <= (C -- 1) f o,~,~ dA. (4.2) 
R R 

Thus, in particular, C ~ 1. 
A corollary to Theorem 1 also follows on making the transformation 

~ol = v2, ~o2 = --vi .  (4.3) 

The statement of Theorem 1 now is seen to hold with o~ replaced by v~ and (1.4), 
(1.5) replaced by 

vl,2--v2,1----q in R, v ~ = 0  on ~R, (4.4) 

f v~,av~,a aA <= C f (vl,2 -- v2 ,0  2 dA. (4.5) 
R R 

Again by use of (4.1) for v~, (4.5) may also be written as 

f 2  1)~,~ dA =< (C --  1) f (1)1,= - -  1)~,1) 2 dA. (4.6) 
R R 

Recall that by virtue of (1.3) and (4.4)1, both inequalities (4.5), (4.6) hold provided 
that the zero mean value condition, 

f (1)1,2 - -  I)2,1) dA = 0, (4.7) 
R 

is satisfied. 
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5. Equivalence Results 

In this section, we will establish the equivalence (for simply-connected do- 
mains) of Friedrichs' inequality (1.1), (1.2), Korn's inequality (2.3), (2.4) and the 
inequality of Babu~ka-Aziz in the form (see (4.2)) 

- -  = f ~,,~, dA,  (5.1) f (0)1,2 0)2,0 2 dA < (C --  1) 0)2 
R R 

where 

f 0)~ ~ dA ~ 0, cos = 0 on 0R. (5.2) 
R 

The equivalence of the first two inequalities was established in [13], where it 
was shown that the optimal constants in both inequalities are related by 

KR 
/ ~ R - - - 5 -  - 1, K~ = 2 0  + / ' ~ ) .  (5.3) 

This result was obtained using a variational approach (cf. [5, 8]) relating the 
optimizing functions in each inequality. Here we provide a direct proof of the 
equivalence of (1.1), (1.2) and (5.1), (5.2) with optimal constants/~R, CR, respec- 
tively, related by 

;r~ = cR - 1, cR = 1 + r ~ .  (5.4) 

Thus, by virtue of (5.3), we have the simple expressions 

K R  = 2CR --~ 2(1 -b FR), (5.5) 

relating the Korn's constant and the optimal constants in the Babuw 
and Friedrichs' inequalities respectively. 

To prove (5.4), we begin by showing how (1.1), (1.2) with optimal constant 
/'R ensures that Theorem 1 holds with constant C = CR in the inequality (5.1) 

given by (5.4)2. For any vector field 0)~ E C(/~), we write 

0)1 = (~,1 -{- ~0,2, 0)2 = qb,2 - -  ~ ,1  o n  / ~ ,  (5.6) 

so that 

0)~,~ = Ar 0)1.2 -- 0)2,1 = A~o on R. (5.7) 

To ensure that (5.2) holds, the functions @, ~o are chosen so that 

0~ 
A~-~q in R, ~ = 0 o n  0R, (5.8) 

~V' 8r 0~p 
A2~ = 0 in R, 0--n = S---J-' 0---s" = 0 on OR. (5.9) 

Let V(xa, x2) be conjugate to the harmonic function A% Then, on using (5.7)2 
it follows, on use of the divergence theorem and the boundary conditions (5.8), 
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(5.9), (5.2), that 

f (o,,,2 - 0)~,s dA = f (0),,~ - 0)2,3 AV, dA 
R R 

= -  f (o,A~o,z--0)2Awa)dA= -- f o~V~dA (5.10) 
R R 

= f vo=,~ dA. 
R 

By Schwarz's inequality, we obtain 

f (o, ,2-  c02,0 2 dA ~ ( f  V 2 dA) �89 ( !  0)~,o, dA) �89 . (5.11) 
n 

Since P is determined from A W only to within an additive constant, this constant 
may be chosen such that 

f VdA = 0. (5.12) 
R 

Note that, in view of  (5.2)1, the addition of a constant to V does not affect the 
value of the last integral in (5.10). Thus the inequality (1.1), (1.2) (with / '  = T'R, 
f-~- V, g ~ A  W = col, 2 --0)z,1) may be used in (5.11) to yield 

- -  0)~,r d A ,  (5.13) f (0)1,2 0)~.,)2 dA < F .  f 2 
R R 

for vector fields 0)~ satisfying (5.2). But this is precisely the inequality (5.1), with 
the constant C = CR ---- 1 -c / 'R .  

