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Abstract

We study the spectral stability of a family of periodic wave trains of the Korteweg-de
Vries/Kuramoto-Sivashinsky equation ∂tv + v∂xv + ∂3xv + δ

(
∂2xv + ∂4xv

)
= 0, δ > 0, in

the Korteweg-de Vries limit δ → 0, a canonical limit describing small-amplitude weakly
unstable thin film flow. More precisely, we carry out a rigorous singular perturbation
analysis reducing the problem of spectral stability in this limit to the validation of a set
of three conditions, each of which have been numerically analyzed in previous studies
and shown to hold simultaneously on a non-empty set of parameter space. The main
technical difficulty in our analysis, and one that has not been previously addressed by
any authors, is that of obtaining a useful description for 0 < δ � 1 of the spectrum of the
associated linearized operators in a sufficiently small neighborhood of the origin in the
spectral plane. This modulational stability analysis is particularly interesting, relying
on direct calculations of a reduced periodic Evans function and using in an essential way
an analogy with hyperbolic relaxation theory at the level of the associated Whitham
modulation equations. A second technical difficulty is the exclusion of high-frequency
instabilities lying between the O(1) regime treatable by classical perturbation methods
and the & δ−1 regime excluded by parabolic energy estimates.
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1 Introduction

In this paper, we study the spectral stability of periodic wave trains of the Korteweg-de
Vries/Kuramoto-Sivashinsky (KdV-KS) equation

(1.1) ∂tu+ u∂xu+ ∂3
xu+ δ

(
∂2
xu+ ∂4

xu
)

= 0, ∀t > 0, ∀x ∈ R,

with 0 < δ � 1. When δ = 0, equation (1.1) reduces to the well-studied Korteweg-de Vries
(KdV) equation, which is an example of a completely integrable infinite dimensional Hamil-
tonian system. As such, the KdV equation is solvable by the inverse scattering transform,
and serves as a canonical integrable equation in mathematical physics and applied mathe-
matics describing weakly nonlinear dynamics of long one-dimensional waves propagating in
a dispersive medium.

When δ > 0 on the other hand, equation (1.1) accounts for both dissipation and disper-
sion in the medium. In particular, for 0 < δ � 1 it is known to model a thin layer of viscous
fluid flowing down an incline, in which case it can be derived either from the shallow water
equations

∂th+ ∂x(hu) = 0, ∂t(hu) + ∂x(hu2 +
h2

2F 2
) = h− u2 + ν∂x(h∂xu).

as F → 2+ (F being the Froude number, with F = 2 the critical value above which steady
constant-height flows are unstable) or from the full Navier-Stokes equations if 0 < R−Rc �
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1 (Rc being the critical Reynolds number above which steady Nusselt flows are unstable) in
the small amplitude/large scale regime: see [Wi, YY] for more details. For other values of
δ, (1.1) serves as a canonical model for pattern formation that has been used to describe,
variously, plasma instabilities, flame front propagation, or turbulence/transition to chaos in
reaction-diffusion systems [S1, S2, SM, K, KT].

Here, our goal is to analyze the spectral stability of periodic traveling wave solutions
of (1.1) with respect to small localized perturbations in the singular limit δ → 0. In this
limit the governing equation (1.1) may be regarded as a dissipative (singular) perturbation
of the KdV equation, for which it is known that all periodic traveling waves are spectrally
stable to small localized perturbations; see [BD, KSF, Sp]. However, as the limiting KdV
equation is time-reversible (Hamiltonian), this stability is of “neutral” (neither growing nor
decaying) type, and so it is not immediately clear whether the stability of these limiting
waves carries over to stability of “nearby” waves in the flow induced by (1.1) for |δ| � 1.
Indeed, we shall see that, for different parameters, neutrally stable periodic KdV waves may
perturb to either stable or unstable periodic KdV-KS waves, depending on the results of a
rather delicate perturbation analysis.

Our analysis, mathematically speaking, falls in the context of perturbed integrable sys-
tems, a topic of independent interest. In this regard, it seems worthwhile to mention that
the proof of stability of limiting KdV waves, and in particular the explicit determination
of eigenvalues and eigenfunctions of associated linearized operators on which the present
analysis is based, is itself a substantial problem that remained for a long time unsettled.
Indeed, by an odd coincidence, both the original proof of spectral stability in [KSF, Sp] and
a more recent proof of spectral and linearized stability in [BD] (see also the restricted non-
linear stability result [DK]) were accompanied by claims appearing at about the same time
of instability of these waves, an example of history repeating itself and indirect indication
of the difficulty of this problem.

However, our motivations for studying this problem come very much from the physical
applications to thin-film flow, and particularly the interesting metastability phenomena
described in [PSU, BJRZ, BJNRZ3] (see Section 1.1 below). Interestingly, our resolution of
the most difficult aspect of this problem, the analysis of the small-Floquet number/small-δ
regime, is likewise motivated by the associated physics, in particular, by the formal Whitham
equations expected to govern long-wave perturbations of KdV waves, and an extended
relaxation-type system formally governing the associated small-δ KdV-KS problem; see
[NR2].

The identification of this structure, and the merging of integrable system techniques with
asymptotic ODE techniques introduced recently in, e.g., [JZ2, PZ, HLZ, BHZ] (specifically,
in our analysis of frequencies |λ| ∈ [C,Cδ−1]), we regard as interesting contributions to
the general theory that may be of use in related problems involving perturbed integrable
systems. Our main contribution, though, is to the theory of thin-film flow, for which the
singular limit δ → 0 appears to be the canonical problem directing asymptotic behavior.

We begin by defining the notion of spectral stability of periodic waves of the 4th-order
parabolic system KdV-KS, following [BJNRZ1], as satisfaction of the following collection of
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nondegeneracy and spectral conditions:

• (H1) Let Ω ⊂ R6 be an open set such that the map H : Ω→ R3 taking (X, b, c, q) 7→
(u, u′, u′′)(X, b, c, q)− b, where (u, u′, u′′)(·; b, c, q) is the solution of

δ(u′′′ + u′) + u′′ +
1

2
u2 − cu = q, (u, u′, u′′)(0; b, c, q) = b,

is well-defined. Let (X̄, b̄, c̄, q̄) ∈ H−1({0}): then ū = u(.; b̄, c̄, q̄) is a X̄-periodic
travelling wave of KdV-KS. We assume that H is full rank at (X̄, b̄, c̄, q̄) ∈ H−1({0}).
(Notice that this is precisely the condition of transversality of the periodic traveling
wave as a solution of the traveling wave ODE.)

• (D1) σL2(R)(L) ⊂ {λ ∈ C | <(λ) < 0} ∪ {0}, where

L = −δ
(
∂4
x + ∂2

x

)
− ∂3

x − ∂x (ū− c̄)

denotes the linearized operator obtained by linearizing (1.1) about ū = u(.; b̄, c̄, q̄).

• (D2) σL2
per(0,X̄)(Lξ) ⊂ {λ ∈ C | <λ ≤ −θ|ξ|2} for some θ > 0 and any ξ ∈ [−π/X̄, π/X̄),

where

Lξ[f ] = −δ
(
(∂x + iξ)4f + (∂x + iξ)2f

)
− (∂x + iξ)3f − (∂x + iξ) ((ū− c̄)f)

denotes the associated Bloch operator with Bloch-frequency ξ.

• (D3) λ = 0 is an eigenvalue of the Bloch operator L0 of algebraic multiplicity two.

Under assumptions (H1) and (D3), standard spectral perturbation theory implies the
existence of two eigenvalues λj(ξ) ∈ σ(Lξ) bifurcating from the (ξ, λ) = (0, 0) state of the
form λj(ξ) = iβjξ + o(ξ). Assumption (D1) ensures that βj ∈ R. Our final structural
condition in our definition of spectral stability of periodic traveling wave solutions of (1.1)
ensures the analyticity in ξ of the critical curves λj :

• (H2) The coefficients βj are distinct.

The above definition of spectral stability is justified by the results of [BJNRZ1], which
state that, under assumptions that (H1)-(H2) and (D1)-(D3) hold, the underlying wave ū
is L1(R)∩H4(R)→ L∞(R) nonlinearly stable; moreover, if ũ is any other solution of (1.1)
with data sufficiently close to ū in L1(R) ∩ H4(R), for some appropriately prescribed ψ,,
the modulated solution ũ(· − ψ(·, t), t) converges to ū in Lp(R), p ∈ [2,∞].

This is to be contrasted with the notion of spectral stability of periodic waves of Hamilto-
nian systems, which, up to genericity conditions analogous to (H1)-(H2) and (D3), amounts
to the condition that the associated linearized operator analogous to L have purely imag-
inary spectrum. That is, in order that a (neutrally) stable periodic wave of KdV perturb
under small δ > 0 to a stable periodic wave of KdV-KS, its spectra must perturb from the
imaginary axis into the stable (negative real part) complex half-plane
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The main goal of this paper, therefore is to establish by rigorous singular perturbation
theory a simple numerical condition guaranteeing the existence of periodic traveling wave
solutions of (1.1) satisfying the above conditions (H1)-(H2) and (D1)-(D3) for sufficiently
small δ > 0: more precisely, determining whether the neutrally stable periodic solutions of
KdV perturb for small δ > 0 to stable or to unstable solutions of KdV-KS.

Remark 1.1. The methods used in [BJNRZ1] to treat the dissipative case δ > 0, based
on linearized decay estimates and variation of constants, are quite different from those
typically used to show stability in the Hamiltonian case. The latter are typically based
on Arnold’s method, which consists of finding sufficiently many additional constants of
motion, or “Casimirs,” that the relative Hamiltonian becomes positive or negative definite
subject to these constraints (hence controlling the norm of perturbations); that is, additional
constants of motion are used to effectively “excise” unstable (stable) eigenmodes of the
second variation of the Hamiltonian. This approach is used in [DK] to show stability with
respect to nX-periodic perturbations for arbitrary n ∈ N, where X denotes the period of the
underlying KdV wave train. However, as L2 spectra in the periodic case is purely essential,
such unstable (stable) eigenmodes are uncountably many, and so it is unclear how to carry
out this approach for general L2 perturbations. Indeed, to our knowledge, the problem of
stability of periodic KdV waves with respect to general Hs perturbations remains open.

Remark 1.2. As we will see in Section 2 below, the set of all periodic traveling wave
solutions of the KdV-KS equation (1.1) form a three parameter family parametrized by the
period X of the wave, the wave speed c, and the value of the wave profile at the origin.
However, thanks to the translation and Galilean invariance of (1.1), it follows that the
stability of a particular wave only depends on one parameter: namely, the period X of
the wave. Thus, when discussing the stability of periodic traveling wave solutions of the
KdV-KS equations we identify all waves of a particular period.

The spectral stability of periodic wave-train solutions of (1.1) itself has a long and
interesting history of numerical and formal investigations. In [CDK], the authors studied
numerically the spectral stability of periodic wave trains of

∂tu+ u∂xu+ γ∂3
xu+ ∂2

xu+ ∂4
xu = 0,

which is, up to a rescaling, equation (1.1) with δ = γ−1 and showed the stabilizing effect
of strong dispersion (large γ/small δs). As γ is increased from 0 to 8 (δ ∈ (1/8,∞)), only
one family of periodic waves of Kuramoto-Sivashinsky equation survives and its domain of
stability becomes larger and larger and seems to “converge” to a finite range (X1, X2) with
X1 ≈ 2π/0.74 and X2 ≈ 2π/0.24. In [BN], Bar and Nepomnyashchy studied formally the
spectral stability of periodic wave trains of (1.1) as δ → 0, finding evidence for the existence
of spectrally stable waves in the δ → 0 limit as well. More precisely, for a fixed Bloch wave
number ξ the non-zero eigenvalues {λj(ξ, δ)}∞j=1 of Lξ are formally expanded1 as

(1.2) λj(δ, ξ) = λj,0(ξ) + δλj,1(ξ) +O(δ2)

1As we shall see, such eigenvalues do expand in this way under condition (A1) below.
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for each j ∈ N, where the {λj,0(ξ)}∞j=1 ⊂ Ri denote the eigenvalues associated with the
stability of periodic waves of KdV, known explicitly (see [BD]), and the λj,1(ξ) are described
in terms of elliptic integrals2. Then, the authors verified numerically, using high-precision
computations in MATHEMATICA (see [BN, Appendix B] and Appendix A), that

sup
ξ∈[−π/X̄,π/X̄)

sup
j∈N
< (λj,1(ξ)) < 0,

consistent with stability, on the band of periods X̄ ∈ (X1, X2) with X1 ≈ 8.49 and X2 ≈
26.17, which are approximately the bounds found in [CDK]. Similar bounds were found
numerically in [BJNRZ1] by completely different, direct Evans function, methods, with
excellent agreement to those of [BN].

However, the study of Bar and Nepomnyashchy is only formal and in particular, as
mentioned in [BN], it is not valid in the neighbourhood of the origin (ξ, λ) = (0, 0). Because
of a lack of uniformity with respect to ξ when ξ goes to 0, it seems at first glance that the
expansion in [BN] is only uniformly valid for |ξ| bounded away from zero. However, as we
show in Section 4 after blowing up with respect to δ the (ξ, λ) = (0, 0) singularity, it turns
out that the description (1.2) possesses an extension uniformly valid in a cone 0 < δ

|ξ| � 1.
Yet, even with this optimized justification, for a given δ > 0 it is still not possible to deduce
directly from this expansion any spectral stability of an associated periodic wave train of
(1.1) since the analysis misses a δ-neighborhood of the origin in the space of the Floquet
parameters ξ.

Likewise, the numerical study in Section 2 of [BJNRZ1], which is not a singular per-
turbation analysis, but rather a high-precision computation down to small but positive δ,3

gives information about δ → 0 only at finite scales, hence in effect omits an O(δ × TOL)
neighborhood of the origin, where TOL is the relative precision of the computation. Thus,
though very suggestive, neither of these computations gives conclusive results about stabil-
ity in the δ → 0 limit, and, in particular, behavior on a δ-neighborhood of the origin is not
(either formally or numerically) described.

