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ERROR ESTIMATE IN ISOPARAMETRIC FINITE
ELEMENT EIGENVALUE PROBLEM

M.P. LEBAUD

ABSTRACT. The aim of this paper is to obtain an eigenvalue approximation for elliptic operators
defined on some domain 1 with the help of isoparametric finite elements of degree k. We prove
that : A — Ay = O(h®¥) provided the boundary of ( is well-approximated, which is the same
estimate as the one obtained in the case of conform finite elements. '

1. INTRODUCTION

We consider a spectral approximation by the isoparametric finite element method for an
elliptic operator L defined over a bounded domain € of IR®*. The goal is to approximate a
simple real eigenvalue A of L.

J. Osborn [9] developed a general spectral approximation theory for compact operators
on a Banach space. He proved that the conform finite element method of degree k made up
over a polygonal domain £ involves the following result:

(1.1) |4 — un{lzacay = O(A**') and |A = A4 | = O(R*F).

where (A, u) is an eigenpair of an elliptic operator, Banerjee-Osborn [4] took into account
the effect of numerical integration and showed that it depends on the degree of precision
of the quadrature rules and on the smoothness of the eigenfunctions. To be more precise,
they found the same rate of convergence as indicated before if the quadrature rules are of
degree 2k — 1 and u regular enough. Banerjee [3] improved in some way this result: for
quadrature rules of degree 2k — 2, the estimate for the eigenfunction remains true but not
for the eigenvalue where one degree is lost.

If we apply the general results of Osborn [9] to isoparametric finite element approximation
over some bounded domains (see section 4), we obtain the same rate of convergence as in
(1.1) for the eigenfunction u but for the eigenvalue, we only have: | A — ), | = O(h*+1). Our
purpose in this article is to give a *good” construction of the approximate boundary that
will involve the phenomenon of supraconvergence: | X — A; | = O(h?%).

In section 2, we briefly describe the exact problem and the approximate one. In section
3, we precise how we build up the mesh over the bounded domain £ of interest and how we
devise the external layer of the elements to obtain a good approximation of the boundary
8. The main result is given in section 4, where we also recall some previous results we
need next, This result is proved in two steps: first we write A — X, as an integral defined
over 99 (section 5); then the estimate of this integral (section 6) leads to the result. In the
last section, some examples of triangulations satisfying the requirements of the theorem are
given in the cases £ = 2 and k = 3,

2. SETTING FOR PROBLEM

Let © be a bounded domain of R? with a C*-boundary 802. We define an operator L on
C?(%1) by:

2

8 Ou
(21) Lu=-— Z -5-1-;;- (a.-,- -3";-'-)

ij=1
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2 M.P. LEBAUD

where a;; belong to C*°(IR?, R). We assume that L is uniformly strongly elliptic, i.e. there
is a constant ag > ( such that:

A 2 2
(2.2) Vé € R?, vz € R? 3 ai(@) i > ao > &
i,j=1 i=1
We associate with L the following bilinear form defined on H1(Q) x H HQ):
2
du v
(2.3) an(u, 1)) = '.,J.Z___l ./n aij (:E) 5;: E dz,

It is coercive on H}(Q) x H(Q) ; furthermore the boundedness of g j on £ implies that
aq is continuous on H'(Q). According to the Lax-Milgram theorem, the following problem:

Let f € L}Q), find u € H}(Q) such that:
{ an(y, p) = fn f(z)p(z)dz for all p € H(Q)

has one and only one solution v = Tf. T is 'a ¢compact operator according to the Rellich
theorem. Let us denote by u a non-zero, real and simple eigenvalue of T’ and u a unitary
associated eigenfunction. We may then choose an eigenfunction u* of 7* associated with yu,
where T™ is the adjoint of 7" with tespect to the L2(0) inner product, in such a way that:

(2.4) / uude = 1.
n

We consider the following problem:

P fu=ATu=0
( 1){ ' f"’(u): 1
where A = 1/p and £* is the linear form defined on L*(R?) by:

(2.5) 2 (v) d-—g] u*vds.
1]

We suppose the space W™(Q) normed with:

e = (3 naauuﬁf

Jafgm _
where |[.}|, is the usual norm of L?(2). We use also the semi-norm :

1
P
= (X oug)”.
: la|=m :
and we make the usual changes ifp=o00 o
We consider the approximation of (P2} by the isoparametric finite elements method of
Lagrangian type and start by reviewig the construction of a triangulation associated with
this method ( [5],[6],[7]). : ) '

a2(0,1)

=Y

ﬁu(U, 0) &1(1-1 0)

FIG. 2.1
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- Let k be a nonnegative integer and (I? ,ﬁ, f)) the finite ¢lement of reference defined as
follows: ' - .
K ={F=(31,5); 5120, 8,20; §14+%3< 1} isa triangle whose vertices are denoted
byAEO) al ’ 82- ' o
- -£'= P where F} is the space of all polynomials of degree not exceeding & defined on K
X ={E=(8),8); 1 =ifk; fa=jlk;i+i<k; i € IN }, the set of all Lagrangian
interpolation nodes.

