

Exercice

Soient a, b, c et d 4 réels avec $c \neq 0$ et $\delta = ad - bc \neq 0$. On définit une fonction f par

$$f: \begin{bmatrix} \mathbb{R} \setminus \{-\frac{d}{c}\} \to \mathbb{R} \setminus \{\frac{a}{c}\} \\ x \mapsto \frac{ax+b}{cx+d} \end{bmatrix}$$

- 1) Étudier le nombre de points fixes de f.
- 2) Montrer que f est bijective.
- 3) Soit $x_0 \in \mathbb{R} \setminus \{-\frac{d}{c}\}$. Pour quelles valeurs de x_0 , la suite vérifiant

$$\begin{cases} u_0 = x_0 \\ u_{n+1} = f(u_n) \quad \forall n \in \mathbb{N} \end{cases}$$

est-elle définie? Distinguer des cas suivant le nombre de points fixes de f.

4) Étudier la convergence de la suite lorsqu'elle est définie.

Éléments de solution

1) Soit ℓ un point fixe de f, s'il existe. On a alors

$$f(\ell) = \ell \iff (c\ell + d)\ell = a\ell + b$$
$$c\ell^2 + (d - a)\ell - b = 0$$

Le discriminant de cette équation du second degré $(c \neq 0)$ vaut $\Delta = (a+d)^2 - 4\delta$. Il y a trois cas à considérer :

- $-\Delta > 0$. L'application f a deux points fixes distincts.
- $-\Delta = 0$. L'application f a un unique point fixe : $\frac{a-d}{2c}$
- $-\Delta < 0$. L'application f n'a pas de point fixe.
- 2) Soit $y \in \mathbb{R} \setminus \{\frac{a}{c}\}$. Montrons qu'il existe un unique $x \in \mathbb{R} \setminus \{-\frac{d}{c}\}$ tel que y = f(x).

$$y = f(x) \Longleftrightarrow x(a - cy) = dy - b$$
, or $a - cy \neq 0$
donc $y = f(x) \Longleftrightarrow x = \frac{dy - b}{a - cy}$

L'application f est donc bijective et son application réciproque est définie par

$$f^{-1}: \begin{bmatrix} \mathbb{R} \setminus \{\frac{a}{c}\} \to \mathbb{R} \setminus \{-\frac{d}{c}\} \\ x \mapsto \frac{-dx+b}{cx-a} \end{bmatrix}$$

3) Supposons que f ait deux points fixes distincts α et β (réels ou complexes). Si x_0 vaut α ou β , alors la suite est définie et constante. Supposons x_0 différent des deux points fixes de f. Comme f est injective, on en déduit que, pour tout entier naturel n, u_n est différent de α et de β .

La suite (u_n) est définie si, pour tout $n \in \mathbb{N}$, $u_n \neq -\frac{d}{c}$. Supposons qu'il existe $k \in \mathbb{N}$ tel que $u_k = -\frac{d}{c}$ et notons k_0 le plus petit d'entre eux.

Posons $v_n=\dfrac{u_n-\alpha}{u_n-\beta}$ pour $n\leq k_0.$ On a

$$v_n = \frac{f(u_{n-1}) - f(\alpha)}{f(u_{n-1}) - f(\beta)}$$
$$= \frac{c\beta + d}{c\alpha + d} v_{n-1} \text{ après calculs}$$

Posons $q = \frac{c\beta + d}{c\alpha + d}$.

On en déduit que $v_0 = q^{-k_0} v_{k_0}$. Or $u_{k_0} = -\frac{d}{c}$ donc $v_{k_0} = q^{-1}$. D'où $v_0 = q^{-k_0-1}$. Comme $u_0(v_0 - 1) = \beta v_0 - \alpha$, $\beta v_0 - \alpha = \alpha q^{k_0+1} - \beta$

on a deux cas où la suite n'est pas définie : soit $v_0=1$ (c'est-à-dire $q^{k_0+1}=1$), soit $u_0=\frac{\beta v_0-\alpha}{v_0-1}=\frac{\alpha q^{k_0+1}-\beta}{q^{k_0+1}-1}$.