In this paper, we both make rigorous the formal singular perturbation analysis that was
done in [BN] and extend it to the frequency regimes that were omitted in [BN], completing
the study of the spectrum at the origin and in the high-frequency regime. More precisely,
we carry out a rigorous singular perturbation analysis reducing the problem to the study
of Bloch parameters ξ ∈ [Cδ, 2π] (see Section 3 for definition of Bloch parameter) and
eigenvalues |<λ| ≤ Cδ, |=λ| ≤ C, C > 0 sufficiently large, on which the computations of
[BN] may be justified by standard Fenichel-type theory.

The exclusion of high frequencies is accomplished by a standard parabolic energy esti-
mate restricting |=λ| ≤ Cδ−3/4 followed by a second energy estimate on a reduced “slow,”
or “KdV,” block restricting |=λ| ≤ C; see Lemma 3.1 and Proposition 3.3 in Section 3.1
below. For related singular perturbation analyses using this technique of successive reduc-
tion and estimation, see for example [MZ, PZ, Z, JZ2] and especially [BHZ], Section 4.

2See formula (A.7) where v0 is an (explicit) associated KdV eigenfunction and w0 is explicitely given by
(A.4).

3Minimum value δ = .05, as compared to δ = .125 in [CDK]; see Table 3, [BJNRZ1].
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The treatment of small frequencies proceeds as usual by quite different techniques involv-
ing rather the isolation of “slow modes” connected with formal modulation and large-time
asymptotic behavior.

At a technical level, this latter task appears quite daunting, being a two-parameter
bifurcation problem emanating from a triple root λ = 0 of the Evans function at ξ =
δ = 0, where the Evans function E(λ, ξ, δ) (defined in (3.4) below) is an analytic function
whose roots λ for fixed δ > 0 and ξ ∈ [−π/X̄, π/X̄) comprise the L2-spectrum of the
linearized operator about the periodic solution. However, using the special structure of the
problem, we are able to avoid the analysis of presumably complicated behavior on the main
“transition regime” Λ := {(δ, ξ) | C−1 ≤ |ξ|/δ ≤ C}, C � 1 and only examine the two
limits |ξ|/δ → 0,+∞ on which the problem reduces to a pair of manageable one-parameter
bifurcation problems of familiar types.

Specifically, we show that (small) roots λ of the Evans function cannot cross the imag-
inary axis within Λ, so that stability properties need only be assessed on the closure of
Λ-complement, with the results then propagating by continuity from the boundary of Λ
to its interior. This has the further implication that stability properties on the wedges
|ξ|/δ � 1 and |ξ|/δ � 1 are linked (through Λ), and so it suffices to check stability on
the single wedge |ξ|/δ � 1, where the analysis reduces to computations carried out in
[BN]. Indeed, the situation is simpler still: stability on the entire region |ξ|, δ � 1 reduces
by the above considerations to validity of a certain “subcharacteristic condition” relating
characteristics of the Whitham modulation equations for KdV (the limit |ξ|/δ → ∞) and
characteristics of a limiting reduced system as δ → 0 (the limit |ξ|/δ → 0).

As the above terminology suggests, there is a strong analogy in the regime |ξ|, δ � 1 to
the situation of symmetric hyperbolic relaxation systems and stability of constant solutions
in the large time or small relaxation parameter limit [SK, Yo, Ze], for which a similar
“noncrossing” principle reduces the question of stability to checking of Kawashima’s genuine
coupling condition, which in simple cases reduces to the subcharacteristic condition that
characteristics of relaxation and relaxed system interlace. Indeed, at the level of Whitham
modulation equations, the limit as |ξ|/δ → ∞ may be expressed as a relaxation from the
Whitham modulation equations for KdV to the Whitham equations for fixed δ in the limit as
δ → 0, a relation which illuminates both the role/meaning of the subcharacteristic condition
and the relation between KdV and perturbed systems at the level of asymptotic behavior.
These issues, which we regard as some of the most interesting and important observations
of the paper, are discussed in Section 4.2.

The final outcome, and the main result of this paper, is that stability- whether spectral,
linear, or nonlinear- of periodic traveling wave solutions of (1.1) in the KdV limit δ → 0 is
completely determined by the formal high-frequency analysis and numerical results of [BN].

To state our main result more precisely, we introduce three natural conditions that we
need to assume hold simultaneously to obtain stability. Before stating these conditions, note,
first, that by translational invariance of (1.1), two waves differing by a uniform translation
share the same stability properties; thus, we will identify any two such waves throughout the
analysis. Further, it is shown in [EMR] that there exists a two dimensional submanifoldM
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of R3 such that if (X,M,E) ∈M then the X-periodic traveling wave solution u0(·;X,M,E)

of the KdV equation, unique up to translations, with
∫ X

0 u0(x)dx = M and
∫ X

0
1
2u0(x)2dx =

E, continues, for δ sufficiently small, to a one-parameter family δ 7→ uδ, defined for δ
sufficiently small, of X-periodic traveling wave solutions of the KdV-KS equation (1.1) such

that
∫ X

0 uδ(x)dx = M , with uδ → u0 uniformly on [0, X] as δ → 0; see Proposition 2.4
below for details. However, we notice that by the Galilean invariance of (1.1) the stability
of a given wave uδ depends only on the period X. This motivates us to define the set

W := {X > 0 | (X,M,E) ∈M for some (M,E) ∈ R2}.

Our first condition on admissible periods X ∈ W, related to the non-degneracy of the Bloch
spectrum for the associated KdV linearized operator, is as follows.

• A period X ∈ W is said to satisfy condition (A1) if for each X-periodic traveling wave
solution u0 of the KdV equation all the non-zero eigenvalues of the linearized (Bloch)
KdV operators

LKdV,ξ[u0] := (∂x + iξ)
(
−(∂x + iξ)2 − u0 + c

)
: L2

per(0, X)→ L2
per(0, X)

considered with compactly embedded domain H3
per(0, X), are simple for each ξ ∈

[−π/X, π/X) and λ = 0 is an eigenvalue of LKdV,ξ[u0] only if ξ = 0, in which case it
is an eigenvalue of algebraic multiplicity three4.

Condition (A1) was shown to hold for a particular period in [BD], where the authors derive
explicit formulas for the eigenvlaues of LKdV,ξ; see Figure 2 and surrounding discussion in
[BD]. Furthermore, this condition is verified5 for a particular wave by the plot in Figure 1,
where we plot the Bloch spectrum as a function of the Bloch-frequency ξ for a KdV cnoidal
wave with period6 X ≈ 9.39. The first main objective in our analysis is to rigorously justify,
given a family of periodic traveling wave solutions uδ with period satisfying condition (A1),
that the non-zero Bloch eigenvalues of the linearized KdV-KS operator can be expanded
analytically in δ as δ → 0 for each fixed ξ ∈ [−π/X, π/X); this is the content of Corollary
3.8 below7.

Our next condition concerns the nature of the eigenvalues near of the origin of the
linearized (Bloch) KdV operators LKdV,ξ[u0] about an X-periodic cnoidal wave u0 of the

4It was shown in Section 5 of [BrJK] that the origin is always an eigenvalue of LKdV,0[u0] with algebraic
multiplicity three.

5In Figure 1, the spectrum is recovered by projecting the graph onto the vertical axis. Obviously we do
not plot the full unbounded spectrum, but notice that the non-displayed monotone branches singly cover
the remainder of the imaginary axis, hence the only possibility for eigenvalues of the associated KdV Bloch
operators to not be simple is in a neighborhood of the origin.

6More precisely, for k = 0.9 in Proposition 2.12.
7This fact seems to have been taken for granted in the formal analysis of [BN]. As we will see, however,

our proof relies on condition (A1) holding for the particular wave we are studying, thus we must either
assume that the non-degeneracy condition (A1) holds for this wave or else prove such a condition to make
this expansion rigorous.



1 INTRODUCTION 9

Figure 1: Here, we plot the imaginary part of the (purely imaginary) eigenvalues (vertical
axis) of the KdV linearized (Bloch) operator Lξ[ū] about an X-periodic traveling wave
solution of the KdV equation that continues as a solution of (1.1) for 0 < δ � 1 as a
function of ξ ∈ [0, 2π/X) (horizontal axis), where here we take k = 0.9, i.e. X ≈ 9.39, in
Proposition 2.4. The spectrum of L[ū] on L2(R) is recovered by projecting this graph onto
the vertical axis. From this figure, it is clear that for each ξ ∈ (0, 2π/X) the eigenvalues of
Lξ are simple, verifying condition (A1) in this particular case.

KdV equation when X ∈ W and |ξ| � 1. Assuming that condition (A1) holds for X,
the origin is an eigenvalue of the operator LKdV,0[u0] with algebraic multiplicity three.
Furthermore, this triple eigenvalue is known to break differentiably in ξ for |ξ| � 1; more
precisely, there are three critical modes {λKdV,j(ξ)}j=1,2,3 of the KdV linearized operator
that can be expanded for |ξ| � 1 as

(1.3) λKdV,j(ξ) = iαj(ξ)ξ = iα0
jξ + o(|ξ|)

for some real numbers α0
j ∈ R: see, for instance, [BrJ] for details. The second condition in

our analysis is as follows.

• A period X ∈ W is said to satisfy condition (A2) if for each X-periodic traveling wave
solution u0 of the KdV equation the real numbers {α0

j}j=1,2,3 in (1.3), associated with
the linearized oeprator LKdV,ξ[u0], are distinct.

In [BrJK], it was numerically verified that all periods of all speriodic traveling wave solutions
of the KdV equation satisfy condition (A2)8. Furthermore, in Section 4.3 below we provide
an alternate numerical verification of condition (A2) for all periods of the KdV cnoidal waves
by using the well known identification of the α0

j in (1.3) to the characteristic speeds of the

8In [BrJK], the α0
j are distinct so long as the “modulational instability index” ∆MI is non-zero, which

was (numerically) shown to hold for all cnoidal wave solutions of KdV in Section 5.1 of [BrJK].
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associated KdV Whitham modulation system; in particular, see Figure 3 in Section 4.3.
The validity of condition (A2) will prove to be crucial in our analysis of the spectrum of
the KdV-KS linearized operator Lξ near the origin for |ξ| � 1; see Section 4 below.

Our final condition is the stability criterion derived formally by Bar and Nepomnyashchy
[BN]. More specifically, if X ∈ W satisfies condition (A1) we will show that for each family
of X-periodic traveling wave solutions uδ of (1.1) the non-zero eigenvalues of the Bloch op-
erators Lξ[uδ] admit an analytic expansion in δ for 0 < δ � 1 of the form (1.2) for each fixed
ξ ∈ [−π/X, π/X). Indeed, if X ∈ W, then to each pair (ξ, λ0) with λ0 ∈ σ (LKdV,ξ[uδ])\{0}
and ξ ∈ [−π/X, π/X) there is a unique spectral curve λ(ξ, λ0, δ) bifurcating from λ0 ana-
lytically in δ of the form

(1.4) λ(ξ, λ0, δ) = λ0 + δλ1(ξ, λ0) +O(δ2).

Notice that this parametrization of the spectrum of the linearized KdV-KS operator by the
pair (ξ, λ0) is well-defined under the assumption that X satisfies condition (A1). The final
condition, stating that a particular wave satisfies the stability criterion that was numerically
investigated in [BN], is as follows. This is stated precisely as follows.

• A period X ∈ W is said to satisfy condition (A3) if it satisfies condition (A1) and if
the function

Ind(X) := sup
λ0∈σ(LKdV,ξ[u0])\{0}

ξ∈[−π/X,π/X)

< (λ1(ξ, λ0))

satisfies Ind(X) < 0.

Remark 1.3. In Appendix A, we review the numerical calculations in [BN] concerning
condition (A3). In particular, we recall there the explicit formula for λ1(ξ, λ0) used by Bar
and Nepomnyashchy [BN].

As we will see, the validity of conditions (A1) and (A3) provides us with a “high-
frequency” stability result, allowing us to verify spectral stability of a given wave outside
a sufficiently small neighborhood of the origin in the spectral plane; see Section 3.3 and,
in particular, Corollary 3.10. Furthermore, we will also see that conditions (A2) and (A3)
imply a set of “subcharacteristic” conditions that allows us to obtain a low-frequency sta-
bility result, verifying spectral stability in a sufficiently small neighborhood of the origin;
see Section 4.1. Together then, recalling Remark 1.2, these complementary results provide
a rigorous proof of spectral stability of a given family of X-periodic “near-KdV” traveling
wave solution of (1.1), in the case that the period X ∈ W satisfies conditions (A1)-(A3) si-
multaneously. Notice, however, that it is a highly non-trivial task to check that there exists
a period X ∈ W that satisfies (A1), (A2), and (A3); indeed, to the best of our knowledge no
such proof exists. Nevertheless, there are many well-founded numerical results suggesting
that there is a non-empty open set of periods for which (A1)-(A3) hold; see, for instance,
[BN, BJNRZ1, CDK], together with the numerical experiments in Section 4.3 of this paper.
Still, we consider the rigorous verification of these assumptions for a nonempty common set
of periods an important open problem.



1 INTRODUCTION 11

With the above motivation, we define P the set of all periods X ∈ W that simultaneously
satisfy conditions (A1)-(A3). Note that P is open. Furthermore, it is natural to expect,
based on the aforementioned numerical evidence, that the set P is non-empty. Indeed, by
the above discussion, it is expected that P is a connected interval (X1, X2) with X1 ≈ 8.49
and X2 ≈ 26.17. Now , we can state precisely the main result of our analysis.

Theorem 1.4. For each X ∈ P, there exists a real number 0 < δ0(X) � 1 such that for
each 0 < δ < δ0(X), the non-degeneracy and spectral stability conditions (H1)-(H2) and
(D1)-(D3) hold for all X-periodic traveling wave solutions uδ of (1.1), as constructed in
[EMR] (see Proposition 2.4 below). Moreover, δ0(·) can be taken to be uniform on compact
subsets of P.