We consider an open set {2, approximation of and a triangulation Ky of curved finite
elements: an element K of Kj, is given by K = Fg(K ) where Fi is an invertible mapping
each composante of which belongs to Py. Fk is indeed determined by the data of the images
aix of the nodes @; belonging to ¥. We suppose that, if an edge T of X is .on 8%, its
vertices are on 9Q too and that the edges which do not belong to 862 are straight. These
hypotheses are illustrated by figure (2.2). '

k=2 o0
Fr,

=

FIG, 2.2

We denote by hg the diameter of K and suppose that all g are bounded by h.
We define the space of functions V;:

(2.6) Vi={v e C°R*); ()= 0siz & Q; vk € Px YK € K}
where Py = {p: K — R;po Fx € P;}. It is easy to check that:
(2.7 Vi C HY(W).

We eventually suppose that this triangulation is k-regular ( Ciarlet-Raviart {6]). Let us now
approximate our problem. We first define an elliptic bilinear form on V; x V; by:

2
_ . 31)), 6w;.
(2.8) ap(v, wp) = ,-Eﬂ fn,. Bij 7 Edw.

We also define two operators T}, and T} from L2(IR?) to V; by:

ah(Thf»”h)=/ ,fvndz
Vi€ LYR?),Yu € Vi R
ah(vh,T,:f) = ./]R’fvh dz

and u, and A, are solutions oft

(P2) up — ApThuy = 0,
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We furthermore suppose that uy is the orthogonal projection of u on the eigenspace of T}
associated with uy = 1/;. We now turn to estimating A — X,.

Remark. Most of the time,  and €, are different. We sometimes need to extend functions
defined on Q or 0 to R? in a continuous way and use the same notation for a function or
its extension. Unless explicit mention, an H} ()~ function is extended by zero outside of

Q.

3. CURVED TRIANGLES

We shall obtain the stated estimate A — ), = O(h?) thanks to a ”good approximation”

 of the boundary 9. This needs explanations which we do in this section.

We suppose that §Q is parametrized by its curvilinear abscissa: ¢ — z(o) and denote by

n (o) the unitary normal vector, exterior to 8 at the point z(o) and L the length of 852,
Let us consider the application defined as follows:

(3.1) x: (0,8) = x(e,8) =2(0)+¢n (o).

If a > 0 is small enough, x is a C°*diffeomorphism from [0,L] % [~a,a] onto a neighbour-
hood V of 802 in IR?. From now on, we suppose that % is small enough so that:

(3.2) : _ , oQ, C V.

Remark. If M = z(0) + &1 () € V, then (o) is the orthogonal projection of M on 80
and |€| = d(M, O82) where d(M,89) is the distance of M to 6%,

Now let us consider K a triangle of K, with a curved edge I'y, in 80 and let ap = z(a;)
and a; = 2{0y41) be the vertices of Iy, We call I' the part of 5Q lying between those two
points and we denote by I; = gy, — o its length., We remark that:

(3.3) I = O(h).

We suppose that ag = Fk(do) and a; = Fx(@,) where Fx is the application of (P)? that
defines K; thus, T is the image of the segment [@,@,] under Fg and letting:

(3.4) za(0) = Fr(T2%,0),

we obtain a parametrized equation of T'y. Furthermore, 2} is a polynomial of degree k with
respect of o on [oy41,0:].
We supposed that for every i:

(3.5) _ N .7 zn{oi) = z(o3).

We furthermore assume that there is a constant C' > 0 such that, for all {, we have:
N IR .
(3.6) | zn{o +Ji) —z(o; + J i)lg ClFtlforj=1, . k—1.

Lemma 3.1. Assumed that (3.2),(3.5) and (3.6) hold. Then, there is a constant ¢ >0
such that, for all i, we have: : ' '

|z — = "m.oo.[o.-.as-{-d SCH*1"™ form = 0,---,k+1.

Proof. Let 0 — gnz(o) be the Lagrangian interpolation polynomial at the points oy 4+ j I; /k
for j =0,k of the function 0 — z(¢). Thus, we have:

{yhﬂ(ff:‘ +ilifk) =a(oi+ il /k) for j =0, -,k

(3.7) e € (B
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It is well-known that:
(3.8) [ gnz — Z|lm,c0fon0ign] € Ch¥-m form=0,..- ,k+1

with C independent of { and of h. We define the Lagrange polynomial basis as follows:

o o‘—tr,--—pl,-)k s i a
E’(“)_E(_—Uw)h/k )forj=1,-- k-1

Then, we can write:

E-1
gre{o) — zp(o) = Z (z(os + mI/k) — zi(os + m i [E)) £n(0).
m=1
The result is thus a consequence of (3.7) and (3.8) and of the well-known following estimate:

am C
IE;—;E,-(G')ISFform:@,---,k-{—l.

Remark. We deduce, from this lemma, that the function =z, and all its derivatives are
bounded on [0, L] independently of A,
According to (3.2), we observed, that for ¢ € [0, L], there is a unique £ €] — a,a{ such

that z(¢) + & 1 (0) € 6. Let dy(o) be this value of £ and we obtain a new parametrized
equation of 982, as follows:

(3.9) o — F4(0) = 2(0) + dp(0) 7 (0).