Conversely, we now show that Theorem 1 with the inequality (5.1) holding 
with optimal constant Cn, implies the validity of  Friedrichs' inequality (1.1), 

(1.2) with /'R -= CR --  1. Let h be harmonic on R and satisfy 

f h dA = 0. (5.14) 
R 

By virtue of  Theorem 1, there exists a vector function 0)~ E C(_R) such that 

0)~,~ = h in R, 0)~ = 0 on ~R. (5.15) 

Let h* be conjugate harmonic to h. It follows, on using the divergence theorem, 
that 

f h2 aA = f h0)~,,~,aA =--  f ho,0)o, dA 
R R R 

--  - f (h~0), - -  h,~0)9 d a  = f h*(0),,2 - -  o)2,1) am. (5.16) 
R R 

Schwarz's inequality now yields 

f h'dA ~ (f h*' d.) �89 ( f  (0),..- 0)..,)'dA) �89 (5.17, 
R 
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The inequality (5.1), with C = CR, is now used on the right hand side of (5.17), 
which, with (5.15)1, gives 

f h s dA < (CR - 1) f h .2 dA, (5.18) 
R R 

for conjugate harmonic functions h, h* satisfying (5.14). This is precisely (1.1), 
(1.2) with constant F = /'R = CR -- 1. 

6. Upper Bounds for Star-Shaped Domains 

In this section, we derive an upper bound for -PR for star-shaped domains. 
Thus from (5.5), we obtain upper bounds for KR and CR for such domains. 

Before doing this, we record here the exact values of KR, I'R and CR for 
some simple domains. For  example, if R is the interior of a disc, it has been 
shown by PAYNE t~ WEINBERGER [5 ]  that K R = 4. FRIEDRICHS [2] has demon- 
strated that ~R = 1 (see also [13]). Thus from (5.5) we find that CR = 2 for 
a disc. For  an ellipse with semi-axes a, b (a > b), it is shown in [2, 13] that 

aS ) a s 

K R = 2  l + - b 5  , / ' R - - b 2 ,  

and so from (5.5) we obtain 

a 2 

(6.1) 

CR = 1 + b--- 7 . (6.2) 

As regards lower bounds, it is demonstrated in [13] that KR >= 4, FR ~ 1 for 
all R, with equality for a disc. Thus (5.5) yields CR => 2, with equality for a 
disc. 

To obtain an upper bound for the optimal constant F R occurring in (1.1), 
it proves convenient to adopt a normalization condition different from (1.2). 
Thus we will be concerned with the inequality 

f h s dA <= ? f h .2 dA, (6.3) 
R R 

for conjugate harmonic functions h, h* such that 

h(0, 0) = 0 .  (6.4)  

(Cf  MIKHLIN [24, pp. 508-509].) Here the origin of the Cartesian coordinate 
system has been chosen to lie inside R. Of course, for a disc, the mean-value theo- 
rem for harmonic functions shows that, if the origin is chosen at the center, then 

(6.4) and (5.14) are identical and so /~R =/~R for a disc. Otherwise we have 

/~g =</~R, (6.5) 

and so to obtain an upper bound for/~R, it suffices to obtain an upper bound for 
;R. 
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Suppose now that R is star-shaped with respect to a point, which we choose 
to be the origin. Let the boundary be represented in plane polar coordinates by 

r = f ( 0 )  on OR. (6.6) 

Let h, h* be conjugate harmonic functions satisfying (6.4). Then H = h 2 -- h .2 
and G = 2hh* are conjugate harmonic, with 

a(0, 0) = 0, H(0, 0) ~ 0. (6.7) 

Thus in polar coordinates 

}OH "1 ?G 
m., o) - too, o) = j ~ (0, o) uo = f ;  w (5, o) a~, (6.8) 

0 0 

and so, by (6.7)2, 

"I ~G 
U(r,O)<= f 7 W(~,0)a~. 