Remark 1.5. Though the choice of δ0 can be taken to be uniform on compact subsets of
P, as mentioned above, we expect that P = (X1, X2) with X1 ≈ 8.49 and X2 ≈ 26.17, in
which case one would have δ0(X)→ 0 as X ↘ X1 or X ↗ X2.

Remark 1.6. Our proof yields another form of uniformity. If K is a compact subset of
the subset ofW on which (A1)-(A2) hold, then there exist C > 0 such that, for any X ∈ K,
condition (A3) is equivalent to

sup
λ0∈σ(LKdV,ξ[u0])\{0}

ξ∈[−π/X,π/X)
|λ|≤C

< (λ1(ξ, λ0)) < 0,

Since, as we shall prove, λ1(ξ, λ0) converges, as (ξ, λ0) → (0, 0), to one of three possible
limits, depending on the spectral curve followed by (ξ, λ0), the validation of (A3) is indeed
uniformly reduced to the sign evaluation of an explicit function on a compact set.

1.1 Discussion and open problems

To yield stability, our Theorem 1.4 should be completed with an investigation of conditions
(A1)-(A3), and especially of condition (A3), thus, given the present state of the art, it
should be combined with the numerical investigations of [BN]. Together this does not
constitute a numerical proof, but rather a “numerical demonstration,” in the sense that the
computations of [BN] on which we ultimately rely for evaluation of the sign of Ind(X) are
carried out with high precision and great numerical care, but not with interval arithmetic in
a manner yielding guaranteed accuracy. However, there is no reason that such an analysis
could not be carried out — we point for example to the computations of [M] in the related
context of stability of radial KdV-KS waves — and, given the fundamental nature of the
problem, this seems an important open problem for further investigation.

Indeed, numerical proof of stability or instability for arbitrary nonzero values of δ,
verifying the numerical conclusions of [BJNRZ1], or of Evans computations in general,
though considerably more involved, seems also feasible, and another important direction
for future investigations.
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The particular limit δ → 0 studied here has special importance, we find, as a canonical
limit that serves (as discussed at the beginning of the introduction) as an organizing center
for other situations/types of models as well, and it has indeed been much studied; see, for
example, [EMR, BN, PSU], and references therein. As discussed in [PSU, BJNRZ3, BJRZ],
it is also prototypical of the interesting and somewhat surprising behavior of inclined thin
film flows that solutions often organize time-asymptotically into arrays of “near-solitary
wave” pulses, despite the fact that individual solitary waves, since their endstates necessarily
induce unstable essential spectrum,9 are clearly unstable.

To pursue the analogy between modulational behavior and solutions of hyperbolic-
parabolic conservation or balance laws that has emerged in [OZ, Se, BJNRZ1, BJNRZ2],
etc., and, indeed, through the earlier studies of [FST] or the still earlier work of Whitham
[W], we feel that the KdV limit δ → 0 of (1.1) plays a role for small-amplitude periodic
inclined thin film flow analogous to that played by Burgers equation for small-amplitude
shock waves of general systems of hyperbolic–parabolic conservation laws, and the current
analysis a role analogous to that of Goodman’s analysis in [Go1, Go2] of spectral stability
of general small-amplitude shock waves by singular perturbation of Burgers shocks.10

The difference from the shock wave case is that, whereas, up to Galilean and scaling in-
variances, the Burgers shock profile is unique, there exists up to invariances a one-parameter
family of periodic waves of KdV, indexed by the period X, of which only a certain range are
stable. Moreover, whereas the Burgers shock profile is described by a simple tanh function,
periodic KdV waves are described by a more involved parametrization involving elliptic
functions. Thus, the study of periodic waves is inherently more complicated, simply by
virtue of the number of cases that must be considered, and the complexity of the waves in-
volved. Indeed, in contrast to the essentially geometric proof of Goodman for shock waves,
we here find it necessary to use in essential ways certain exact computations coming from
the integrability/inverse scattering formalism of the underlying KdV equation.

Plan of the paper. In Section 2, we recall how to compute an expansion of periodic
waves of KdV-KS in the limit δ → 0 by using Fenichel singular perturbation theory [EMR].
In Section 3, we analyze the stability of the spectrum of a given X-periodic traveling wave
solution uδ, as constructed in Section 3 for all δ sufficiently small, outside of a sufficiently
small neighborhood of the origin in the spectral plane; at times, we will refer to this as a
“high-frequency” stability result. This is accomplished by first deriving a priori estimates
on the size of the unstable spectrum of L[uδ] showing, in particular, that such unstable
spectra are necessarily of order O(1) as δ → 0; see Proposition 3.3 and Corollary 3.5. Then,
in Proposition 3.7 and Corollary 3.8, we compute an expansion of both the Evans function
and high-frequency spectra with respect to δ as δ → 0. This analysis holds true except
in a neighborhood of the origin from which spectral curves bifurcate. In Section 4, we
compliment the high-frequency analysis of Section 3 by computing asymptotic expansions
of the spectral curves in the neighborhood of the origin and show that spectral stability
is related to subcharacteristic conditions for a Whitham’s modulation system of relaxation

9A straightforward Fourier transform computation reveals that all constant solutions are unstable.
10See also the related [PZ, FreS], more in the spirit of the present analysis.
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type, as conjectured in [NR2].

2 Expansion of periodic traveling-waves in the KdV limit

For 0 < δ � 1, equation (1.1) is a singular perturbation of the Korteweg-de Vries equation

(2.1) ∂tu+ u∂xu+ ∂3
xu = 0,

where the periodic traveling wave solutions may be described with the help of the Jacobi
elliptic functions. In [EMR], periodic traveling wave solutions of (1.1) are found, δ-close to
periodic traveling wave solutions of (2.1) and, furthermore, an expansion of these solutions
with respect to δ is obtained. We begin our analysis by briefly recalling the details of this
expansion. Notice that (1.1) admits traveling wave solutions of the form u(x, t) = U(x− ct)
provided the profile U satisfies the equation

(U − c)U ′ + U ′′′ + δ(U ′′ + U ′′′′) = 0,

where here ′ denotes differentiation with respect to the traveling variable θ = x − ct. Due
to the conservative nature of (1.1) this profile equation may be integrated once yielding

(2.2)
U2

2
− cU + U ′′ + δ(U ′ + U ′′′) = q,

where q ∈ R is a constant of integration. By introducing x = U, y = U ′ and z = U ′′ + U ,
we may write (2.2) as the equivalent first order system

(2.3) x′ = y, y′ = z − x, δz′ = −z + q + (c+ 1)x− x2

2
.

Setting δ = 0 in (2.3) yields the slow system

(2.4) z = q + (c+ 1)x− x2

2
, x′ = y, y′ = q + cx− x2

2
,

which is equivalent to the planar, integrable system governing the traveling wave profiles for
the KdV equation (2.1). By using the well-known Fenichel theorems, one is able to justify
the reduction and continue the resulting KdV profiles for 0 < δ � 1. To this end, we define

M0 =

{
(x, y, z) ∈ R3

∣∣∣∣ z = q + (c+ 1)x− x2

2
=: f0(x)

}
,

and recognize this as the slow manifold associated with (2.3). It is readily checked that this
manifold is normally hyperbolic attractive, and so a standard application of the Fenichel
theorems yields the following proposition.
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Proposition 2.1. Let O ⊂ R2 be a bounded open set and r ≥ 1 a (arbitrary) positive
integer. There exists δ0 > 0 such that for all δ ∈ (0, δ0), there is a slow manifold Mδ

invariant under the flow of (2.3) that is written as Mδ =
{

(x, y, z) ∈ R3
∣∣ z = fδ(x, y)

}
,

where the function fδ is Cr both in (x, y) ∈ O and δ ∈ [0, δ0) variables. Moreover, fδ
expands as

fδ(x, y) = f0(x) + δf1(x, y) + δ2f2(x, y, δ),

f1(x, y) = xy − (c+ 1)y, f2(x, y, 0) = −y2 + (c+ 1− x)(q + cx− x2

2
).

Remark 2.2. Notice that the specific choice of r ≥ 1 of regularity in the above Proposition
is arbitrary, but that the size of δ0 and the particular choice of fδ are expected, of course, to
depend on the specific choice of r. In particular, as r →∞ we expect δ0 → 0. This flexibility
being able to prescribe an arbitrarily large degree of regularity on f will be important in our
analysis. In particular, at any point we can make r larger (but finite) by simply possibly
choosing δ0 smaller (but still non-zero).

The expansion of fδ is obtained by inserting z = fδ(x, y) into (2.3) and identifying the
powers in δ. Then by plugging this expansion into (2.3)2, one finds the reduced planar
system:

(2.5) x′ = y, y′ = q + cx− x2

2
+ δ(xy − (c+ 1)y) + δ2f2(x, y, δ),

or equivalently the scalar equation

(2.6) x′′ = q + cx− x2

2
+ δ(x− c− 1)x′ + δ2f2(x, x′, δ).

Equation (2.6) is a regularly perturbed problem. Then, fixing r ≥ 1 an arbitrary positive
integer, it is easily proved that the x solution of (2.6) is Cr in the variables θ = x− ct ∈ R
and δ ∈ [0, δ0) for some δ0 sufficiently small. Now, we seek an asymptotic expansion of the
solutions of (2.5) in the limit δ → 0. An easy way of doing these computations to any order
with respect to δ is to follow the formal computations in [BN], which are now justified here
with Fenichel’s theorems. To begin, notice that when δ = 0 the periodic solutions x = x0

with wave speed c = c0 of (2.6) agree with those of the KdV equation (2.1), which are given
explicitly by

(2.7) x0(θ;φ, κ, k, a0) = a0 + 12k2κ2 cn2
(
κ(θ + φ), k

)
, c0 = a0 + 8κ2k2 − 4κ2,

where cn(·, k) is the Jacobi elliptic cosine function with elliptic modulus k ∈ [0, 1) and
κ > 0, a0, φ are arbitrary real constants related to the Lie point symmetries of (2.1); see
[BD]. Thus, the set of periodic traveling wave solutions of (2.1) forms a four dimensional
manifold (3 dimensional up to translations) parameterized by a0, κ, k, and φ. Note that
such solutions are 2K(k)/κ periodic, where K(k) is the complete elliptic integral of the first
kind.
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Remark 2.3. The parameterization of the periodic traveling wave solutions of the KdV
equation given in (2.7) is consistent with the calculations in [BD] where the authors verify
the spectral stability of such solutions to localized perturbations using the complete inte-
grability of the governing equation. However, this parameterization is not the same as that
given in [BN], whose numerical results our analysis ultimately relies on. Indeed, in [BN]
the periodic traveling wave solutions of (2.1) are given (up to rescaling11) as

XBN(θ; θ0, q, k) =
q2K(k)2

3π2

(
dn2

(
(θ − θ0)qK(k)

π
, k

)
− E(k)

K(k)

)
,

where dn(·, k) denotes the Jacobi dnoidal function with elliptic modulus k ∈ [0, 1), and K(k)
and E(k) denote the complete elliptic integrals of the first and second kind, respectively.
Nevertheless, using the identity

k2 cn2(x, k) = dn2(x, k)− (1− k2)

we can rewrite (2.7) as

x0(θ) = 12κ2
(

dn2(κ(θ + φ), k) +
u0

12κ2
− (1− k2)

)
,

which, upon setting κ = qK(k)
π , φ = −θ0, and choosing u0 so that

u0

12κ2
− (1− k2) = −E(k)

K(k)
,

we see that x0(θ) = XBN(θ). Thus, there is no loss of generality in choosing one parame-
terization over the other. Furthermore, the numerical results of [BN] carry over directly to
the cnoidal wave parameterization chosen here.

Next, we consider the case 0 < δ � 1. To begin we seek conditions guaranteeing that
periodic traveling wave solutions of (1.1) exist for sufficiently small δ. Multiplying both
sides by x′ and rearranging, we find that equation (2.6) may be written as

(2.8)
d

dθ

(
(x′)2

2
+
x3

6
− cx

2

2
− qx

)
= δ
(
x(x′)2 − (c+ 1)(x′)2

)
+O(δ2),

hence a necessary condition for the existence of a L-periodic solution to (2.6) is

(2.9)

∫ L

0

(
x0(θ)(x′0(θ))2 − (c+ 1)(x′0(θ))2

)
dθ = 0.

By a straightforward computation using integration by parts and (2.6), (2.9) can be sim-
plified to the selection principle

(2.10)

∫ L

0
(x′′0(θ))2dθ =

∫ L

0
(x′0(θ))2dθ,

11In [BN], the authors consider the KdV equation in the form ũt + 6ũũx + ũxxx = 0, which is equivalent
to (2.1) via the simple rescaling ũ 7→ 1

6
u.
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or, equivalently,

(2.11) κ2 =

∫ 2K(k)

0
[(cn2)′]2(y)dy∫ 2K(k)

0
[(cn2)′′]2(y)dy

=: F 2(k).

Using the implicit function theorem, one can show that if (2.11) is satisfied, there exists a
periodic solution xδ of (2.6) which is δ close to x0. As a result, we obtain a 3-dimensional
set of periodic solutions to (1.1) parametrized by u0, φ and either k or κ. Note that the
limit κ→ 0 (i.e. k → 1) corresponds to a solitary wave and κ→ 1 (i.e. k → 0) corresponds
to small amplitude solutions (or equivalently to the onset of the Hopf bifurcation branch).

The above observations lead us to the following proposition.