Lemma 3.1 then implies:

Corollary 3.1. The application dy is C* on [0, 0441] for every i and we have:
dn{o) = O(h**1),
Proof. We have dy(0) = (#,(0) — (0), 7 (), the regularity of & gives the regularity of

dy

Putﬁfﬁ\: {(z,y) € f{'; ¥ 2 1/2}. There is a constant y such that, for h < hg, we have
I?% C K A5} From now on, we assume that A < by

Lemma 3.2. There is a constant Cy, > 0 such that, for all h € hy and for all ¥ € B, we
have, for i =0, 1:
]ali,oo,ﬁ’ <G Iali,&KF\ﬂ‘

Proof. P is a space of finite dimension, thus, by equivalence of norms, we obtain:

Wli,oo,ﬂ? <G [ali,z,fi‘&'

We conclude by using K e Eno O
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Lemma 3.3. There is a constant C > 0 such that, for all h > 0 small enough and for all
v € V3, we have:

lvlh,2a, € Chi 1% ]1,2,8n0,
where A, = 3 \ (2N Q).
Proof. Let KN A, = F"I(KnA,) and J (%) be the Jacobian of the application F, at the

point £ of K. According to the k-regularity of the triangulation ( {6] ), there is a nonnegative
constant Cy such that:

1 _J (E) N
(3.10) 0< o < 7.0 €Coforall Z,j € K.
We deduce:
T Surface(K N A,) k
(3.11) Surface(K NA,) € Surface(X) £ Ch:.
since:
Surface(K N A,) hE+E

£C
Surface(K) > C k2,
Surface(K) = 1/2,

We then consider a function v of Pg;let = v o F\ and we have ¥ € P; thanks to the
definition of Px. Thus, we can write the following inequalities:

ot l -~
! v |0,2,KnA, S (gi? JK(I:)) : {b‘ Io,gl_ﬁ}?“v
< (Max JK(':E))'gl (Surface(Ime))% [¥]g 00 Ié'
FeR . 22,
< Ch¥ (Makx JK(?E))% | %y oo # according to (3.11),
éE ' L}

< Cht (Ma}%t JK(Z?))% |¥]g.9 kip according to lemma 3.2,
ie 1%

Max, g J (Z)}\ 3
g Ch¥ ( —2ER K |vlo,2,kn0-
= ( (Mméefg T (2)) ) '
The inequality (3.10) then implies:
(3.12) [v 02,604, € Ct h¥v]o s kna-
The k-regularity of the triangulation implies also that there is a constant ¢ such that,

for 2ll K € K, we have:

(3.13)
HDF, 1Io co.K €

='IQ

Furthermore:
tvli2,xna, (Ma.xJ A))% ”DF— “é.,oo,K (¥l 5 g

< Ch¥ (Max T BN DF |2, 51, .. 4 according to (3.11),
ZEH

% MaxéER-JK(E) -1
<Ch (m) IDF e 1 DFUE ¢ 19 hiskne

according to lemma 3.2. The inequalities (3.13) then give :

(3.149) [v]12,k0a, € Coh¥ [vi1aKkna.

Adding up the inequalities (3.12) and (3.14) over all the triangles that are concerned, we
yield lemma 3.3. O

Remark. The inequality (3.14) is optimal, but (3.12) could be improved.
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4. THE MAIN RESULT

We uée the notations defined in section 3. Recall that we assume:
(1) For all i:
(Hi) z(oi) = zn(0i)

(2) There is a real C' > 0 such that, for all j € {1,---,k—1} and for all i:
N N k1
(Ha2) l-‘b'h(ff-'-l*.?;)-'w(ai-l-.‘li)l SO

Let us denote by 8 = 0,- -+ ,8; = 1 the k + 1 Gauss-Lobatto points of the interval [0, 1]
and define:

(4.3) oij=0i+8 for j=0,-- k.

Theorem. If (Hy) and (Hz) hold and if the triangulation Ky is k-regular, then there is a
constant M independent of h such that:

A ~dn | M (B + ﬂ{?xlw(du) - op{oi) 1)

Remark. If we suppose that:
(H) Max | 2(01,5) — zaloig) | = O(K*F),

we obtain the supraconvergence phenomenon:
A=Ay = O(h?H).

In order to prove the theorem, we establish the two following propositions.

Proposition 1. There is a constant C) such that:
A= An— f o(0) du(0) do | < Cy h**
a9

where g is a regular function of o.
We then estimate the integral with:

Proposition 2. Let ¢ € W*~11(39), then there is a constant Cy > 0 such that:

|fm (o) dy(0) dor | € Coh% (| lk-1,1,00 + L1l @ llk-2,00,00)
+Ca L@ lle~2,00,00 Max|(z — zn){oij) ]

Remark. The first proposition is valid in any dimension of space but it is not the case for
the second one where the dimension two plays an important role.

These propositions clearly imply the theorem. We shall prove them in the two following
sections. For later purposes, let us first recall some results.

