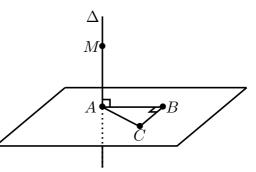
A LA RECHERCHE DES EXPRESSIONS PERDUES

On considère un triangle ABC rectangle en B et Δ la droite perpendiculaire au plan (ABC) et passant par A. Soit M un point de la droite Δ distinct de A. Démontrer que les droites (BM) et $(BC)_{\Delta}$



Voici une démonstration incomplète de cet exercice : il y manque des "expressions de liaison" figurant dans la liste ci-dessous.

Expression		ainsi	alors	car	comme	de plus	donc	d'où
N°	1	2	3	4	5	6	7	8

Expression	et	il faut	il suffit	or	par conséquent	puisque	si
N°	9	10	11	12	13	14	15

Remarques:

sont perpendiculaires.

- Une telle expression peut ne contenir aucun mot comme la numéro 1!!
- On essaiera de ne pas utiliser la même expression plusieurs fois.

L'exercice consiste à trouver les expressions manquantes et à les placer correctement.

La droite (AM) est orthogonale à (BC) une droite perpendiculaire à un plan est orthogonale à toutes les droites de ce plan.

......le triangle ABC est rectangle en B,la droite (BC) est perpendiculaire à (AB).

......la droite (BC) est orthogonale aux droites (AM) et (AB); les droites (AM) et (AB) sont sécantes.

Or, pour qu'une droite soit perpendiculaire à un plan,qu'elle soit orthogonale à deux droites sécantes de ce plan..........(BC) est perpendiculaire au plan (ABM) et(BC) est perpendiculaire à la droite (BM)(BM) est contenue dans le plan (ABM).