0 

From (6.9) we obtain on integration 

H(r,O) ~" f!~ 1 I/IOG } 
dA ~ o J f - ' ~  [o d ~o 8o (~ ~ a~ r dr dO 

(6.9) 

An integration by parts yields 

f H@, o) 1 [,[fz(o) - r z] 
f---r~ aA <= T j r~--7~ a ( ~  -- ~x~)  d~ 

R OR 

rf'(O) 
-- ; ~ G ( r ,  O) dA. (6.11) 2 

But, by virtue of (6.6) the first integral on the right in (6.11) vanishes and so 

rH(r, O) _ ff'(O) G(r, O) dA (6.12) 

Thus, in view of the definition of H and G, we deduce from (6.12) that 

~ - h,~ f IQ(O)l [hllh*l 
dA <= ; - f - - ~  dA + 2 R f2(O ) dA, (6.13) 

2 Note that there is no contribution at the origin, in view of (6.7)x. 

1 f [ f 2 ( 0 ) - -  021 ~3G 
-- 2 R d ~]'2-~ 80 dA. (6.10) 
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where 

We may also write 

where 
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[f ' (0)  ] 2 (6.14) 
Q2(~ = 17(071 " 

z r z p2 1 - -  n r  
2 . . . .  2 p2 on ~R, (6.15) 

n r  

p2 2 2 = r nr on ~R, (6.16) 

and nr denotes the radial component of the outward normal vector n on #R. 
Since f(O) is bounded from above and below on ~R, 

rm ~ f(O) <= rM, (6.17) 

(6.13) would provide an estimate for/~' in (6.3), if an upper bound for Q were used 
in (6.13). A better estimate is obtained if we first use the arithmetic-geometric 
mean inequality 

2 ]Q(0)] [hi I h*[ =< [1 -/3z(O)] h z + [1 --/32(0)1-1 h .2, (6.18) 

where/3(0) is an arbitrary function satisfying 

/32(0) < 1. (6.19) 

Using (6.18) in (6.13) leads to 

We now choose 

/32(O)h2dA / {  Qz(O) I h*2 
(6.20) 

2f2(0) 
/3z(O) = ~ rE t , (6.21) 

where 0~ is an, as yet, undetermined constant satisfying 

0 < o~ < 1. (6.22) 

This choice of/3 satisfies (6.19), by virtue of (6.17) and (6.22). On substitution 
from (6.21) in (6.20) one finds that 

h 2 dA < max h .2 dA.  (6.23) 
= oR o~[1 --  ~xrZrM z] 

R 

Choosing the constant o~ to minimize the multiplicative factor on the right in 
(6.23), we obtain the upper bound 

/~R < min max P(~, 0), (6.24) 
= c~E(0,1) OR 
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for the optimal constant /~R occurring in (6.3), (6.4). Here 

r2Mp - 2  - -  O~ 
P(or 0) = ~(1 -- o~r2r~t 2) " (6.25) 

Suppose that min max P(or 0) is achieved at (O~o, 0o). Thus 
c~E(O, 1) ~R 

P(g0, 00) = min P(or 00). (6.26) 
This gives 

1 
o~o = r 2 p o  2 - -  [ r 4 p o 2 ( p o  2 + r0-2)] ~-, (6.27) 

where Po = p(Oo), ro = r(Oo). Note that, in view of (6.16), ro ~ Po and so 0% 
does indeed satisfy (6.22). With ~o given by (6.27), (6.25) yields 

1 
P(c%, 0o) = (ropff  1 + [r2p~ 2 - -  117 2. (6.28) 

Thus (6.24), together with (6.5), yields the desired upper bound 

f'R ~ m a x ( w - '  -~- [r2p -2 -- 1]�89 2 (6.29) 