Supposons maintenant que f ait un unique point fixe α . Si $u_0 = \alpha$, alors la suite est constante et égale à α . Supposons $u_0 \neq \alpha$. Alors, comme f est bijective, pour tout entier $n, u_n \neq \alpha$. La suite (u_n) est définie si, pour tout $n \in \mathbb{N}$, $u_n \neq -\frac{d}{c}$. Supposons qu'il existe $k \in \mathbb{N}$ tel que $u_k = -\frac{d}{c}$ et notons k_0 le plus petit d'entre eux.

Posons $v_n=\dfrac{1}{u_n-\alpha}$ pour $n\leq k_0.$ On a

$$v_n = rac{1}{f(u_{n-1}) - f(eta)}$$

$$= rac{2c}{a+d} + v_{n-1} ext{ après calculs}$$

Posons $r = \frac{2c}{a+d}$. (Remarquons que dans ce cas $\Delta = 0$ donc, si a+d=0, alors ad-bc=0, ce qui est contraire à l'hypothèse de départ).

On en déduit que $v_{k_0} = k_0 r + v_0 = \frac{1}{u_{k_0} - \alpha} = \frac{-1}{\frac{d}{c} - \frac{a - d}{2c}} = -r$. Or $\frac{1}{u_0 - \alpha} = v_{k_0} - k_0 r$, donc $u_0 = \alpha + \frac{1}{v_{k_0} + k_0 r} = \alpha - \frac{1}{(k_0 + 1)r}$.

Finalement la suite (u_n) est définie si u_0 n'appartient pas à l'ensemble E avec

- si $(a+d)^2 \neq 4(ad-bc)$, $E = \{\frac{\alpha^{k+1}-\beta}{q^{k+1}-1}; k \in \mathbb{N} \text{ avec } q^{k+1} \neq 1\}$ où α et β sont les deux points fixes distincts de f et $q = \frac{c\beta+d}{c\alpha+d}$
- $-\text{ si }(a+d)^2=4(ad-bc),\ E=\{\alpha-\frac{1}{(k+1)r};\ k\in\mathbb{N}\}\text{ où }\alpha\text{ est l'unique point fixe de }f\text{ et }r=\frac{2c}{(a+d)}.$
- 4) La fonction f étant continue, la suite (u_n) ne peut converger que vers un point fixe de f. Donc si $(a+d)^2 < 4(ad-bc)$, alors (u_n) diverge.

Si $(a+d)^2 > 4(ad-bc)$, alors f a deux points fixes. On reprend les notations de la question précédente et on se place dans le cas où $u_0 \notin E$.

On a $v_n=q^nv_0$ et $u_n=\frac{\beta v_n-\alpha}{v_n-1}$. On en déduit que

- si |q| < 1, alors (v_n) tend vers 0 et (u_n) est une suite convergente qui converge vers α .
- si |q|>1, alors (v_n) diverge vers $+\infty$ ou vers $-\infty$ donc la suite (u_n) converge vers β .
- $-\,$ on ne peut pas avoir q=1 car α et β sont distincts.
- si q=-1, alors (u_{2n}) converge vers $\frac{\beta v_0-\alpha}{v_0-1}$ et (u_{2n+1}) converge vers $\frac{\beta v_0+\alpha}{v_0+1}$. Donc la suite (u_n) ne peut converger que si ses deux valeurs d'adhérence sont égales. On vérifie qu'elles ne peuvent être égales que

Si $(a+d)^2=4(ad-bc)$, alors f a un unique point fixe. On reprend les notations de la question précédente et on se place dans le cas où $u_0 \notin E$.

On a $v_n=v_0+nr$ et $u_n=\alpha+\frac{1}{v_0+nr}$. On en déduit que la suite (u_n) converge vers α .