If the triangulation is k-regular, we have:

For all u € H¥(R?),

(42) k+1-m
[T ~ Ta)t |lm,2,00n0, € Ch | Tt fls 41,2, for m =0, 1.



8 M.P. LEBAUD

One can find a proof of this statement in the articles by Zldmal ([11],[12]) in the case
of Dirichlet-type problems. It has been improved by Zenisek ([10]) for various types of
nonhomogeneous boundary value problems.

We remark that the definitions of T and T}, imply that:

” (T - Th)u “0,2,]R,n

< T = Th)ullo,zanay + (T — Ta)ell ; R*anas)
(4.3) <| |

HT = Th)ullo,z.000, + | Thello 2.0, \(@nnm)
+ 11 Tu lo,2,0\(00m)

since Thu = 0 on IR? \ 24 and Tu = 0 on R?\ 2. Then, by the Poincaré’s inequality,
for u € H**(IR?), such that Tu € H(Q):

C R} || VTu lo,2,00(83m60) according to lemma 3.1

| Tu llo,2.0v(a00,) €
“<~. Chk-l—l ” VTu Hllzln.

For u € H**(IR?), such that Thu € H(Q):

< CR¥ | VThu oz 0\ (anam)

< CH* | Thull zav@nan)

< Cﬁ%k'H HThtt|l1,2,0na, according to lemma 3.3
S ChiFt! according to (4.2)

| Taweflo,2,00\(R00)

The previous inequalities and (4.3) infer to:
(44 1T = Ta)ully, o = OC4+1).

‘We then use two results from the general theory of the spectral approximation for compact
operators by J. Osborn [9].

Let T be a compact operator of L2(1) into H}(€2). We define a compact operator T from
L?(IR?) into L(IR?) as follows:
Let u € L(R?), then:
Tu=T(u;m) on Q
Tu=0 on RI\Q '
Th is an operator of L2(IR?) into Vj, thus into L2(R?). We denote by F (respectively Ej)
the projection of L*(JR*) onto the space of generalized eigenvectors of T' (respectively T3,)
corresponding to u (respectively ps = 1/As). These spaces are spanned respectively by u

and u, defined by (P;) and (P;). We notice that u, = Eju. We let R(E) be the range of
the application E. Given two closed subspaces M and N of L*(R?), we set:

{6(M \N) = Sup{{Inf{ll f = gll, , j2: 9 € N}} f € M; 17l =1}
3(M, Ny = Max(§(M, N),5(N, M))}.

J. Osborn proves in [9] that:
There are two constants C; > 0 and C; > 0 such that:

(45) {5(R E),R(E3)} € Ci (T~ Tw)/rem |l
|1 = 10} < G2l (T = Ty memy Il
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Moreover:

1T = Thdmgey I = Sup{| (T = T, ) | £ € R(B),p € LARY);
1 Fll e =l @ e = 1}
< Sup{l (T~ T)f e s | Fllo e = 1}
< Ch¥*1 according to (4.4).

We then have the following results, for u € R(E) with || u{lo2.0 = 1 and us = Ejup:

(4.6) | — up Ho,z.IR.’ = O(h*+1),

4.7) [A = A | = O(BFY).
We now turn to the proof of the two propositions stated above.

5. ProoF oF ProPoOsITION 1

We first give some notations. We decompose 2 U £;, in three domains:

=N,
A;=0\©
(5.1) A, =0,\0
I; =00nA;
r.=8QNA,.

We consider n= v = (¥1, v2) the unitary normal vector, exterior to 9% and set:

( i)
8;, —_ '5';
8 2
av =g = i &y
LT By '.; iy f
(5.2) \ R
511;,» = Bw,. - I-J-Z=1 Vi flsJa ;
2
Alo) = Z aij (z(o))miv;.
\ ij=1

5.1. Proof of Proposition 1.
We decompose the proof of Proposition 1 in two lemmas:

Lemma 5.1. We have the following estimates:.
(1) A=Ap = =220 ((T — Th)u) + O(R%17),
(2) (T —Ty)u) = ay, (Tu, T w") +a, (Thu, Thu*)

+ag (T~ Th)u, (T* — T3)u*) + / Alo) [8,(Tw)T}u* + 8,(T*u*)Thu] do.
Lo
We introduce:

(5.3) g(0) = A(o) B,ud,u*(z(0)).
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Lemma 5.2. We have the following equalities:

o) ay, (,6%) = — fr (o)ir(a) do -+ O(h™H+?).