- - m a x  {[1 q-(f'(O)~Z] �89 I f ' (O) l t  2 
- -  ~ max ~'.  (6.30) 

o \ f ( O ) ]  J + f ( O )  J o 

The upper bound (6.29) is expressed in a form amenable to geometric calculation, 
while (6.30) is written explicitly in terms of the equation (6.6) of the boundary 
curve of the star-shaped domain R. By virtue of (5.5), we have thus established 
the upper bounds 

KR ~ 2 + 2 max ~-, (6.31) 
0 

CR ~ 1 + m0ax ~-, (6.32) 

for star-shaped domains R. 
It is easy to verify that the upper bounds (6.30), (6.31), (6.32) hold with 

equal i ty  when R is the interior of a disc or of an ellipse. (Recall our discussion 
at the beginning of this section concerning these cases.) For the star-shaped domain 
bounded by a limagon (Pascal's limagon), (6.6) reads 

r = a(1 + e cos 0), a, e constants, 0 =< e ~ 1. (6.33) 

When e = 0, (6.33) describes a circle, while for e ---- 1 the curve becomes a 
cardioid. For the limaqon, (6.30)-(6.32) yield 

l q - e  4 2 
FR-<- 1 e KR < 1 e CR < (6.34) - -  - -  ' ~ - -  ' : l - - e "  

The exact values of FR, KR for the limagon (6.33) have been obtained in [13]. 
From [13] and (5.5) of the present paper, we thus have 

2-~-e 2 8 4 
- P R  - -  2 -- e 2 '  KR -- 2 -- e 2 '  CR - -  2 -- e 2" (6.35) 
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The bounds (6.34) are seen to be sharp only for small values of e. For a regular 
n-sided polygon, one obtains 3 

1 + sin (z~/n) 4 2 /'R< 
= 1 sin (z~/n) ' KR < , CR < . (6.36) - -  = 1--sin(z~/n) = 1 - - s i n ( ~ / n )  

For  the special case of a square (n = 4), (6.36) yields 

FR<~3-}-21/2,, KR<=8q-4I/2, ,  CR =< 4 -b 21/2-. (6.37) 

For  a square, we conjecture that the optimal constant I'g in (1.1), (1.2) is given 
by the conjugate harmonic pair 

f =  2XlX2, g = x~2 -- x~l. (6.38) 

Thus for a square we conjecture that 

I" R = 5/2, KR = 7, CR = 7/2. (6.39) 

7 .  S o m e  A p p l i c a t i o n s  

As was mentioned in the Introduction, information concerning the domain 
dependence of KR, /'R and CR is of importance in many problems in elasticity 
and fluid mechanics. For  example, in a recent investigation of Saint-Venant's 
principle for the three-dimensional linearly elastic semi-infinite cylinder with 
traction free lateral surface and subject to self-equilibrated end loads, BERDICHEVSKU 
[19] has obtained an estimate for the rate of exponential decay of stresses which 
differs from the classical result of TouPIN [18]. In particular, Berdichevskii's 
decay rate is expressed solely in terms of material parameters and cross-sectional 
properties of  the cylinder. The two-dimensional Korn's inequality (2.3), (2.4) plays 
a critical role in the arguments of [19], where R is taken to be the cross-section 
of  the cylinder. The decay estimate obtained in [19] involves the Korn constant 
KR in such a way that exact values or upper bounds for this quantity are required 
to render the result fully explicit. We refer to BERDICHEVSKn'S paper [19] for com- 
plete details; the results are summarized and simplified in w D, 2 of the 
review article [20]. 

The Babuw theorem (Theorem I) has been employed in a similar 
fashion by HORGAN & WHEELER [22] in their analysis of entry flow of a viscous 
incompressible fluid into a cylindrical pipe. The axial decay to fully developed 
flow is shown to be exponential for sufficiently small Reynolds number, and an 
estimate for the rate of exponential flow development is obtained which involves 
CR, where R is the cross-section of the pipe. The constant CR appears in such a 
way that exact values or upper bounds for this quantity are required to analyze 
the dependence of the decay rate on cross-sectional geometry. It should be noted 
that, in some instances, certain symmetries in the flow field (and hence in the func- 
tion q defined in Theorem 1) may lead to sharper estimates for CR than are in- 
dicated in w 6 of the present paper. For  example, when R is a disc, if q is specified 

a In this case, the form (6.29) is convenient to use. 
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a priori to be purely radial q = q(r) (corresponding to axisymmetric flow [22]), 
then HORGAN & WHEELER [22] have shown that CR ---- 1. 