Proposition 2.4 ([EMR]). Given any positive integer r ≥ 1, there exits a δ0 > 0 such that
the periodic traveling wave solutions uδ(θ), θ = x − ct, of (1.1) are analytic functions of
θ ∈ R and Cr functions of δ ∈ [0, δ0). Furthermore, taking r ≥ 3, we find that as δ → 0 the
profiles uδ expand (up to translations) as

(2.12)

{
uδ(θ) = u0(κθ, u0, k, κ) + δU1(θ) + δ2U2(θ) +O(δ3),

c = c0(a0, k, κ) + δ2c2 +O(δ3),

where u0, c0 are defined as

u0(y, a0, k, κ) = a0 + 3k

(
κK(k)

π

)2

cn2

(
K(k)

π
y, k

)
, c0 = a0 + (2k − 1)

(
κK(k)

π

)2

,

and κ is determined from k via the selection principle κ = G(k) with(
K(k)G(k)

π

)2

=
7

20

2(k4 − k2 + 1)E(k)− (1− k2)(2− k2)K(k)

(−2 + 3k2 + 3k4 − 2k6)E(k) + (k6 + k4 − 4k2 + 2)K(k)
.

Moreover the functions (Ui)i=1,2 are (respectively odd and even) solutions of the linear
equations

L0[U1] + κu′′0 + κ3u′′′′0 = 0, L0[U2] +

(
U2

1

2
− c2u0

)′
+ κU ′′1 + κ3U ′′′′1 = 0,

where L0 := κ2∂3
x + ∂x ((u0 − c0).) is a closed linear operator acting on L2

per(0, 2K(k)) with
densely defined domain H3

per(0, 2K(k)).

Remark 2.5. The condition κ = G(k) is precisely the defining relation for the period
X = 2K(k)/κ to belong to the set W defined in the introduction. Furthermore, the choice
of δ0 in Proposition 2.4 can be chosen uniformly on compact subsets of W.
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Proof. The regularity of the profiles uδ in θ follows by basic ODE theory, while the regularity
with respect to δ follows by Proposition 2.1. Furthermore, the explicit expansions above
are determined as follows. After rescaling, continuing the 2K(k)/κ-periodic wave trains of
(2.1) to 0 < δ � 1 is equivalent to searching for 2K(k)-periodic solutions of

(2.13) (U − c)U ′ + κ2U ′′′ + δ
(
κU ′′ + κ3U ′′′′

)
= 0

for δ > 0 sufficiently small. We expand c, uδ in the limit δ → 0 as

c = c0 + δc1 +O(δ2), uδ(θ) = u0(θ) + δU1(θ) +O(δ2).

with u0(θ) = x0(θ, κ, k, a0) as defined in (2.7). Notice that, up to order O(1), equation
(2.13) is satisfied for all a0, k, κ, i.e. there is no selection of a particular wave train. Now,
identifying the O(δ) terms in (2.13) yields the equation

(2.14) κ2U ′′′1 +
(
(u0 − c0)U1

)′ − c1u
′
0 + κu′′0 + κ3u′′′′0 = 0.

The linear operator L0[x] = κ2x′′′+((u0 − c0)x)′, defined on H3
per(0, 2K(k)), is Fredholm of

index 0 and (1, u0) span the kernel of its adjoint (see [BrJ, JZB] for more details). Then one
can readily deduce that equation (2.14) has a periodic solution provided that the following
compatibility condition is satisfied, 〈(u′0)2〉 = κ2〈(u′′0)2〉 which is precisely the selection
criterion (2.11). In order to determine c1, one has to consider higher order corrections to
x0: in fact, c1 is determined through a solvability condition on the equation for x2. This
yields c1 = 0 (see [EMR] for more details).

Remark 2.6. As indicated in Remark 2.2, while the degree of regularity of the profile uδ
in δ can be chosen arbitrarily, the value of δ0 is expected to depend on r. In particular, as
r →∞ we expect δ0 → 0. Throughout the paper, we will arbitrarily choose the regularity
of the profile to be sufficiently large (but finite) to make our arguments valid. This can, of
course, be done at successive steps by possibly choosing the value of δ0 to be smaller than
at the previous step, but still non-zero.

Remark 2.7. Notice Proposition 2.4 associates to each X ∈ W a one-parameter family
of X-periodic traveling wave solutions {uδ}δ∈[0,δ0) with wave speeds {cδ}δ∈[0,δ0) for some
sufficiently small δ0 > 0. Throughout this paper, we will abuse notation slightly and refer
to such a family simply as a periodic traveling wave solution uδ, defined for all δ ∈ [0, δ0)
for some sufficiently small δ0 > 0, of (1.1), in particular taking the associated wave speeds
c to be implicit.

As a consequence, a two dimensional manifold is obtained of periodic traveling wave
solutions (identified when coinciding up to translation) of (1.1) parametrized by a0 ∈ R (or
alternatively c0) and the wave number κ ∈ (0, 1] (or alternatively the parameter k ∈ [0, 1)).
As noted in Remark 1.2, it follows from the translation and Galilean invarience of (1.1)
that the stability of a given periodic traveling wave solution of (1.1) depends only on the
period of the wave.
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3 Stability with respect to high frequency perturbations

In this section, we begin our study of the spectral stability of periodic traveling waves of
(1.1) in the limit δ → 0+. To begin, let X ∈ W and let uδ be an X-periodic traveling wave
solution of (1.1), defined for all δ ∈ [0, δ0) for some sufficiently small δ0 > 0. Linearizing
(1.1) about uδ in the co-moving frame12 (x − ct, t) = (θ, t) leads to the linear evolution
equation

∂tv − L[uδ]v = 0

governing the perturbation v of uδ, where L[uδ] denotes the differential operator with X-
periodic coefficients

L[uδ]v = −
(
(uδ − c)v

)′ − v′′′ − δ(v′′ + v′′′′).

In the literature, there are many choices for the class of perturbations considered, each
of which corresponds to a different domain for the above linear operator. Here, we are
interested in perturbations of U which are spatially localized, hence we require that v(·, t) ∈
L2(R) for each t ≥ 0. This naturally leads one to a detailed analysis of the spectrum of the
operator L considered as an operator on L2(R) with densely defined domain H4(R).

To characterize the spectrum of the operator L[uδ], considered here as a densely defined
operator on L2(R), we note that as the coefficients of L[uδ] are X-periodic functions of x,
Floquet theory implies that the spectrum of L[uδ] is purely continuous and that λ ∈ σ(L[uδ])
if and only if the spectral problem

(3.1) L[uδ]v = λv

has an L∞(R) eigenfunction of the form

(3.2) v(x;λ, ξ) = eiξxw(x;λ, ξ)

for some ξ ∈ [−π/X, π/X) and w(·) ∈ L2
per(0, X). Following [G, S1, S2], we find that

substituting the ansatz (3.2) into (3.1) leads one to consider the one-parameter family of
Bloch operators {Lξ}ξ∈[−π/X,π/X) acting on L2

per([0, X]) via

(3.3) (Lξ[uδ]w) (x) := e−iξxL[uδ]
[
eiξ·w(·)

]
(x).

Since the Bloch operators have compactly embedded domains H4
per([0, X]) in L2

per([0, X]),
their spectrum consists entirely of discrete eigenvalues which, furthermore, depend contin-
uously on the Bloch parameter ξ. It follows by these standard considerations that

σL2(R)(L[uδ]) =
⋃

ξ∈[−π/X,π/X)

σL2
per([0,X]) (Lξ[uδ]) ;

see [G] for details. As a result, the spectrum of L may be decomposed into countably many
curves λ(ξ) such that λ(ξ) ∈ σ(Lξ) for ξ ∈ [−π/X, π/X).

12Recall, by our abuse of notation, that we are suppressing the dependence of c on δ.
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The spectra λ of the Bloch operators Lξ[uδ] may be characterized as the zero set for
fixed ξ, δ of the Evans function

(3.4) E(λ, ξ, δ) = det
(
R(X,λ, δ)− eiξXIdC3

)
,

where R(·, λ) denotes the resolvent (or fundamental solution) matrix associated with the
linearized eigenvalue problem (3.1) evaluated at x = X, that is, writing (3.1) as the first
order ODE Φ′(x) = H(x, λ, δ)Φ(x), R(·, λ, δ) is the unique solution to the initial value
problem

Φ′(x) = H(x, λ, δ)Φ(x), Φ(0) = Id.

Thus, the spectra of L consists of the union of zeros λ as all values of ξ ∈ [−π/X, π/X)
are swept out. Now, for any positive integer r ≥ 1, Proposition 2.4 implies we can find a
δ0 > 0 such that the profile uδ is a Cr function of δ ∈ [0, δ0). It follows then that solutions
of Lξ[uδ]v = λv depend analytically on (λ, ξ) on open and bounded subsets of (λ, ξ) ∈ C2,
and are Cr functions of δ ∈ [0, δ0). Hence, the Evans function E will posses these same
regularity properties. We will see in Section 3.2 that the spectral problem E(λ, ξ, δ) = 0
can be replaced by E(λ, ξ, δ) = 0, equivalent to the original one for all δ > 0 and so that E
is analytic in (λ, ξ) ∈ C2 and, for any fixed positive integer r ≥ 1, is Cr for all r < ∞ in δ
for δ ∈ [0, δ0) provided δ0 > 0 is sufficiently small.

In the following, we will first prove that possible unstable eigenvalues are order O(1) +
iO(δ−3/4) by using a standard parabolic energy estimate. By a bootstrap argument based
on an approximate diagonalisation of the first order differential system associated with (3.1),
we show that possible unstable eigenvalues are O(1) which implies that they are necessarily
of order O(δ) + iO(1). We then provide an expansion in δ of the Evans function as δ → 0
in a bounded box close to the imaginary axis with the help of a Fenichel-type procedure
and an iterative scheme based on the exact resolvent matrix associated with the linearized
KdV equations.

3.1 Boundedness of unstable eigenvalues as δ → 0

In this section, we bound the region in the unstable half plane <(λ) ≥ 0 where the unstable
essential spectrum of the linearized operator L may lie in the limit δ → 0. Throughout, we
use the notation ‖u‖2 =

∫ X
0 |u(x)|2dx. We begin by proving the following lemma, verifying

that the unstable spectra is O(δ−3/4) for δ sufficiently small.

Lemma 3.1. Let X ∈ W and let uδ be an X-periodic traveling wave solution of (1.1),
defined for all δ ∈ [0, δ0) for some δ0 > 0 sufficiently small. Then there exist constants
C1, C2 > 0 such that, for all δ ∈ [0, δ0), the operator L[uδ] has no L∞(R) eigenvalues with
<(λ) ≥ C1 or (<(λ) ≥ 0 and δ3/4|=(λ)| ≥ C2).

Proof. Suppose that λ is an L∞(R) eigenvalue of L[uδ] and let v be a corresponding eigen-
function. Multiplying equation (3.1) by v̄ and integrating over one period, we obtain

(3.5) λ‖v‖2 −
∫ X

0

(
(uδ − c)v + v′′

)
v̄′dx+ δ

(
‖v′′‖2 − ‖v′‖2

)
= 0.
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Identifying the real and imaginary parts yields the system of equations:

(3.6)
<(λ)‖v‖2 +

1

2

∫ X

0
u′δ|v|2dx+ δ

(
‖v′′‖2 − ‖v′‖2

)
= 0,

|=(λ)|‖v‖2 ≤ ‖(uδ − c)‖∞‖v‖‖v′‖+ ‖v′‖‖v′′‖.

Here, we have used the fact that, by (3.2), v(x + X) = eiξXv(x) so that |v| is X-periodic.
Next, using the Sobolev estimate ‖v′‖2 ≤ C‖v‖2/2 + ‖v′′‖2/(2C), valid for any C > 0, into
the first equation yields the bound

(3.7) <(λ)‖v‖2 + δ

(
1− 1

2C

)
‖v′′‖2 ≤ 1

2

(
‖u′δ‖∞ + δC

)
‖v‖2, C > 0.

Letting C = 1/2 then yields

<(λ) ≤ 1

2

(
sup

δ∈[0,δ0)
‖u′δ‖∞ +

δ0

2

)
,

which verifies the stated bound on the real part of λ.
Suppose now <(λ) ≥ 0. Using again the Sobolev estimate ‖v′‖ ≤ ‖v‖1/2‖v′′‖1/2, the

imaginary part of λ can be bounded as

|=(λ)|‖v‖2 ≤ ‖uδ − c‖∞‖v‖3/2‖v′′‖1/2 + ‖v‖1/2‖v′′‖3/2.

Furthermore, ‖v′′‖ can be controlled by

δ‖v′′‖2 ≤
(
‖u′δ‖∞ + δ

)
‖v‖2,

which follows by setting C = 1 in (3.7) and recalling that <(λ) ≥ 0 by hypothesis. Thus,
setting K2 = supδ∈[0,δ0) ‖u′δ‖∞ + δ0 we deduce that

|=(λ)| ≤

(
sup

δ∈[0,δ0)
‖uδ − c‖∞

)
K1/2δ−1/4 +K3/2δ−3/4,

which completes the proof.

Remark 3.2. By slight modification, the estimates in Lemma 3.1 can be extended into the
stable spectrum. Indeed, if C3 > 0 then adding C3‖v‖2 to both sides of the bound (3.7)
yields the estimate

(<(λ) + C3)‖v‖2 + δ(1− 1

2C
)‖v′′‖2 ≤ 1

2
(‖u′δ‖∞ + 2C3 + δC)‖v‖2.

Thus, as long as <(λ) +C3 ≥ 0 we can repeat the proof on the estimates of imaginary parts
to conclude

|=(λ)| ≤ K1/2
3 δ−1/4 +K3δ

−3/4,

where K3 = ‖u′δ‖∞ + 2C3 + δ.
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Next, we bootstrap the estimates in Lemma 3.1 to provide a second energy estimate
on the reduced “slow,” or “KdV,” block of the spectral problem (3.1) in the limit δ → 0.
This yields a sharper estimate on the modulus of the possibly unstable spectrum in this
distinguished limit, in particular proving that unstable spectra must lie in a compact region
in the complex plane. Notice that this result relies heavily on the fact that the corresponding
spectral problem for the linearized KdV equation about a cnoidal wave (2.7) has been
explicitly solved in [BD, Sp].