@ as, (Tau, Thu*) = % jp ., g(a)dh(;r) do + O(h™),

(3) /F () 8,()Thudo = -3 fr o(o)da(o) do -+ O(PHH),
(4) /F A() 8, (T do = —% jl: 0(0)r (o) do + O(K7++1),

Assume these lemmas hold. We show that they imply Proposition 1. According to the
first lemma, we have:

A=Ay = =da, (Tu,T*e") - Aa, (Thu, Thu')
N (T = Th)u, (T — T)u)

-2 [ A(o) [8(Tu)Thu® + 8,(T"u*)Thu] do.
r,
Using ATu = u and AT*u* = u* and the bilinearity of a, we have:
A=dp = =0y (,u%) = ANa, (Thu, Thu*) ~ A ag (T — Tn)u, (T* = T3 )u*)
Y f A(e) [ 8, (w)T{u” + 8,(u*)Thu] dor
I,
We then use lemma 5.2 and we obtain:
A=Mn= [ s@dn(o)do — [ o(o)in(o)do+ 007
I‘i 139
~ N ag (T = Ty, (T* = TP)u®) +2 / §(0)dn(c) do,
e
= f 9(0)dn(c) do + O(h™) = A2 ag (T — Th)u, (T* — T3 )u*),
o9 :
- f §(0)dn() do + O(A™).
o0
To obtain the last equality, we have used the continuity of ag and the following inequality:

HT = Th)ullize + 1(T* = T lize < CHF,

which is proposition 1. Now we prove the two lemmas stated above,

5.2. Proof of Lemma 5.1.
To show the truth of (1) in lemma 5.1, we remark that, for all w € Im(I = AT, we have:

(5.4) £(w)=0.
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This gives us:
0 = £ (un — M Thun)
= 0 (up = ATup) + M € (T = Tu)un) + (A = M) £ (Tup)
= A £ ((T — Ta)un) + (A — M) £*(Tus) according to (5.4).

Thus:
(5.5) (A= A) £ (Tun) = A £ (T — Tnyun)
Furthermore:
0 (Tup) = £(Tw) — £ (T(u — up))
(5.6)

= ; + O(h**1) according to (4.4)
£((T ~ Taun) = € (T — Twyu) — € (T — T )(s ~ un))

We remind that the last term satisfies:
(T —Th)(u—up)) = f (T* = Tp) u* (u— up) dz
=O(h3‘+2) according to (4.4) et (4.6)
Equalities (5.5) and (5.6) infer to:
A= An = =AM 8 (T = Ty)u) + O(h#+2 4 | A= My | RFH1)

and we obtain the desired result thanks to {4.4) and (4.7) O
The second item in lemma 5.1 is a decomposition of the integral £*{(T — T} )u)} over the
domains defined in (5.1). From Green’s formula:

an(v,w)~?va'wdz=] 0, wydo

Ly an

an(w,u)—/vadm=f O, vwde
a an

Choosing v = Thu and w = T*u" in the first one and v = T'u and w = Tu* in the second
one, we have:

(6.7)

£ (Thu) = an(Thu T u* ] Oy (T u")Thudo
5.9) ag(Tu, Ty u*) f 8,, (Tu)Tyu* dcr+f ulyu’ dz
= f 8uy (Tu)Tyiv" do + ay (Thu, Tyu)
an
-by definition of T}.
We know that Thu = 0 on T';; the first equality in (5.8) and the definition of 7" infer to:
(T - Th)u) = ag(Tu, T*u*) — £(Thu)

= ag, (T ~ Ty)u, T*u*) +/r‘ 3y, (T uYThude

= an ((T - Th)u’ (T* = T;:)‘U') + / 8!’1,- (T*U*)Thu do
. ",
+ an(Tu,T,':'u*) -ag (Thu,TEu*)
= 4 (T = Tn)u, (T* = T3)u*) + a,, (Tu, T*u*)

+ / [Bup (T*u")Thu + 6, (Tw)Thu' | do
|y

+a,, (Thu, Tyu") according to (4.8).
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The proof of the second item is complete after we remark that:

By, (T u*) = A(0)0, T*u?*
8y, (Tu) = A(0)0,Tu

since Tu=T*u*=0on 8Q 0O

5.3. Proof of Lemma 5.2.
Proof of (1): we describe 80, with the notation defined in (3.8). Every point y of A; can
be written in a unique way as follows:

y==a(0)+£& 7 (¢) with § €])dn(o),0].

The Taylor-Lagra.nge’s formula at the point z(o) gives:

39: ( )Bw (v) = 8 ( (7)) *5-“(2!(0'))+O(h"+1) accordmg to corollary 3.1

= u,-:w —(2()) —{2(c +O(hk+1) because of u =0 on Ty.
1 au 8u
We remark that:

dey dzy = (1 — = —)do dé = (1 4+ O(R**")) do d¢

R()

where R(o) is the radius of curvature of 8 at the point #(¢). The second equality is a
consequence of corollary 3.1. This gives us:

‘/FHJ =1

f A(a)a‘“‘"" (2(0))dn () do + O(h*+2).

Qudu® ki
[n(a) %% g, 5, +OMKT)ddo

which ends the proof of the first item £
Proof of (2): for the sake of simplicity, we let:

vy =Thu v =Tuonfl
(5.9) { an {

vy =Thu v =T*u" on Q.

The boundary of  being regular, we can extend v and v* to lR?\ Q as C*+Lfunctions. The
bilinearity of @, gives us:

(5.10) a,, (vh,v;) =a,, (v,v*) + a,, (vp —v,0*) + aa,(”t”; —v*)
) +a, (vn~v,0} —0*).

