

Algèbre générale de base

TD

Feuille d'exercices 4

Exercice 1

Soit K un corps. Trouvez tous les éléments $a \in K$ tels que $a = a^{-1}$.

Exercice 2

Soit $K \subset E$ une extension de corps. Montrez que l'ensemble des éléments de E algébriques sur K est un sous-corps de E.

Exercice 3

- 1. Soient K un corps, $L = K(\alpha)$, et $P(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0$ le polynôme minimal de α sur K. Exprimez α^{-1} explicitement en termes de α et des coefficients a_i de P(X).
- 2. Soit $\alpha = \sqrt[3]{2}$. Trouvez le polynôme minimal de $1 + \alpha$ sur \mathbb{Q} et exprimez $(1 + \alpha)^{-1}$ explicitement en termes de α et des $a_i \in \mathbb{Q}$.

Exercice 4

Soit $K \subset E$ une extension de corps. Soient $\alpha, \beta \in E$ deux éléments algébriques sur K de polynômes minimaux M_{α}, M_{β} respectivement. On note m, n les degrés respectifs de M_{α}, M_{β} . On suppose que $\operatorname{pgcd}(m, n) = 1$.

- 1. Montrez que $[K(\alpha, \beta) : K] = mn$.
- 2. Déterminez le degré $[\mathbb{Q}(\sqrt[3]{2},\omega):\mathbb{Q}].$

Exercice 5

Déterminez le corps de décomposition K de $X^4 - 2$ sur \mathbb{Q} , ainsi que son degré $[K : \mathbb{Q}]$.

Exercice 6

Soit $P \in K[X]$ un polynôme irréductible de degré $n \ge 1$ sur un corps K. Soit $K \subset L$ une extension de degré m avec $\operatorname{pgcd}(n,m) = 1$. Montrez que P est irréductible sur L.

Exercice 7

Soit $P \in K[X]$ de degré n > 0. Montrez que P est irréductible sur K ssi P n'a de racines dans aucune extension $K \subset L$ vérifiant $[L:K] \leq n/2$.

Exercice 8

- 1. Trouver le degré $[\mathbb{Q}(\sqrt{3}, \sqrt{5}) : \mathbb{Q}]$
- 2. Déterminer le polynôme minimal de $\alpha = \sqrt{3} + \sqrt{5}$ sur : (i) \mathbb{Q} (ii) $\mathbb{Q}(\sqrt{5})$