

Exercice

Soit $E=\mathbb{R}_n[X]$ et a_0,a_1,\ldots,a_n des réels tous distincts. On définit n+1 polynômes par

$$P_i(X) = \prod_{k=0, k \neq i}^{n} \frac{(X - a_k)}{(a_i - a_k)}.$$

- 1) Montrer que $\{P_0,\ldots,P_n\}$ forment une base de $\mathbb{R}_n[X]$. Elle est appelée base de Lagrange.
- 2) On pose $V_n(a_0,\ldots,a_n)=\operatorname{D\acute{e}t}\Bigl(\bigl((a_i)^j\bigr)_{0\leq i,j\leq n}\Bigr)$. Soit $Q_n(X)=V_n(a_0,\ldots,a_{n-1},X)$.
 - a) Montrer que $Q_n(X) \in \mathbb{R}_n[X]$. Déterminer ses racines.
 - b) Écrire $Q_n(X)$ dans la base de Lagrange. En calculant $Q_n(0)$ de deux manières différents, montrer que

$$Q_n(X) = (X - a_0) \times \cdots \times (X - a_{n-1}) V_{n-1}(a_0, \dots, a_{n-1})$$

- c) En déduire la formule $V_n(a_0, \ldots, a_n) = \prod_{0 \le i < j \le n} (a_j a_i)$.
- 3) Montrer que tout polynôme P de $\mathbb{R}_2[X]$, on a

$$\int_0^1 P(t) dt = \frac{1}{6} \left(P(0) + 4P(\frac{1}{2}) + P(1) \right).$$

Q1- 109; Q2 - 309-310; Q3 - 220

Éléments de solution

1) On définit n+1 formes linéaires par

$$f_i: egin{bmatrix} E o \mathbb{R} \ P \mapsto P(a_i) \end{bmatrix}$$
 pour $i=0,\ldots,n$

On sait que dim $E^* = \dim E = n + 1$.

Soit $F = \text{Vect}\{f_0, \dots, f_n\}$. Déterminons la dimension de F^{\perp} .

$$P \in F^{\perp} \iff \forall i \in \{0, \dots, n\}, f_i(P) = 0 \iff \forall i \in \{0, \dots, n\}, P(a_i) = 0$$

 $P\in F^\perp$ est donc un polynôme de degré inférieur ou égal à n ayant n+1 racines distinctes ; c'est donc le polynôme nul. Donc dim $F^\perp=0$ et on en déduit que dim F=n+1. D'où $F=E^*$.

Comme $P_i(a_j) = \delta_{ij}$, le système $\{f_0, \dots, f_n\}$ est la base duale de $\{P_0, \dots, P_n\}$ et le système $\{P_0, \dots, P_n\}$ est une base de $\mathbb{R}_n[X]$.

$$Q_n(X) = \mathsf{D\acute{e}t} \begin{pmatrix} 1 & a_0 & a_0^2 & \dots & a_0^n \\ & a_1 & a_1^2 & \dots & a_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & X & X^2 & \dots & X^n \end{pmatrix}$$

En développant par rapport à la dernière ligne, on montre que $Q_n(X) \in \mathbb{R}_n[X]$. De plus, pour tout $i \in \{0, \dots, n-1\}$, $Q_n(a_i) = 0$ car le déterminant a deux lignes égales. Le polynôme $Q_n(X)$ est donc de degré n; or on a trouvé n racines distinctes, donc on les a toutes.

b) En utilisant la base de Lagrange, on peut écrire

$$Q_n(X) = \sum_{i=0}^n Q_n(a_i)P_i(X) = Q_n(a_n)P_n(X).$$

D'où $Q_n(0) = Q_n(a_n)P_n(0)$.

En développant $Q_n(0)$ par rapport à la dernière ligne, on a également $Q_n(0) = (-1)^n \prod_{i=0}^{n-1} a_i Q_{n-1}(a_{n-1})$. Avec les deux formules, on déduit que

$$Q_n(a_n) = \prod_{i=0}^{n-1} (a_i - a_n) Q_{n-1}(a_{n-1})$$

- c) Le résultat s'obtient par récurrence.
- 3) On définit une forme linéaire sur $\mathbb{R}_2[X]$ en posant $\varphi(P) = \int_0^1 P(t) \, dt$. Posons $a_0 = 0$, $a_1 = 1/2$ et $a_2 = 1$. D'après ce qui précéde, φ est une combinaison linéaire de f_0 , f_1 et f_2 . Donc, il existe λ_0 , λ_1 et λ_2 trois réels tels que, pour tout P de $\mathbb{R}_2[X]$, $\varphi(P) = \lambda_0 P(0) + \lambda_1 P(1/2) + \lambda_2 P(1)$. Pour déterminer les λ_i , il suffit de faire le calcul pour des valeurs de P bien choisies.

Si
$$P(x) = x(x-1)$$
, alors $\varphi(P) = -1/6 = \lambda_1(-1/4)$ donc $\lambda_1 = 2/3$.

Si
$$P(x) = x(x - 1/2)$$
, alors $\varphi(P) = 1/12 = \lambda_2(1/2)$ donc $\lambda_2 = 1/6$.

Si
$$P(x) = (x - 1/2)(x - 1)$$
, alors $\varphi(P) = 1/12 = \lambda_0(1/2)$ donc $\lambda_0 = 1/6$.