Analogously to the previous argument, we have:
(5.11) a, (v,9*) = / §(o)dn(o) do + O(h%*+2),
'3 [.,e

with §(o) = A(e) 8,v8,v* (2(c)), hence z? g(o) = g(o) and we obtain the first term given
in the equality we are trying to prove. Let us show that the remaining terms in the equality
(5.10) are bounded by A%, We first use the continuity of a A,

las, (0= vn, 0"} | S Cllv ~ v [l 2,8, 19" [|1,2,4,
(5.12) tay, (v, 0" = oh) | S Cllv* =i linza. [[v]l2,a,

o, (v =" = Uh) | < Cllv—wllyza.llv” = v ll,2a.
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Let rpv be the Lagrangian polynomial interpolation of degree k of v. According to
Ciarlet-Raviart [7], we have:

(5.13) lv—ravihan, <CR.
According to (4.2), we then obtain:
(5.14) foa ~ ravlh2e < Ch*

According to the fact that vy — rpv belongs to V), and lemma 3.3, we furthermore have:

s —ravllaa, € ChE|lon—ravlhze
< Ch¥ according to (5.14)
We also have according to Ciarlet-Raviart [7]:

(5.15)

v =~ ravlli,000un, € Ch*.

It is then clear that we obtain:
(Surface(A )) th||"u = rhv{|1,00,A,

flv—raviiza. €
1
< Ch,k+

(5.16)

Hence, we obtain:

(5.17) v —wall1,2,4, € Ch3*,

* The same kind of estimate holds for v* — v}. We furthermore have the following inequality:
1v° 12,0, < C (Surface(A,)) ¥ < Ch*$,

which is also true for ||v{1,2,a..
Putting those two last results in (5.12), we have:

lag, (v — v, v*) | < CRP*+S
|y, (0,0 — 03} | S CRPHE
lay, (v —vn,v* —}) | < CH¥*

Using these previous inequalities in the equality (5.10), we obtain the second item of lemma
5.2 thanks to (5.11) O

Proof of (8): the proof of (4) being similar, it will be omitted. We use the notations (5.9).
The function v, vanishes on 8y, hence, accordmg to (3.8}, we can write:

un(a(0)) = ~da(0) 7 (2) Vuu(y) with y €]2(),2n(0) [,
= —du(0) 7 (0) Vou(2(e)) + da(0) T (o) (Vun(2(0)) ~ Vur(s)),
= ~du(0) 8,0n(2(0)) + O(K**1 | 7 (o) (Von(2(0)) - Vun(y)) |)
according to the estimate on dj obtained in corollary 3.1.
We furthermore have: ' e
|7 (0) (Von(e(o)) - Ioa)} | < | 7 (a)(v'f'u,.(m(an ~ Vu(a())) |

+17 (@) (Vela(o)) - Vo) |
+17 @) (Voa(y) = Vo()) |,

< C{lv—vrlliza. +|2(e) —y),
< C'h**+! according to (5.17) and corollary 3.1,
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which gives us:

vi (2(0)) = ~du(0)0, v (2(0)) + O(KF*+?),

We finally obtain:
(6.18) f A7) 6,,(1;")1”;,1; do = -/ A(o) 8,(u*)dr(a)0,vp (2(c)) do + O(h*+%).
T, Ty :

Since ||v — vn|l1,2,0 = O(RET):

3, vn(z(0)) = B,v(z(0)) + O(RF*Y).

{v:Tu:-,l\-u

di{o) = O(h*+)

Furthermore:

Therefore: .
dn() 0y vn(2(0) = 5 dn(0) Bru(2(a)) + O(A*+?).

The previous equality and (5.18) complete then the proof of (3) and the lemma is completely
proved 0O

6. PROOF OF PROPOSITION 2

We use the Gauss-Lobatto formula to prove the proposition. Therefore we introduce
fg = 0,0y, -+ ,0r = 1 the k + 1 Gauss-Lobatto quadrature points of [0, 1] and:

k
(6.1) Gi£) =D _1i Aj flov + 85 1)
j=0

where the coefficients ); are uniquely determined by:

1
(6.2) Gi(p) =f p(z)dz for all p € Pop_y
0

k
We recall that A; > 0 and Z/\ = 1.

i=0
According to the Péano theorem (see, for example, [8]) we have:

(6.3) For all f € C*({ov,0041]) |E:(f)}] < CI**Y | flooor
where

Fig1
(64) B= [ Koo - Gi(h).

Let us begin the proof of proposition 2. Let us denote by v = {¢i,0:41] and consider a
Wr-11(50)-funetion ¢. Then we have for all 0 € ¥;:

o — s)k=3

= 2) ds

(6.5) 0(0) = pil) + j RO lnd) s

where p; is the Taylor’s polynomial of degree k—2 of ¢ at the point ¢;. This equality implies
that:

(6.6) flo—m ”U.Oom < Ch*3 le |k-1,1.'ya-
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Furthermore we can write:

k
[!_ p(o)dn(o)do =/ (¢ —pi)(0) dn(o) do + Ei(pidn) + & Y Aj (pi dn) (i 5).

Vi i=0
According to (6.4), (6.6) and lemma 3.1, we deduce:
| eternoras|
<C (hzk [0 lkm1,19 + b B2* | pi di [ak,004; + U ji‘g’?ﬁ(’k | (i dn)(o:,5) |)
<C (h” bo b= + i1l @ fe-gi007s (B* [dh lak,cosy, + Max [da(o05) 1),
where we have used the inequalities:

{ji\g’?ﬁk fpi(oi) |

Ipi dh I2k,oo,'r='

”Pi Nu.oonr.- S Cllelle-2,00 -

/AN A

CH e llk-2,007: [Fdn ll2k,00,7-

Carrying out the summation over all intervals v;, we obtain:

!/ p(o)du(o)do | < C (h“ lele-1,1,80
o
+ D1 -n00,00 (Max|41(04,) |+ K Mk i o))

To complete the proof of proposition 2, we need the:

Lemma 6.1. There is a nonnegative constant C such that, for all i, we have:

| dn ll2,00: € C
ldn(oi;) | € C(I(z — za)(ori ) |+ B3

Proof. We built two parametric representations of d€2:

1
o € [ai,0i11] — Ex{0) = a(0) + dp(e) n (o)

s € [oi,0041] = @n(s) = Fie( ,0)

This defines an homeomorphism:

fio€e[0,L]— s= f(o) €[0,L] with:

6.7) £r(s) = Ea(0) = 2(0) + dn(s) 7 (o)

which gives us:

(6.9) dr(0) = ((za(s) = 2(0)) . T ().

We already observed that z; and all its derivatives are bounded independently of h and 1,
then we obtain the first inequality provided f is C° on [0, L] and has all its derivatives
bounded independently of h and i. We first prove with a Taylor’s expansion, that there is
a constant C independent of ¢ and £ such that;

(6.9) o —s] < ChEL
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According to (6.7), we have:

zp(s) — z(s) = z(0) — 2(8) + dp(0) 7 (o)
(s —0)?

=(s=0) T () + (g + (o)) 7 (0) +0(ls - )

(6.10)

where R(c) is the radius of curvature of 8 at the point z(o).

Lemma 3.1 and corollary 3.1 say that we have ||z — zj [Jo,c0,00 € Ch*t? and
di(o) < ChE*H) thus (6.10) yields to (6.9).

Let us study the regularity of f. According to (6.7), we have:

(6.11) f(e) = LF (2(0) + du(o) 7 (0)) + 0.

We suppose the triangulation to be k-regular, it implies that Fg is a C*diffeomorphism;
furthermore it belongs to (P )2, It is then clearly a C*diffeomorphism. Since dj is regular
and according to {6.11), we obtain that f is regular.

In order to prove that all derivatives of f are bounded independently of A on [0, L], we

multiply (5.7} by z'(o) -1 (o) and we have:

def

(6.12) #(0) = (2(0).2'(0) = (zn(s).2'(0))

where ¢ is a C*function on [0, L] which do not hinge on k. Carrying out the differentiation
with respect to ¢, we obtain:

{6.13) ¢'(0) = f (o) (2} (s) . 2’ (o)) + (2a(s). z"(a)).

According to (6.9), we can write:

(#h(8) . #'(0)) = (#'(0) .2 (9)) + ('(0) . £'(5) ~ 2/ (0)) + (&'(0) - h(s) — 2'(s))
=1+ O(h*)

because of ||z’ — 24 |lo,c0,e0 = O(A*) on account of lemma 3.1. We deduce from these
calculations that, if h is small enough,

(#h(s).2'(0)) #0,

thus f' is independent of h since z;, and all its derivatives also are. We then obtain that all
derivatives of f are bounded independently of h thanks to the previous remark and with the
help of an induction by carrying out the differentiation of the equation (6.13) with respect
to o. Thus all the derivatives of f are bounded independently of s on [0, L] and inequality
(6.8) proves the first part of the lemma and we come to the second part.

Let us define:

(6.14) sij = f(oi;)
and write (5.8) at the points s; ; and oy ;:
dn(045) = ((en(sij) ~ 2(00y)) . 7 (035))

{6.15) = ((zn(ois) — 2(01,5)) - 7 (0i3)) + ((za(855) — 2 (033)) . 7 (04,3))
+ ((2(03,5) — 2(80,4)) . 7 (0i5)).
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We know that:

2a(8i5) — nlows) = (81 — 01)z3(00,5) + O(A™1?)
according to the estimate of s — & stated in (6.9)
= (8 — 033)2' (01 ;) + O(h*1?)
+ (83 ~ 04,1 (2h(015) = ='(03,1))
= (8,7 — 05,7)2'(64,;) + O(h¥*1) since ||z — z;, || = O(R¥).