In conclusion we remark on an application of Friedrichs' inequality (1.1), 
(1.2) in linear elasticity theory. The displacement equations of  equilibrium (with 
zero body force) of  linear isotropic elasticity for plane strain are given-by (see 
e.g. [10]) 

1 
u~,aa + ~ ua,e~ = 0 on R, (7.1) 

where u~ (o~ = 1, 2) denote the components of displacement and the constant tr, 
--1 < tr < 1/2, is Poisson's ratio. It is readily verified that if u~ satisfies (7.1) 
on a plane domain R, then 

2(1 --  or) 
ul,z -- u2,1 and 1 --  2g u~,~ (7.2) 

are conjugate harmonic functions on R. Thus (1.1), (1.2) yield the pair of  inequali- 
ties 

- -  = u~,,o, d A ,  (7.3) f (u1,2 Uz,O 2 dA < 4FR \1 --  2cr] R 
R 

if 

f (u,,2 - uz,~) dA ---- 0 ,  (7.4) 
R 

o r  

if  

f u]~,dA < 41-'R ( 1 - - a ] 2  f R ' = \1 --  2cr] R (ux , z -  Uz 1)2dA, (7.5) 

f u~,,o, dA = 0. (7.6) 
R 

The inequalities (7.3), (7.5) thus provide square-integral relations between the 
dilatation u~,~ and the rotation component ul,2 -- u2.i in two-dimensional elasti- 
city. 

The strain energy in an elastic solid occupying the domain R is proportional 
to 

tr 2~r ! u] ~ dA,  (7.7) E ( u )  = S ( u ) +  1 - -  

where the functional S(u)  has been defined in (2.2). We now show how the in- 
equality (7.3) and Korn's  inequality in the form (2.7) may be used to obtain a 
lower bound for E(u) in terms of R(u),  defined in (2.5). Such lower bounds for the 
strain energy play an important role in applications of  elasticity theory. By virtue 
of  (2.5), the inequality (7.3) may be written as 

( 1 - -  tr ] z f 2 dA. (7.8) 
R(u)  <= 2-PR \1 --  2a] n u~,.~, 
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Since the functions u~ satisfy not  only the constraint  (7.4) but  also the displace- 
men t  equat ions o f  equil ibrium (7.1), we m a y  use a stronger version of  Korn ' s  
inequali ty than  (2.7), (2.9) alone. This extended main case of  Korn ' s  inequality 
was t reated in [8]. Thus  there exists a K o r n ' s  constant  KR(a), depending not  only 
on the shape of  R but  also on the value of  Poisson 's  rat io ~r appear ing in the con- 
straint  (7.1), such that  

R(u) <= [KR((r) - -  1] S(u), (7.9) 

for  vector  fields u satisfying (7.1), (7.4). This Korn ' s  constant  is such that  1 < 
KR(~r) ~ KR. Methods  for  obtaining explicit values and bounds for  KR((r) are 
given in [8]. In  part icular,  for  a circular domain  

16o "2 - -  24cr + 11 
KR(a) = 8a 2 - -  8or + 3  (7.10) 

On combining  (7.8), (7.9) it is easily shown that  

[ 1 ~r (1- -2c0  ] R ( u ) ,  (7.11) 
E(u) ~ KR(~r) _ 1 + 2/~R(1 - -  or) 2 

for  displacement  fields u satisfying (7.1), (7.4). Fo r  a circular domain ,  on using 
(7.10) and  / 'R = 1 in (7.11), one obtains 

3 - -  4a 
E(u) >= 8(1 - -  or) ----------~ R(u). (7.12) 
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