Proposition 3.3. Let X ∈ W and let uδ be an X-periodic traveling wave solution of (1.1),
defined for all δ ∈ [0, δ0) for some δ0 > 0 sufficiently small. Then there exists a constant
0 < δ∗ < δ0 and constants C1, C2 > 0 such that for all δ ∈ [0, δ∗) the operator L[uδ] has no
L∞(R) eigenvalues with <(λ) ≥ 0 and either <(λ) ≥ C1δ or |=(λ)| ≥ C2.

Proof. The proof is done in two steps: first, we show that if λ is an L∞(R) eigenvalue of
L[uδ] with <(λ) ≥ 0 and corresponding eigenfunction v, then there exists C2 > 0 such that
|=(λ)| ≤ C2. The estimate on <(λ) will then easily follow. To begin, let r ≥ 3 be a positive
integer, and let δ1 > 0 be such that the profiles uδ constructed in Proposition 2.4 are Cr

functions of δ ∈ [0, δ1). Next, let (v, λ) be an L∞(R)-eigenpair of (3.1) with <(λ) ≥ 0 and
set x = v, y = v′, z = v′′ + v, w = z′, and s = c + 1, so that (3.1) may be written as the
first order system

(3.8) x′ = y, y′ = z − x, z′ = w, δw′ = −w − (u′δ + λ)x− (uδ − s)y.

We first apply a Fenichel-type procedure and introduce w1 = w + (u′δ + λ)x + (uδ − s)y,
noting then that w1 satisfies

δw′1 = −w1 + δ
(
u′′δx+ (2u′δ + λ)y + (uδ − s)(z − x)

)
.

We further introduce w2 = w1 − δ
(
u′′δx+ (2u′δ + λ)y + (uδ − s)(z − x)

)
so that w2 satisfies

the equation

δw′2 = −
(
1 + δ2(uδ − s)

)
w2 − δ2

(
(u′′′δ − (uδ − s)(u′δ + λ− δu′′δ )

)
x

−δ2
(

(3u′′δ − (uδ − s)2 + δ(uδ − s)(2u′δ + λ))y + (3u′δ + λ+ δ(uδ − s)2)(z − x)
)
.

Now, by Lemma 3.1 we know that necessarily one has <(λ) + δ3/4|=(λ)| ≤ C for some
constant C > 0. It follows that λδ = o(1) as δ → 0, hence, for δ ≥ 0 sufficiently small we
may rewrite system (3.8) as

(3.9)

x′ = y, y′ = z − x,

z′ = w2 − (u′δ + λ)x− (uδ − s)y + δ
(
u′′δx+ (2u′δ + λ)y + (uδ − s)(z − x)

)
,

δw′2 = −w2 − δ2λ
(

(z − x)− (uδ − s)x
)

+O(δ2(|x|+ |y|+ |z|+ |w2|)).
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Next, we remove w2 from the equation in z by introducing the variable z∗ = z + δw2, in
terms of which (3.9) reads for δ ≥ 0 sufficiently small

(3.10)

x′ = y, y′ = z∗ − δw2 − x,

z′∗ = −(u′δ + λ)x− (uδ − s)y + δ
(
u′′δx+ (2u′δ + λ)y + (uδ − s)(z∗ − x)

)
− δ2λ

(
(z∗ − x)− (uδ − s)x

)
+O(δ2(|x|+ |y|+ |z∗|+ |w2|)),

δw′2 = −w2 − δ2λ
(

(z̄ − x)− (uδ − s)x
)

+O(δ2(|x|+ |y|+ |z∗|+ |w2|)).

We further introduce the variables ȳ = y − δ2w2, x̄ = x and z̄ = z∗ − x̄. For δ sufficiently
small then the system (3.10) then reads

(3.11)

x̄′ = ȳ +O(δ2(|x̄|+ |ȳ|+ |z̄|+ |w2|)), ȳ′ = z̄ +O(δ2(|x̄|+ |ȳ|+ |z̄|+ |w2|)),

z̄′ = −(u′δ + λ)x̄− (uδ − c)ȳ + δ
(
u′′δ x̄+ (2u′δ + λ)ȳ + (uδ − s)z̄

)
− δ2λ

(
z̄ − (uδ − s)x̄

)
+O(δ2(|x̄|+ |ȳ|+ |z̄|+ |w2|)),

δw′2 = −w2 − δ2λ
(
z̄ − (uδ − s)x̄

)
+O(δ2(|x̄|+ |ȳ|+ |z̄|+ |w2|)).

In particular, by neglecting O(δ) terms in the (x̄, ȳ, z̄) equations in (3.11) and eliminating
(ȳ, z̄), we recognize the spectral problem associated with the linearized KdV equation about
the periodic wave u0 with speed c0:

x̄′′′ + ((u0 − c0)x̄)′ + λx̄ = 0

The above calculations motivate us to make a reduction to the “KdV block” of the spectral
problem (3.1). More precisely, recalling (2.12), we write the differential system (3.111, 3.112,
3.113) on X̄ = (x̄, ȳ, z̄)T as

(3.12) X̄ ′ =
(
A0 + δ

(
A1 + λA2

)
+ λδ2A3 +O(δ2)

)
X̄ +O(δ2|w2|),

where

(3.13) A0 =

 0 1 0
0 0 1

−(u′0 + λ) −(u0 − c0) 0


denotes the coefficient matrix for the linearized KdV equation, and A1, A2, and A3 are
defined as

A1 =

 0 0 0
0 0 0

−U ′1 + u′′0 −U1 + 2u′0 u0 − c0

 , A2 =

 0 0 0
0 0 0
0 1 0

 , A3 =

 0 0 0
0 0 0

u0 − c0 0 −1

 .

In order to analyze (3.12) for 0 < δ � 1, we recall that in [BD] the complete integrability
of (2.1) was used to determined a basis of solutions of X ′ = A0X, at least when λ 6= 0, which
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corresponds to linearized KdV equation about the periodic wave train U0. Specifically, such
a basis (Vi)i=1,2,3 is defined as Vi = (ûi, û

′
i, û
′′
i ) with ûi given by

ûi(θ, λ) =

(
1− u′0

3λ

)
exp

(∫ θ

0

λdy

u0(y)/3− c0 + ηi

)
,

and ηi are solutions of the polynomial equation

(3.14) (η − 4ξ1)(η − 4ξ2)(η − 4ξ3) = λ2,

where ξ1 = k2 − 1, ξ2 = 2k2 − 1, ξ3 = k2. In order to deal with the limit |λ| → ∞, we
introduce the diagonal matrix D(λ) with

Dii(λ) = −
〈

λ

u0/3− c0 + ηi

〉
,

where 〈g(·)〉 denotes the average of the function g over [0, X] and write a resolvent matrix
for X ′ = A0X as

R(λ, θ) = P (λ, θ)eD(λ)θ,

where P (λ, θ) = (V̄1, V̄2, V̄3)(λ, θ) is the matrix function with columns being given by the

vector valued functions V̄k,i(λ, θ) = e−Dkk(λ)θ∂
(i−1)
θ ûk(θ), i = 1, 2, 3. Next we make the

periodic change of variable X̄(θ) = P (λ, θ)Y (θ), which is nothing but the classical change
of variable in Floquet’s theorem. In terms of Y , system (3.12) expands as

(3.15) Y ′ =
(
D(λ) + δP−1

(
A1 + λA2 + λδA3 +O(δ)

)
P
)
Y +O(δ2‖P−1‖|w2|)

as |λ| → ∞.
We now analyze the individual terms in (3.15) more closely. To this end, first notice

that as |λ| → ∞ the eigenfunctions associated with the linearized KdV equation expand as

ûi(θ, λ) =
(

1 +O
(
|λ|−1/3

))
eDii(λ)θ.

It follows that as |λ| → ∞ the matrix P defined above expands as

P =

 1 1 1
Λ1 Λ2 Λ3

Λ2
1 Λ2

2 Λ2
3

 (1 +O(|λ|−1/3),

where Λi := Dii(λ). Thus, by a straightforward calculation we see that as |λ| → ∞ we have
the estimates ‖P (λ, ·)‖L∞(R) = O(|λ|2/3) and

‖P−1(λ, ·)‖L∞(R) = O(1), ‖P−1A1P‖L∞(R,dθ) = O(1), ‖P−1A3P‖L∞(R,dθ) = O(1)

hence, using the fact that |λ|δ3/4 = O(1), equation (3.15) can be rewritten as

(3.16) Y ′ =
(
D(λ) + δ(λP−1A2P +O(1)) +O(δ5/4)

)
Y +O(δ2|w2|).
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Finally, with a near-identity change of variables of the form Ỹ =
(
Id+O(δ|λ|1/3)

)
Y one

can remove the non-diagonal part of δ(λP−1A2P +O(1)) up to O(δ5/4) so that (3.16) reads

(3.17) Ỹ ′ =
(
D(λ) + δdiag(λP−1A2P +O(1)) +O(δ5/4)

)
Ỹ +O(δ2|w2|).

Next, define the diagonal matrix Γ(λ) := D(λ)+ δdiag(λP−1A2P +O(1)) with diagonal
entries

Γ(λ)11 = Λ1 + δ

(
λ

Λ1(Λ3 − Λ2)

∆
+O(|λ|1/3)

)
,

Γ(λ)22 = Λ2 + δ

(
λ

Λ2(Λ1 − Λ3)

∆
+O(|λ|1/3)

)
,

Γ(λ)33 = Λ3 + δ

(
λ

Λ3(Λ2 − Λ1)

∆
+O(|λ|1/3)

)
,

where ∆ := (Λ2 − Λ1)(Λ3 − Λ1)(Λ3 − Λ2). From (3.14) it follows that ηi = O(|λ|2/3)
as |λ| → ∞, from which we see Λi(λ) = O(|λ|1/3) in this limit. Introducing the polar
coordinates λ = |λ|ei(π/2−φ), and noting that <(λ) = O(1) by Lemma 3.1, we find that
φ = O(|λ|−1) as |λ| → ∞. Directly expanding the Dii(λ), we have

Λ1 = |λ|1/3ei(π/2−φ/3) +O(λ−1/3), Λ2 = jΛ1 +O(1), Λ3 = j2Λ1 +O(1),

where j = e2πi/3 denotes the principal third root of unity so that, in particular, we have
the estimates

(3.18) <(Λ2) =

√
3

2
|λ|1/3 +O(1), <(Λ3) = −

√
3

2
|λ|1/3 +O(1)

as |λ| → ∞.
With the above preparations, we are now in a position to perform the necessary energy

estimates. Indeed, under the condition Ỹ (x+X) = eiγ Ỹ (x) and w2(x+X) = eiγw2(x) and
recalling that ‖P (λ, ·)‖L∞(R) = O(|λ|2/3), it follows from (3.11) that

(3.19) ‖w2‖ ≤ C|λ|δ2‖P (λ, ·)‖∞
(
‖x̃‖+ ‖ỹ‖+ ‖z̃‖

)
≤ Cδ3/4

(
‖x̃‖+ ‖ỹ‖+ ‖z̃‖

)
,

where here we set Ỹ = (x̃, ỹ, z̃)T . Similarly, using the bounds in (3.18), it follows from
(3.17) that

(3.20) ‖ỹ‖+ ‖z̃‖ ≤ C δ5/4

|λ|1/3
‖x̃‖.

Inserting the bounds (3.19) and (3.20) into the x̃ equation in (3.17) and recalling that the
function x̃ must be uniformly bounded on R as a function of θ, we find necessarily that
<(Γ(λ)11) = O(δ5/4) as |λ| → ∞, i.e. we have

<(Λ1) + δ

(
|λ|2/3

3
+O(|λ|1/3)

)
= O(δ5/4)
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which, as |λ| → ∞, reduces to

(3.21) 0 ≤ <(λ)

|λ|2/3
(1 +O(|λ|−1/3)) + δ

(
|λ|2/3 +O(|λ|1/3)

)
≤ Cδ5/4.

Since we have assumed <(λ) ≥ 0 it immediately follows that |λ| must indeed be bounded.
More precisely, we deduce that there exists C2 and δ1 > 0 such that for all 0 < δ < δ1,
the operator L has no unstable eigenvalues λ on L∞(R) such that |λ| > C2. As we have
already verified in Lemma 3.1 that <(λ) is necessarily bounded, we obtain a uniform bound
on |=(λ)|. Moreover, it is then easy to show, by using (3.21), that, necessarily, possible
unstable eigenvalues satisfy 0 ≤ <(λ) ≤ Cδ for some constant C > 0, and the proposition
is proved.

Remark 3.4. As discussed in Remark 3.2, the estimate |=(λ)| = O(δ−3/4) is actually valid
so long as <(λ) = O(1). Thus, by repeating the argument of Proposition 3.3, one can prove
that for any C > 0 there exists M, δ1 > 0 such that if 0 ≤ δ ≤ δ1 and |λ| ≥ M , then there
are no eigenvalues λ such that <(λ) ≥ −Cδ.

As a result of Proposition 3.3 and Remark 3.4, we have proved the following corollary.

Corollary 3.5. Let X ∈ W and let uδ be an X-periodic traveling wave solution of (1.1),
defined for all δ ∈ [0, δ0) for some δ0 > 0 sufficiently small. Then given any constant C > 0,
there exist constants M > 0 and δ1 ∈ (0, δ0) such that for 0 ≤ δ < δ1 we have

σL2(R)(L[uδ]) ⊂ {λ ∈ C | <(λ) ≤ −Cδ} ∪ {λ ∈ C | |<(λ)| ≤ Cδ, |=(λ)| ≤M} .

In summary, we have restricted the location of the unstable part of the L2(R)-spectrum
of the linearized operator L[uδ] to a compact subset of C, uniformly for δ sufficiently small.
Our next goal is to prove convergence, for a fixed ξ, of the eigenvalues of the Bloch operator
Lξ to the eigenvalues of the linearized KdV equation as δ → 0. This is accomplished in the
next section through the use of the periodic Evans function.

Remark 3.6. The structure of the argument of Proposition 3.3 may be recognized as
somewhat similar to those of arguments used in [JZ2, PZ, HLZ, BHZ] to treat other delicate
limits in asymptotic ODE. A new aspect here is the incorporation of detailed estimates on
the limiting system afforded by complete integrability of KdV, which appear to be crucial
in obtaining the final result.

3.2 Expansion of the Evans function as δ → 0

In this section, we provide an expansion of both the Evans function and eigenvalues in
the vicinity of the imaginary axis where all the eigenvalues are located at δ = 0 (this is
the spectral stability result of [BD, Sp]). To this end, we will use the basis of solutions
constructed in [BD] to build an approximation of the resolvent matrix associated with the
full spectral problem (3.1). This leads us to the following result.
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Proposition 3.7. Let X ∈ W and let uδ be an X-periodic traveling wave solution of
(1.1), defined for all δ ∈ [0, δ0) for some δ0 > 0 sufficiently small. Then on any compact
set λ ∈ K ⊂ C, the Evans function (3.4) of the associated spectral problem (3.1) can be
expanded for 0 < δ � 1 as

(3.22)
E(λ, δ, ξ) = −eiξX(1 + δe(λ, ξ, δ)) exp

(
X

δ

)
E(λ, δ, ξ),

E(λ, ξ, δ) = EKdV(λ, ξ) + δE1(λ, ξ) + δ2E2(λ, ξ, δ),

with EKdV(λ, ξ) = det
(
RKdV(X,λ)− eiξXIdC3

)
, RKdV(·, λ) being the resolvent matrix as-

sociated with the linearized KdV equation. Furthermore, given any positive integer r ≥ 1,
there exists a δ1 ∈ (0, δ0) sufficiently small such that the functions e and E are analytic with
respect to (λ, ξ) ∈ K × [−π/X, π/X) and Cr with respect to δ ∈ [0, δ1). Hence, the spectral
problem E(λ, ξ, δ) = 0 is equivalent to E(λ, ξ, δ) = 0 for δ sufficiently small. Moreover for
each fixed Bloch wave number ξ ∈ [−π/X, π/X) and δ sufficiently small, if an eigenvalue
(λδ(ξ)) of Lξ[uδ], defined for δ sufficiently small, belongs to K for all δ sufficiently small,
then λδ(ξ) converges to λ0(ξ), an eigenvalue of the linearized KdV equation, as δ → 0,
uniformly with respect to ξ.

Proof. To begin, let r ≥ 1 be a fixed positive integer, and let δ0 > 0 be small enough that
the profiles uδ exist and depend in a Cr+5 on δ ∈ [0, δ0). First, we carry out a Fenichel-type
computation on the spectral problem (3.1) up to O(δ2). Recall that by Corollary 3.5 the
L∞(R) unstable eigenvalues of the operator L[uδ] are uniformly bounded in C. Redoing
the computations done in the proof of the Proposition 3.3 the spectral problem (3.1) is
transformed into the system

(3.23)

x̄′ = ȳ + δ2f1(θ, x̄, ȳ, z̄, w2, λ, δ),

ȳ′ = z̄ + δ2f2(θ, x̄, ȳ, z̄, w2, λ, δ),

z̄′ = −(u′0 + λ)x̄− (u0 − c)ȳ + δ
(
(u′′0 − U ′1)x̄+ (2u′0 − U1 + λ)ȳ + (u0 − s)z̄

)
+ δ2f3(θ, x̄, ȳ, z̄, w2, λ, δ),

δw′2 = −w2 + δ2f4(θ, x̄, ȳ, z̄, w2, λ, δ),

where the fi, i = 1, . . . , 4 are analytic functions of θ ∈ R, linear functions in (x̄, ȳ, z̄),
polynomial in λ, and Cr+3 functions of δ ∈ [0, δ0). Introducing Y = (x̄, ȳ, z̄), we can thus
write (3.23) as

(3.24) Y ′ = A(θ, δ, λ)Y + δ2w2 F (θ, λ, δ), δw′2 = −(1 + δ2B(θ, δ, λ))w2 + δ2G(θ, λ, δ)TY,

where the functions F,G,A,B are analytic functions of θ ∈ R, analytic functions of λ ∈ C,
and Cr+3 functions of δ ∈ [0, δ0).

Further, we denote by R(·;λ, δ) the resolvent matrix associated to Y ′ = A(.; δ, λ)Y . It
is a clear consequence of the regularity of the flow associated with this latter differential
system that R(·;λ, δ) is analytic with respect to λ ∈ C and Cr+3 with respect to δ ∈ [0, δ0).
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Moreover R expands as R(·, λ, δ) = RKdV(·, λ) + δR1(·;λ, δ) where RKdV is the resolvent
matrix of the linearized KdV equation Y ′ = A(.; 0, λ)Y satisfying the initial condition
RKdV(0, λ) = IdC3 . In order to simplify the notations in the forthcoming calculations, we
now drop the (λ, δ) dependence of resolvent matrices.

Next, we seek to construct a basis of solutions of (3.24) valid for 0 < δ � 1. To this
end, notice that by Duhamel’s formula the system (3.24) can be equivalently written as

Y (θ) = R(θ)Y (0) + δ2

∫ θ

0
w2(η)R(θ)R−1(η)F (η)dη,

w2(θ) = exp

(
−
∫ θ

0
µ(q)dq

)
w2(0) + δ

∫ θ

0
exp

(
−
∫ θ

η
µ(q)dq

)
GT (η)Y (η)dη

where here µ(q) = δ−1 + δB(q;λ, δ). As a first step, we build a set of 3 eigenvectors which
are continuations of the eigenvectors of the linearized KdV equation. For that purpose, we
set w2(0) = 0 and write Y as

(3.25) Y (θ) = R(θ)Y (0)+ δ3

∫ θ

0

∫ η

0
exp

(
−
∫ η

ζ
µ(q)dq

)
GT (ζ)Y (ζ)R(θ)R−1(η)F (η)dζdη.

By applying a fixed point argument in C0([0, X];C3) to (3.25) and for δ sufficiently small,
we find a set of three eigenvectors (Yi, w2,i)i=1,2,3 of (3.24) given by Yi = R(ξ)ei + O(δ3)
with ei,j = δi,j and w2,i = O(δ). To find a fourth linearly independent eigenvector of (3.24),
we seek a solution (Y,w2) = (Y4, w2,4) such that

(3.26) w2 = exp

(∫ X

θ
µ(q)dq

)(
1 + δ

∫ θ

0
exp

(
−
∫ X

η
µ(q)dq

)
GT (η)Y (η)dη

)
;

in particular, notice then that w2(0) 6= 0. Choosing Y (0) then so that Y (X) = 0 gives

(3.27)

exp

(
−
∫ X

θ
µ(q)dq

)
Y (θ) = −δ2

∫ X

θ
exp

(
−
∫ θ

η
µ(q)dq

)
R(θ)R−1(η)F (η)dζdη

+ δ

∫ η

0
exp

(
−
∫ X

ζ
µ(q)dq

)
G(ζ)Y (ζ)R(θ)R−1(η)F (η)dζdη.

We then apply a fixed point argument in weighted space exp
(
−
∫ X
ω µ(q)dq

)
C0([0, X];C3)

to (3.27) to obtain a solution Y4 such that

exp

(
−
∫ X

θ
µ(q)dq

)
Y4(θ) = −δ2

∫ X

θ
exp

(
−
∫ ξ

η
µ(q)dq

)
R(ξ)R−1(η)F (η)dη +O(δ3).

By plugging Y4(θ) into (3.26), one completes the basis of solutions of (3.24) for 0 < δ � 1.
Let us now consider the regularity of the basis of solution (Yi, wi)i=1,··· ,4. We start with

(Yj , wj)j=1,2,3. By applying the fixed point procedure in C0([0, X];H(Ω)) (where H(Ω) is
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the set of holomorphic functions on Ω ⊂ K an open set), one proves that for all δ ∈ (0, δ0),
(Yj , wj)j=1,2,3 are analytic in θ ∈ R and are holomorphic, and thus analytic, functions with
respect to λ ∈ K, and are Cr functions of δ ∈ [0, δ0).

The regularity with respect to δ ∈ [0, δ0) comes as follows. First, for j = 1, 2, 3 it is
clear that the estimates Yj = R(θ)ej + O(δ3) and wj = O(δ) yields easily the continuity
of (Yj , wj)j=1,2,3 at δ = 0. Next, recalling that the profiles U = Uδ are assumed to be
Cr+5 in δ ∈ [0, δ0), we find by differentiating the fixed point relation (3.25) with respect to
δ and applying a fixed point argument in C0([0, X];C3) for ∂δYj , j = 1, 2, 3, that ∂δYj ∈
C0([0, X];C3) for all δ ∈ [0, δ0) and that

∂δYj = ∂δR(θ)ej +O(δ2).

It follows that for j = 1, 2, 3 the functions ∂δYj is continuous at δ = 0, and hence the
functions Yj , j = 1, 2, 3, are C1 in δ at δ = 0. The continuity of ∂δwj at δ = 0 then
immediately follows13. To now prove C2 regularity in δ for the functions Yj , j = 1, 2, 3, one
must first carry our one additional Fenichel type step in the transformations carried out in
Proposition 3.3 as to obtain O(δ3) remainders in a system of the form (3.23); in doing so,
the coefficient functions of the O(δ3) remainders will contain up to three derivatives of the
underlying wave profile u0, and hence these functions will be Cr+2 functions of δ ∈ [0, δ0).
One can now repeat the above argument by differentiating the fixed point relation (3.25)
relation twice in order to verify that the functions Yj , j = 1, 2, 3 are C2 functions of δ at
δ = 0. As above, C2 regularity in δ at δ = 0 of w2 follows immediately. Finally, continuing
this procedure inductively, one obtains Cr regularity in δ ∈ [0, δ0) of the functions Yj ,
j = 1, 2, 3 and w2.

Let us now consider Y4, w4: with similar arguments, one shows that (Y4, w4) are written
as

(Y4, w4) = exp

(
X − w
δ

)(
δ2Y 4, (1 + δw4)

)
,

with (Y 4, w4) analytic with respect to λ ∈ K and Cr with respect to δ ∈ [0, δ0).

With the above preparations, we are now ready to expand the Evans function in δ. At
ξ = 0, the resolvent matrix R of (3.24) reads

R(0, λ, δ) =

 IdC3 exp
(∫ X

0 µ(q)dq
)
O(δ2)

0 exp
(∫ X

0 µ(q)dq
)

(1 +O(δ))


whereas at ξ = X, it reads

R(X,λ, δ) =

(
R(X,λ, δ) 0
O(δ) 1 +O(δ)

)
,

13Note that in the differentiation procedure, we lost one order of regularity of the profile with respect to δ.
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where, with a slight abuse of notations, O(δm) (m = 1, 2) are functions f(λ, δ) analytic in
λ ∈ K and Cr functions of δ ∈ [0, δ0) that satisfy

lim
δ→0+

‖f(·, δ)‖L∞(K)

δm
. 1.

Therefore, recalling that, by definition, <(µ(q)) ∼ δ−1 as δ → 0, it follows that

E(λ, ξ, δ) = det
(
R(X,λ, δ)− eiξXR(0, λ, δ)

)
= −(1 +O(δ))eiξX exp

(∫ X

0
µ(q)dq

)
E(λ, ξ, δ),

where

E(λ, ξ, δ) = det
(
R(X,λ, δ)− eiξXIdC3

)
+O(δ3);

notice above we have expanded the Evans function with respect to the last column of the
determinant to obtain the final equality. The function E(λ, ξ, δ) is analytic with respect to
(λ, ξ) and Cr with respect to δ ∈ [0, δ0). Recalling that R(·, λ, δ) = RKdV(·, λ)+δR1(·, λ, δ),
the proposition follows.

3.3 Expansion of eigenvalues as δ → 0

By now considering the equation E(λ, ξ, δ) = 0 for 0 < δ � 1 and applying an appropriate
implicit function argument, we deduce that if condition (A1) holds for a given X ∈ W,
then, for a given X-periodic traveling wave solution uδ, defined for all δ ∈ [0, δ0) for some δ0

sufficiently small, via Proposition 2.4, and for each fixed ξ ∈ [−π/X, π/X) the eigenvalues
of Bloch operator Lξ[uδ] can be expanded in δ as δ → 0.

Corollary 3.8. Let X ∈ W and let uδ be an X-periodic traveling wave solution of (1.1),
defined for all δ ∈ [0, δ0) for some δ0 sufficiently small. Let ξ ∈ [−π/X, π/X) be fixed and
let λ0 be a non-zero eigenvalue of LKdV,ξ[u0]. If X satisfies condition (A1), then there exits
a δ1 ∈ (0, δ0) such that for all δ ∈ (0, δ1) there exists a unique eigenvalue λ(ξ, λ0, δ) of
Lξ[uδ] such that λ(ξ, λ0, δ)→ λ0 as δ → 0 and, furthermore, for 0 < δ � 1 this eigenvalue
λ(ξ, λ0, δ) can be expanded analytically in δ as

λ(ξ, λ0, δ) = λ0 + δλ1(ξ, λ0) + δ2λ2(ξ, λ0) +O(δ3)

for some complex-valued functions λ1, λ2.

Proof. The initial spectral problem E(λ, ξ, δ) = 0 is equivalent to E(λ, ξ, δ) = 0 for δ
sufficiently small. We proved in proposition 3.7 that E is analytic with respect to (λ, ξ) ∈ C2

and, for any positive integer r ≥ 3, can be chosen to be Cr with respect to δ ∈ [0, δ0)
for δ0 > 0 sufficiently small after choosing the profile uδ to be sufficiently regular in δ.
Since condition (A1) is assumed to hold for X ∈ W, the eigenvalue λ0 is an isolated
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root of E(·, ξ, 0) = EKdV(·, ξ) so that one has ∂λE(λ0(ξ), ξ) 6= 0. The result follows by a
combination of a Cauchy root counting argument and a straightforward application of the
implicit function theorem.

Remark 3.9. Notice that the expansion of the eigenvalues provided by Corollary 3.8 is
precisely the one that is assumed to exist in the work of Bar and Nepomnyashchy in [BN].
Note, however, that for the moment this expansion is only expected to be uniformly valid
for |ξ| ≥ η > 0, where η is an arbitrarily small real number. In the following we do extend
this expansion to the larger zone 0 < δ � ξ. However, even this extended version fails to
cover any neighborhood of the origin in the spectral plane. In Section 4, we will indeed see
that the eigenvalues near λ = 0 of the Bloch operator Lξ[uδ] do not expand smoothly in δ
as δ → 0.

From the above corollary, it follows that if conditions (A1)-(A3) are assumed to hold for
a given X ∈ W, then all the non-zero eigenvalues of the limiting KdV operator LKdV,0[u0],
with u0 being an X-periodic traveling wave solution of the KdV, bifurcate into the stable
left half plane for δ sufficiently small. More precisely, we have the following result.

Corollary 3.10. Let X ∈ P. Then for any η1 > 0, there exist δ1(X, η1) > 0 and θ1(X, η1) >
0 such that any X-periodic periodic traveling wave solution uδ, defined for δ ∈ [0, δ1), we
have that for all η1 ≤ |ξ| ≤ π/X

σ (Lξ[uδ]) ⊂ { λ | <(λ) ≤ −θ1 δ }

while for all 0 ≤ |ξ| ≤ η1 we have

σ (Lξ[uδ]) ∩B(0, η1)c ⊂ { λ | <(λ) ≤ −θ1 δ } .

Notice that the choices of δ1 and θ1 in Corollary 3.10 can be taken to be uniform
when X varies in a compact subset of P. Corollary 3.10 effectively establishes the stability
of the “high-frequnecy” part of the spectrum for any wave with X ∈ P. Moreover, the
results of this section rigorously justify the formal approach taken in [BN] to investigate
necessary conditions, that is Ind(X) ≤ 0, for stability of “near-KdV” solutions of the KdV-
KS equation. Our goal is now to establish that the strict conditions, namely that X ∈ P,
is also sufficient for stability, thus completing the proof of Theorem 1.4. To this end, it
remains to analyze how the spectrum organizes itself about the triple eigenvalue λ = 0 of
the limiting KdV operator LKdV,0[u0] for sufficiently small δ and ξ. This is the goal of the
next section.

4 Spectrum at the origin and modulation equations

As described above, at the present stage of the analysis, we already know that the formally
derived and numerically evaluated criterion of [BN] may be used to provide a first estimate
of stability boundaries and that any undetected instability would necessarily be weak and
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correspond to long-wavelength perturbations. In this section, we complete the stability
analysis initiated in the previous section by studying stability in the region |(λ, ξ)| � 1
using explicit calculations on a reduced Evans function designed to detect instabilities of
Lξ[uδ] near the origin for |(λ, ξ, δ)| � 1.

4.1 Spectral analysis through Evans function computations

We begin our study of the spectrum of the linearized operator Lξ in a neighborhood of the
origin by analyzing the periodic Evans function E(λ, ξ, δ), introduced in Proposition (3.7),
for |(λ, ξ, δ)|C×R×R � 1. We begin with the following result.

Proposition 4.1. Let X ∈ W and consider the reduced Evans function E defined about an
X-periodic traveling wave solution uδ, defined for δ ∈ [0, δ0) for some δ0 > 0 sufficiently
small, of (1.1). In a sufficiently small neighborhood of (λ, ξ, δ) = (0, 0, 0) then, the spectral
problem E(λ, ξ, δ) = 0 is equivalent14 to Ẽ(λ, ξ, δ) = 0, with

Ẽ(λ, ξ, δ) =
3∏
j=1

(λ− iαj(ξ)ξ) + γδ
2∏

k=1

(λ− iβ0
kξ) + δ2Ẽ2,2(λ, ξ, δ) + δẼ3,1(λ, ξ, δ),

where αj(ξ) ∈ R, j = 1, 2, 3 are as given in (1.3), the βj ∈ C are either real or complex

conjugates, and γ ∈ R is a constant. Given any positive integer r ≥ 1, the functions Ẽ2,2

and Ẽ3,1 are analytic with respect to (λ, ξ) in a sufficiently small neighborhood of the origin
in C × R, and is Cr with respect to δ ∈ [0, δ0) for δ0 > 0 sufficiently small. Moreover,
one has ∂lλ∂

m
ξ Ẽ2,2(0, 0, δ) = 0 if l + m ≤ 2 and ∂lλ∂

m
ξ Ẽ3,1(0, 0, δ) = 0 if l + m ≤ 3 for all

δ ∈ [0, δ0).

Remark 4.2. When applying Proposition 4.1, we will discuss only loosely the constraint
on the smallness of λ. Indeed, we already know from Proposition 3.7 that roots of E in a
given compact domain of the complex plane can be made uniformly close to roots of EKdV

by taking δ small thus the amplitude of the former is essentially slaved to the size of (ξ, δ).

Proof. Recall from Proposition 3.7 that, after a suitable renormalization, in a sufficiently
small neighborhood N1 of the origin λ = 0 the Evans function expands as

E(λ, ξ, δ) = EKdV(λ, ξ) + δE1(λ, ξ) + δ2E2(λ, ξ, δ)

for sufficiently small δ > 0. Now by using the fact that for all δ > 0 the dimension of
the manifold of KdV-KS periodic wave is 2 (indeed it is in one to one correspondence
with a two dimensional submanifold of the KdV periodic waves if δ is small enough), one
proves (see [Se] for more details) that for all δ > 0, E(λ, ξ, δ) expands, now with respect to
(λ, ξ) ≈ (0, 0), as

E(λ, ξ, δ) = a(δ)λ2 + b(δ)λξ + c(δ)ξ2 + P3(λ, ξ, δ) + E4(λ, ξ, δ),

14As in Proposition 3.7, by equivalence we mean that the functions are equal up to some non-vanishing
multiplicative factor, which clearly preserves algebraic multiplicity of the zeros.
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where, by choosing the profile uδ to be sufficiently regular in δ, and hence δ0 sufficiently
small, a, b, c : (0, δ0)→ C are Cr functions of δ and P3(λ, ξ, δ) a homogeneous polynomial of
degree 3 with respect to (λ, ξ) for all δ and Cr with respect to δ ∈ [0, δ0) (δ0 small enough).
The function E4 is analytic with respect to (λ, ξ) ∈ N1×N2, where N2 ⊂ R is a sufficiently
small neighrohood of ξ = 0, and Cr with respect to δ ∈ [0, δ0) so that ∂lλ∂

m
ξ E4(0, 0, δ) = 0

for all δ > 0 and l + m = 3. Furthermore, since for each fixed δ the function E(λ, ξ, δ)
is clearly real valued for λ ∈ R and ξ ∈ Ri, it follows that the functions a and c are real
valued, while the function b has range in Ri. Next, letting δ → 0, one finds

a(0) = b(0) = c(0) = 0, EKdV(λ, ξ) = P3(λ, ξ, 0) + E4(λ, ξ, 0).

Hence, E now expands as

E(λ, ξ) = δ
(
a0λ

2 + ib0λξ + c0ξ
2
)

+ EKdV(λ, ξ) + δ2E2,2(λ, ξ, δ) + δE3,1(λ, ξ, δ),

for some constants a0, b0, c0 ∈ Ri, where, for all δ ∈ [0, δ0), ∂lλ∂
m
ξ E2,2(0, 0, δ) = 0 for all

l +m ≤ 2 and ∂lλ∂
m
ξ E3,1(0, 0, δ) = 0 for all l +m ≤ 3.

Note that the principal part of EKdV in its Taylor expansion with respect to (λ, ξ)
about (0, 0) is a homogeneous polynomial of degree 3. Restricting to |(λ, ξ)|C×R � 1, the
Weierstrass Preparation Theorem yields an expansion for EKdV of the form

EKdV(λ, ξ) = Γ(λ, ξ)(λ− iα1(ξ)ξ)(λ− iα2(ξ)ξ)(λ− iα3(ξ)ξ)

where Γ is a real-valued analytic function defined in a sufficiently small neighborhood of
the origin in C × R such that Γ(0, 0) 6= 0 and the numbers iαj(ξ)ξ are the roots of the
associated Evans function EKdV(·, ξ) for the linearized KdV equation; see also (1.3). Then,
the spectral problem E = 0 is equivalent, if λ, ξ, δ are sufficiently small, to Ẽ = 0 with

(4.1)
Ẽ(λ, ξ, δ) = δγ

(
λ2 + ib̃0λξ + c̃0ξ

2
)

+ (λ− iα1(ξ)ξ)(λ− iα2(ξ)ξ)(λ− iα3(ξ)ξ)

+ δ2Ẽ2,2(λ, ξ, δ) + δẼ3,1(λ, ξ, δ),

for some constants b̃0, c̃0 ∈ R and where Ẽi,j share the same properties than Ei,j and γ ∈ R∗.
Finally, notice that

λ2 + ib̃0λξ + c̃0ξ
2 = (λ− iβ0

1ξ)(λ− iβ0
2ξ),

for some constants β0
k, k = 1, 2, that are either real or complex conjugates. Inserting this

into (4.1), we have proved that in a sufficiently small neighborhood of (λ, ξ, δ) = (0, 0, 0),
the spectral problem is equivalent, up to a non vanishing function analytic in (λ, ξ) and Cr

with respect to δ ∈ [0, δ0), to

Ẽ(λ, ξ, δ) =

3∏
j=1

(λ− iαj(ξ)ξ) + γδ

2∏
k=1

(λ− iβ0
kξ) + δ2Ẽ2,2(λ, ξ, δ) + δẼ3,1(λ, ξ, δ),

with, for all δ > 0, ∂lλ∂
m
ξ Ẽ2,2(0, 0, δ) = 0 if l+m ≤ 2 and ∂lλ∂

m
ξ Ẽ3,1(0, 0, δ) = 0 if l+m ≤ 3.

This concludes the proof of the proposition.
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Remark 4.3. The real numbers αj(0) and β0
k in the above Proposition can be recognized

as the characteristic speeds of the averaged Whitham modulation systems for the KdV and
KdV-KS equaitons, respectively, while the constant γ is related to the relaxation dynamics
associated with sending δ → 0 in the averaged Whitham modulation system associated with
the KdV-KS equation15 . In the next section, we will explore this insightful connection in
more detail. Besides, there, we numerically evaluate these various numbers. We note,
however, that the analysis in the current section is independent of any knowledge of this
connection.

Given that Corollary 3.10 provides stability in Zone 1 of Figure 4.1, we restrict our
attention now to a small neighborhood of (ξ, δ) = (0, 0). We use the above asymptotic
expansion of the periodic Evans function and split the neighborhood of the origin into three
regions on which we apply different arguments; see Figure 4.1 for a pictorial description.
Our first objective is to prove an extension of expansion (1.4)

λ(ξ, λ0, δ)
δ/ξ→0

= λ0 + δλ1(ξ, λ0) +O(δ2).

uniform in both Zones 1 and 2, with λ1(ξ, λ0) converging, as (ξ, λ0) → (0, 0), to one of
three possible limits, depending on the spectral curve followed by (ξ, λ0). This shall extend
stability up to Zone 2 provided the slope of the line boundary C = |ξ|/δ is large enough. In
a second step, we extend this stability by a non-crossing argument to Zone 3, a disc sector
C−1|ξ| ≤ δ ≤ C|ξ|, |(ξ, δ)| ≤ ηC , provided ηC > 0 is small enough (depending on C). Since
we already now that there is no crossing at the origin, we only need to exclude crossing of
non-zero eigenvalues of Lξ through the imaginary axis. Finally, we need to prove stability
in the remaining sector |ξ|/δ ≤ C, corresponding to Zone 4 in Figure 4.1, provided C is
large enough. To this purpose, we benefit from the fact that, in the process of handling
Zone 1, we prove that (A1)-(A3) imply a finite set of conditions, which coincide with the
subcharacteristic conditions identified in [NR2], and prove that these conditions yield a
regular eigenvalue expansion as (|ξ|/δ, δ)→ (0, 0) implying that, up to choosing δ0 smaller,
there exist C > 0 and θ > 0 such that, for all |ξ| ≤ C δ, <(λ(ξ, λ0, δ)) ≤ −θ ξ2/δ (whatever
the choice of the corresponding λ0). In carrying out this intricate three-regions proof, we
elucidate the role of the subcharacteristic conditions, conjectured in [NR2], by proving that
they imply “low-frequency” stability while being implied by (A1)-(A3).

Let us start from the rescaled, reduced Evans function found in Proposition 4.1,

(4.2) Ẽ(λ, ξ, δ) =

3∏
j=1

(λ− iαj(ξ)ξ) + γδ

2∏
k=1

(λ− iβ0
kξ) + δ2Ẽ2,2(λ, ξ, δ) + δẼ3,1(λ, ξ, δ)

where γ ∈ R is constant, the β0
k are real or complex conjugate constants, and αj(ξ) ∈ R.

Notice that since the spectral curves for the linearized KdV equation obey the symmetry
λ(−ξ) = λ̄(ξ), it follows that the αj are even functions of ξ. Furthermore, letting ξ → 0 in

15In Section A.2 we provide an explicit formula for γ; see Remark A.1
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Figure 2: Domains in the (|ξ|, δ) plane where it is proved that there are no unstable eigen-
values. The middle sector is described by inequalities C−1|ξ| ≤ δ ≤ C|ξ|, |(ξ, δ)| ≤ ηC with
C � 1 then ηC � 1. Stability in Zone 1 corresponds to a rigorous validation of expansions
as carried out in [BN] (Corollary 3.10). Zone 2 is handled by providing an extension of the
previous expansion (Lemma 4.4). The study of Zone 1 also provides that the subcharac-
teristic conditions (S1), (S2), (S3) are implied by (A1), (A2), (A3). In turn, the previous
subcharacteristic conditions yield that in Zone 3 no eigenvalue can cross the imaginary axis,
thus no unstable eigenvalue appears there (Lemma 4.6). At last, in Zone 4, a different kind
of expansion is obtained from (S1), (S2), (S3) and proved to yield stability (Lemma 4.7).
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αj(ξ) one obtains αj(0) = α0
j , j = 1, 2, 3, where the α0

j are the eigenvalues of the Whitham
modulation system for Korteweg-de Vries equation: see [BrJ, BrJK, JZB, JZ1] for details.
It follows that if the period X ∈ W of the underlying wave uδ belongs to the set P, i.e. if
X satisfies conditions (A1)-(A3), then the α0

j are distinct and, without loss of generality,
obey the ordering

(4.3) α0
1 < α0

2 < α0
3.

We carry out now our first step that consists in extending (1.4). Actually we only need to
do so for 0 < δ ≤ C−1|ξ|, |ξ| < η, provided η, C−1 > 0 are sufficiently small. This is the
content of the following lemma.

Lemma 4.4. Let X ∈ W satisfy (A1) and (A2). Consider the Evans function E defined
about an X-periodic traveling wave solution of the KdV-KS equation (1.1). Then there exist
constants C0, η0 > 0 and M0 > 0 such that for all 0 ≤ δ ≤ C−1

0 |ξ| and |ξ| ≤ η0, there are
exactly three roots {λk(ξ, δ)}k=1,2,3 of the associated Evans function E(λ, ξ, δ) with |λ| ≤M0.
Moreover, these roots are smooth functions of ξ ∈ (−η0, η0) and δ/ξ ∈ (−ε0, ε0) and expand,
for k = 1, 2, 3 as

λk(ξ, δ) = iαk(ξ)ξ − γδ
∏2
j=1(αk(ξ)− β0

j )∏
j 6=k(αk(ξ)− αj(ξ))

+O(δξ),

<(λk(ξ, δ)) = δAk +O(δξ) with Ak = −γ
∏2
j=1(α0

k − β0
j )∏

j 6=k(α
0
k − α0

j )

when |(ξ, δ/ξ)| → 0. Moreover, one has Ak < 0 for all k = 1, 2, 3 if and only if the following
conditions are satisfied:

(S1) β0
1 , β

0
2 ∈ R and β0

1 6= β0
2 ;

(S2) α0
1 < β0

1 < α0
2 < β0

2 < α0
3 (once we have fixed β0

1 < β0
2);

(S3) γ > 0.

In particular,

• if (S1)-(S3) hold then, there exist η1(X) > 0, C0(X) > 0 and θ0(X) > 0 such that,
provided δ0 is small enough, for a corresponding X-periodic wave uδ, δ ∈ [0, δ0), for
all δ ≤ C−1

0 |ξ|,
σ(Lξ[uδ]) ∩B(0, η1) ⊂ { λ | <(λ) ≤ −θ0δ } .

• condition (A3) implies conditions (S1)-(S3).

Remark 4.5. In what follows, the conditions (S1), (S2), and (S3) will be referred to as
“the subcharacteristic conditions”: this terminology will be justified in Section 4.2 below
by discussing their formal derivation in [NR2]. There, we will recall the results of [NR2]
that the β0

j are the limits, as δ goes to 0, of the characteristics of the first order averaged
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Whitham modulation equations for (1.1). Hence, condition (S1) above simply states that
the Whitham modulation system for (1.1), derived for fixed δ > 0, about the underlying
wave is uniformly strictly hyperbolic in the limit δ → 0. Note that hyperbolicity of this
system, corresponding to the requirement that β0

j ∈ R, is a well-known necessary condition
for spectral stability to weak large-scale perturbations; see [Se, NR2]. We note furthermore
that the condition (S1) is equivalent to the spectral assumption (H2) necessary to invoke
the nonlinear stability theory of [BJNRZ1].

Proof. Let r ≥ 3 be a fixed positive integer and let δ0 > 0 be sufficiently small that the
underlying wave profile uδ is at least a Cr function of δ ∈ [0, δ0). As described above, for
(|λ|, |ξ|, δ) sufficiently small the equation E(λ, ξ, δ) = 0 is equivalent to

(4.4)
3∏
j=1

(λ− iαj(ξ)ξ) + γδ
2∏

k=1

(λ− iβ0
kξ) + δ2Ẽ2,2(λ, ξ, δ) + δẼ3,1(λ, ξ, δ) = 0.

Now, setting δ = δ̄ξ, λ = λ̄ξ and dividing (4.4) by ξ3 yield the equation

(4.5) ẽ(λ̄, ξ, δ̄) =
3∏
j=1

(λ̄− iαj(ξ)) + γδ̄
2∏

k=1

(λ̄− iβ0
k) + ξẽ2,2(λ̄, ξ, δ̄) + ξẽ3,1(λ̄, ξ, δ̄) = 0.

with ẽ2,2 = ξ−2δ̄2Ẽ2,2(λ̄ξ, ξ, δ̄ξ) and ẽ3,1 = ξ−3δ̄Ẽ3,1(λ̄ξ, ξ, δ̄ξ) analytic functions with re-
spect to λ̄ and Cr with respect to ξ and δ̄ near the origin. By comparing polynomial
growth in λ̄, it follows that there exists constants η1,M > 0, such that if |δ̄|+ |ξ| < η1 then
|λ̄| ≤M <∞.

Now, letting δ̄, ξ → 0 in (4.5) one finds that necessarily

ẽ(λ̄, 0, 0) =
3∏
j=1

(λ̄− iα0
j ) = 0.

Since X satisfies condition (A2), one has ∂λ̄ẽ(iα
0
j , 0, 0) 6= 0. Thus, the function ẽ being

analytic with respect to λ̄ and Cr with respect to δ̄, ξ, one shows, by applying to (4.5) a
combination of a Cauchy counting argument and the implicit function theorem in a neigh-
borhood of α0

j , that there exist, for ξ, δ̄ sufficiently small, exactly three roots {λ̄j(ξ, δ̄)}j=1,2,3

of (4.5) and that they are Cr functions of ξ and δ̄ and can be expanded as

(4.6) λ̄j(ξ, δ̄) = iαj(ξ)− γδ̄
(αj(ξ)− β0

1)(αj(ξ)− β0
2)∏

k 6=j(αj(ξ)− αk(ξ))
+O(δ̄ξ).

Returning to the original variables via λj(ξ, δ) = ξλ̄j(ξ, δ̄), we obtain the desired regularity
and expansions for the critical eigenvalues λj , j = 1, 2, 3.

Recalling that the constants β0
1 , β

0
2 are either real or complex conjugate, we deduce by

taking real parts

(4.7) <(λj(ξ, δ)) = δ Aj +O(δξ2) with Aj = −γ
(α0

j − β0
1)(α0

j − β0
2)∏

k 6=j(α
0
j − α0

k)
.
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By taking limits (ξ, λ0)→ 0, along λ0 ∈ σ(LKdV,ξ) \ {0}, we also derive

max
j=1,2,3

Aj ≤ Ind(X)

hence proving that condition (A3) yields maxj=1,2,3Aj < 0. Since, it follows from elemen-
tary computations that conditions (S1)-(S3) imply maxj=1,2,3Aj < 0, the only thing left is
the proof of the converse.

Let us assume that maxj=1,2,3Aj < 0 and prove that the conditions (S1)-(S3) are sat-
isfied. First, we suppose that β0

1 , β
0
2 are complex conjugates. In this case our assumption

implies for any j that γ 6= 0 and (α0
j − β0

1)(α0
j − β0

2) = |α0
j − β0

1 |2 > 0, hence

sgn (Aj) = −sgn (γ)sgn (
∏
k 6=j

(α0
j − α0

k)).

Since α0
1 < α0

2 < α0
3, it follows that, contrary to our hypothesis, the Aj can not have all the

same sign. Thus, it must be the case that the β0
j are real and distinct, verifying condition

(S1). Taking without loss of generality β0
1 < β0

2 , it is now an easy computation to show
that the signs of (Aj)j=1,2,3 are the same if and only if the condition (S2) is satisfied. In
this case, one has sgn (Aj) = −sgn (γ) for j = 1, 2, 3 hence condition (S3) must hold. This
verifies that conditions (S1), (S2), and (S3) hold provided maxj=1,2,3Aj < 0 and completes
the proof of the lemma.

To emphasize the crucial role of conditions (S1)-(S3) in determining the stability in
a small neigborhood of the origin (ξ, δ, λ) = (0, 0, 0), we go on assuming the previous
conditions instead of stronger condition (A3). We carry out now our second step, proving
that these conditions imply the absence of small imaginary eigenvalues in C−1|ξ| ≤ δ ≤ C|ξ|,
|(ξ, δ)| ≤ ηC provided ηC is small enough.

Lemma 4.6. Let X ∈ W and assume the conditions (A1), (A2), (S1), (S2), and (S3)
hold. Then for any C > 1, there exists a constant ηC > 0 such that, in a neighborhood of
the origin, there is no crossing through the imaginary axis of any root of E(·, ξ, δ) in the
parameter region defined by C−1|ξ| ≤ δ ≤ C|ξ|, |(ξ, δ)| ≤ ηC . More precisely, for (ξ, δ) in
this region,

• if ξ = 0, then δ = 0 and the only root in a neighborhood of the origin is λ = 0, which
has algebraic multiplicity three;

• if ξ 6= 0, then, in some neighborhood of the origin, there is no imaginary root.

Proof. Let C > 1 be given. We start by choosing ηC small enough so that we may indeed
replace E with Ẽ. The statement about the case ξ = 0 is trivial, but, combined with a
root counting argument, it implies a non-crossing through zero provided that ηC > 0 is
sufficiently small.
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Let us now focus on the case ξ 6= 0 now. Suppose there exist (ξ∗, δ∗) with ξ∗ 6= 0,
|(ξ∗, δ∗)| ≤ ηC and δ∗ ∈ [C−1|ξ∗|, C|ξ∗|] and a small real number τ∗ such that Ẽ(iτ∗, ξ∗, δ∗) =
0. Then, taking real and imaginary parts in (4.2) yields the system of equations

(4.8)

3∏
j=1

(τ∗ − αj(ξ∗)ξ∗) = (δ∗)2=
(
Ẽ2,2(iτ∗, ξ∗, δ∗)

)
+ δ∗=

(
Ẽ3,1(iτ∗, ξ∗, δ∗)

)
,

2∏
j=1

(τ∗ − β0
j ξ
∗) = (δ∗)2<

(
Ẽ2,2(iτ∗, ξ∗, δ∗)

)
+ δ∗<

(
Ẽ3,1(iτ∗, ξ∗, δ∗)

)
.

Dividing the first of these equations by (ξ∗)3 and using the facts that ∂lλ∂
m
ξ Ẽ2,2(0, 0, δ) = 0

for all l+m ≤ 2, ∂lλ∂ξẼ3,1(0, 0, δ) = 0 for all l+m ≤ 3, and that δ∗

ξ∗ is uniformly bounded in
the region we are working in, it follows that given any ε > 0, by possibly choosing ηC > 0
smaller than above, there exists a j ∈ {1, 2, 3} such that∣∣∣∣τ∗ξ∗ − α0

j

∣∣∣∣ < ε

2
.

Similarly, by dividing the second equation in (4.8) by (ξ∗)2 it follows that for any ε > 0, by
possibly choosing ηC > 0 above even smaller, that there exists a k ∈ {1, 2} such that∣∣∣∣τ∗ξ∗ − β0

k

∣∣∣∣ < ε

2
.

From condition (S2), we know that we may apply the above arguments with

ε = min
(j,k)∈{1,2,3}×{1,2}

|α0
j − β0

k|

and thus obtain a contradiction. This achieves the proof of the lemma.

At last, under the same conditions as in the previous lemma, we investigate the region
|ξ| ≤ C−1δ, 0 < δ ≤ δ0. Note that for fixed δ > 0, this is the region that contains small
Floquet parameters ξ. Hence this is where we should read for a given ”near-KdV” wave
whether are satisfied conditions (H1), (H2), (D2), (D3).

Lemma 4.7. Let X ∈ W satisfy conditions (A1), (A2), (S1), (S2) and (S3). Provided
C > 0 is large enough and δ0 > 0 is small enough, then, in some neighborhood of the
origin, for any (ξ, δ) such that 0 ≤ |ξ| ≤ C−1δ and 0 < δ ≤ δ0, there are exactly three roots
{λj(ξ, δ)}j=1,2,3 of the associated Evans function E(·, ξ, δ), these roots are Cr functions of
(δ, ξ/δ) and expand as

λ1(ξ, δ) = iβ0
1 ξ +B1

ξ2

δ
+O

(
δ|ξ|+ |ξ|

3

δ2

)
, <(λ1(ξ, δ)) = B1

ξ2

δ
+O

(
|ξ|2 +

|ξ|3

δ2

)
,

λ2(ξ, δ) = iβ0
2 ξ +B2

ξ2

δ
+O

(
δ|ξ|+ |ξ|

3

δ2

)
, <(λ2(ξ, δ)) = B2

ξ2

δ
+O

(
|ξ|2 +

|ξ|3

δ2

)
,

λ3(ξ, δ) = B3 δ + o(δ), <(λ3(ξ, δ)) = B3 δ + o(δ)
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as |(δ, ξ/δ)| → 0, with

Bj =

∏3
j=1(β0

2 − α0
j )

γ
∏
k 6=j(β

0
j − β0

k)
, j = 1, 2, and B3 = −γ.

Moreover
max
j=1,2,3

Bj < 0.

In particular, there exist η1(X) > 0, C0(X) > 0 and θ0(X) > 0 such that, provided δ0 is
small enough, for a corresponding X-periodic wave uδ, δ ∈ (0, δ0), conditions (H1), (H2)
and (D3) hold, and, for all |ξ| ≤ C−1

0 δ,

σ(Lξ[uδ]) ∩B(0, η1) ⊂
{
λ
∣∣∣ <(λ) ