Université de Rennes 1 UFR Mathématiques Feuille de TD n°7

DEUG1 MIAS - MASS UE 3 - MA2 Année 2002-2003

1) "Liens" entre nombres réels et nombres rationnels

Exercice n°1

Pour cet exercice, on admettra la proposition 7.9 du polycopié.

1) En raisonnant par l'absurde, montrer que $\sqrt{5}$ n'est pas rationnel. (On pose $\sqrt{5} = \frac{p}{q}$, où p et q sont des entiers, fraction "simplifiée".)

En déduire que, pour tout $n \in \mathbb{N}$, non nul, $\frac{\sqrt{5}}{n}$ n'est pas rationnel. En utilisant le fait que \mathbb{R} est archimédien, en déduire qu'entre deux rationnels distincts x et y (prendre $\varepsilon = |x-y|$), il y a toujours un rationnel et un irrationnel. Puis, qu'entre deux réels distincts x et y, il y a toujours un rationnel et un irrationnel.

- 2) Une suite de rationnels a-t-elle toujours pour limite un rationnel?
- 3) Une suite d'irrationnels peut-elle tendre vers un rationnel?
 - 2) Inégalités, majorations, minorations et quantificateurs

Exercice n°2

On suppose que
$$|x-1| \le 2$$
 et $-5 \le y \le -4$. Encadrer les quantités suivantes : 1) $x+y$ 2) $x-y$ 3) xy 4) $\frac{x}{y}$ 4) $|x|-|y|$

Exercice n°3

Les ensembles suivants ont-ils une borne supérieure, un plus grand élément, une borne inférieure, un plus petit élément :

$$E_1 = [0, 3[$$
 $E_2 = \{0\} \cup]1, 2[$

Exercice n°4

Soit A une partie de \mathbb{R} , écrire avec des quantificateurs les porpriétés suivantes et leur négation:

- 1) 10 est un majorant de A et 5 un minorant de A.
- 2) A est majoré.
- 3) A est minoré.

- 4) A est borné.
- 5) M est la borne supérieure de A.

Soit $x \in \mathbb{R}$ et $y \in \mathbb{R}$. Montrer que

- 1) $(\forall \varepsilon > 0, \ 0 \le |x y| \le \varepsilon) \Longrightarrow x = y;$
- 2) $(\forall n \in \mathbb{N}^*, \ 0 \le |x y| \le \frac{1}{n}) \Longrightarrow x = y.$

Exercice n°6

Déterminer la limite ℓ de la suite (u_n) définie par $u_n = \frac{3n+1}{5n+2}$ pour chaque $p \in \mathbb{N}^*$, trouver un entier N_p tel que, pour tout $n \geq N_p$, on ait $|u_n - \ell| < 10^{-p}$. Donner une valeur approchée de ℓ avec 4 décimales exactes. La convergence vers ℓ est-elle rapide?

3) Exercices de base

Exercice n°7

Etudier la convergence des suites (on pourra pour certaines suites convergentes, préciser un N en fonction du ε) :

a)
$$u_n = \frac{n}{n^2 + 1}$$
 b) $u_n = \frac{2n^2 + 1}{3n^2 + 5}$ c) $u_n = \frac{2n^3 + 1}{3n^2 + 5}$ d) $u_n = \sqrt{n+1} - \sqrt{n}$ e) $u_n = \frac{\sin n}{\sqrt{n}}$ f) $u_n = \frac{\sqrt{n}}{n + \sin n}$ g) $u_n = \frac{n + (-1)^n}{n + \ln n}$ h) $u_n = \frac{a^n - b^n}{a^n + b^n}$ pour $a > 0$ et $b > 0$

Exercice n°8

En simplifiant le terme général u_n , étudier la convergence des suites :

a)
$$u_n = \prod_{p=2}^n \left(1 - \frac{1}{p}\right)$$
 b) $u_n = \prod_{p=2}^n \left(1 - \frac{1}{p^2}\right)$

Calculer la limite de la suite

$$u_n = \frac{1+3+5+\dots+(2n-1)}{1+2+3+\dots+n}.$$

Exercice n°10

Etudier la convergence des suites :

a)
$$u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$$
 b) $u_n = \sum_{i=1}^n \frac{n}{\sqrt{n^2 + i}}$ c) $u_n = \frac{1}{n!} \sum_{k=1}^n k!$.

Exercice n°11

- 1) Ecrire le développement décimal de $\frac{27}{11}$ et de $\frac{27}{13}$
- 2) Quelle est la propriété commune des deux développements? Le développement de tout rationnel possède-t-il cette propriété? Le démontrer.
- 3) Ecrire sous la forme d'un rationnel $\frac{p}{q}$ les nombres réels suivants définis comme limite de suite. (La barre au-dessus de la suite de chiffres indique que cette suite se répète indéfiniment) :

$$0, \overline{3}, \qquad 0, \overline{27}, \qquad 7, 5\overline{123}.$$

Exercice n°12

Soit a > 0, déterminer la limite des suites

1)
$$u_n = \ln\left(\frac{n+a}{1+na}\right)$$
 2) $u_n = \operatorname{Arctan}\left(\frac{n+a}{1+na}\right)$

Exercice n°13

Etudier la convergence des suites :

Attention: revoir la définition de a^b pour a > 0 et $b \in \mathbb{R}$

1)
$$u_n = \sqrt[n]{n}$$

2)
$$u_n = \sqrt[n]{\ln(n)}$$

3)
$$u_n = \left(1 + \frac{a}{n}\right)^n$$
 où $a \in \mathbb{R}$

Soit a un nombre réel appartenant à l'intervalle $]0,2\pi[$ et soit (u_n) la suite définie par

$$u_n = 2^n \sin\left(\frac{a}{2^n}\right).$$

Montrer que la suite (u_n) est décroissante et convergente.

4) Suites définies par récurrence

Exercice n°15

Etudier, suivant les valeurs de a et b réels, les suites vérifiant, pour tout entier $n \ge 0$, avec $u_0 \in \mathbb{R}$, $u_{n+1} = au_n + b$.

Exercice n°16

Soit (u_n) une suite telle que $u_0 \in [0, \pi]$ et $u_{n+1} = \sin(u_n)$ pour tout entier $n \ge 0$, montrer que la suite est décroissante. En déduire que $\lim u_n = 0$.

5) Exercices pour faire le point

Exercice n°17

Chacun des énoncés suivants est-il vrai ou faux?

S'il est vrai, le démontrer ; s'il est faux, donner un contre-exemple.

- 1) Si une suite positive est non majorée, elle tend vers $+\infty$.
- 2) Si une suite est croissante, majorée par ℓ , elle converge vers ℓ .
- 3) Toute suite bornée est convergente.
- 4) Si une suite n'est pas majorée, elle est bornée.
- 5) Si une suite est convergente, elle est soit croissante majorée, soit décroissante minorée.
- 6) Toute suite convergente est bornée.

6) Suites adjacentes

Exercice n°18

On considère les suites de termes généraux

$$u_n = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$
 et $v_n = u_n + \frac{1}{n \cdot n!}$.

- 1) Montrer que les suites (u_n) et (v_n) sont adjacentes.
- 2) En déduire que la suite (u_n) est convergente.

Pour tout entier
$$n \ge 1$$
, on pose $u_n = \frac{1}{1^3} + \frac{1}{2^3} + \dots + \frac{1}{n^3}$ et $v_n = u_n + \frac{1}{n^2}$. Montrer que les suites (u_n) et (v_n) sont adjacentes.

7) Suites et borne supérieure, borne inférieure

Exercice n°20

Soit A une partie de \mathbb{R} et M un majorant de A, on suppsoe qu'il existe une suite (a_n) d'éléments de A qui converge vers M. Montrer que $m = \sup(A)$.

Exercice n°21

L'ensemble suivant a-t-il une borne supérieure, un plus grand élément, une borne inférieure, un plus petit élément?

$$E = \{1 + \frac{1}{n}; n \in \mathbb{N}^*\}.$$

Exercice n°22

Déterminer la borne supérieure et la borne inférieure de l'ensemble

$$\left\{\frac{1}{n} + (-1)^n ; n \in \mathbb{N}^*\right\}.$$

8) Suites extraites

Exercice n°23

Les suites suivantes convergent-elles?

Indication: chercher des suites extraites de la suite (u_n) convergeant vers des limites différentes.

$$1) u_n = \cos\left(\frac{n\pi}{6}\right)$$

2)
$$v_n = \frac{2n+1+(-1)^n n}{n}$$

3)
$$w_n = \frac{1}{2 + n^{(-1)^n}}$$

Soit (u_n) une suite de nombres réles ou complexes telle que les suites (u_{2n}) , $(u_{2n+1}$ et (u_{3n}) soient convergentes. Montrer que (u_n) converge. Que se passe-t-il si l'on suppose seulement (u_{2n}) et (u_{2n+1}) convergentes ? (voir exercice 22)

9) Suites de Cauchy

Exercice n°25

Montrer que toute suite (u_n) vérifiant pour tout entier $n \geq 0$,

$$|u_{n+1} - u_n| \le 2^{-n}$$

est convergente.