Replacing the last equality into (6.15), we obtain:
d(0i5) = ((2al0s;) — 2(003)) - 7 (00,3)) + O(h?*+1)

because of z'(oy ;) =t {g:;). O

Remark. According to (6.15), we could change (H;) and {H) into (Hs):

o T
fod it
]

(Ha){I((mh(a,-,,-)—sc(a.-,,-)). 7 (0:3)) | <
<

| zn(ei;) — (o)

7. EXAMPLES

We use again the notations of section 3. Let us consider a triangle K of the triangulation
Ky with a curved edge T's in 8Q), and denote by A and B the vertices of I'y. We call T the
part of O lying between those two points. Let O be the midpoint of 4 and B.

For k = 2, we give two different constructions of the are I's; for £ = 3, we only give an
indication since it is the same idea.

7.1. k=2.
The quadrature points of Gauss-Lobatto of the segment [0, 1] for k = 2 are 0,1/2,1. We
suppose that A and B have —!/2 and 1/2 as curvilinear abscissas. Let:

(1.1) ¢’ = 2(0).

If we define I';, by the three points A, B and C’, then the hypothesis (H) clearly holds and
the triangle K is k-regular, but C’ is difficult to calculate if T is not parametrized by its
curvilinear abscissa.

We can also consider the point C intersection of I' and the median of [ A, B]. Let us show
that this point is convenient. We must have:

(7.2) CC'= O(h%),

Let:

(7.3 do

{?(a)—;i”ﬂ
C = a(0y)

Lemma 7.1. With the previous notations, we have:
(1) a1 = O(h%)
(2) CC'= O(h%)
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Proof. o1 is defined by OC - AB= 0.
We write the expansion of the function z at the point 0 for o = oy, —1/2 or 1/2:

2(¢) = 2(0) + 02’ (0) + %zm"(O) + %s:c”’(ﬂ) +0(1") hence:

06 = 2(01) - 1 (a(-5) +2(3))
= 1w/(0) + 307 — P)e"(0) + 203 2"(0) + O()
AB = o)~ 2(-3) =1 (0 + 35" (0) + 01
Thus:

1 1
(7.4) o1+ Ea? + 3501 2 (2'(0), z(0) + O(i*) = 0.

We deduce that o; = O(I*). We have already remarked that | = O(h), thus we have
shown the first point of the lemma.
We also have:

CC'= z(01) — o(0) = o ¢ (0) + O(h®),
which shows the second point 0O

C satisfies the hyp.othesis (H); it also satisfies the hypotheses needed for a k-regular

triangulation ( [6]). We remark that any point C" with C'C"= O(h?) is also convenient; we
then show another way of building the third point we need to have I'y.

Let D and E be the two exterior nodes of the triangulation which are respectively the
nearest of A and B.

We consider p a polynomial of degree three, passing through A, B, D and £ and we denote
by C" the intersection of p with the median of [ A, B]; by construction, C" satisfies that

C'Cr= O(h*) and C” is easy to calculate.

FIG. 7.1
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We give an algorithm to obtain C”. We first work with the orthonormal frame of reference
defined by figure (7.1) and we denote by (z,,, ,,) the coordinates of a point M in this frame
of reference. We have:

T, =—Tp
Yy =yg=0
ycu—O

We define two polynomials p;, and p, as follows:

(z— a:E)(:n - a:A)(a: —zp)

(7.5) Po(®) = (#p —2g)(#p —z4)(®p — )
o) Em )@= 2, )z = 25)
£ (g —2p)(zg —2,4)(z5 — zp)
We then define C” by:
(7.6) Tc = YpPp (0) + yEPE(O)'

Let us now work in the original frame of reference supposed to be orthonormal and denote
by (z%,,¥},) the coordinates of a point M in this frame of reference; we can then give an
algorithm to calculate C*:

(1) Change of frame of reference:
T~ Ty Yo ~ Vs
hiz
HESHENICEENE LIVESS)
9(z,9) = ez~ 2,) — By — ¥)
{wE=g(w’E,yfg) {mp = g(z),,¥p)

yE=f(wig:y!E) yD=f($;)Jle)

& =

(2) Equality (7.6):

h? Tz yt
{p(z,y,z,t) T 4z —y) [m2 —hj4a - h2/4]
e=p(zp, 20, Yp, ¥g)
(3) Result:
:c;:.,, = Be+zh
y:—’.u =ac+ yIO

Remark. In the case of & = 2, according to Ciarlet-Raviart [6], the triangulation would be

k-regular if we have || oc” | = O(h?), that is the case; we build then the two other edges
to obtain the other hypotheses of a k-regularity.

7.2, k=3,
The Gauss-Lobatto quadrature points [0,1] in the case k = 3 are 0,0 = -;-(1 - -&_5-),
A= %(1 + %),1. Let us call:

B = z(al)
{c=4m)
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We then remark that all points B’ et C” satisfying:

| BB' || = O(h®)
| CC' || = O(k)

are convenient to build 'y, We consider a polynomial p of degree five passing through
six exterior and nearest nodes of the triangulation and we denote by B’ {respectively C”)
the intersection of p with the orthogonal straight line to (A, B) passing through the point
aA+ (1 - a)B (respectively 8A + (1 — §)B).

Those points define a convenient arc T'y; we then build the two other edges of the triangle
in order to have a 3-regular triangulation.
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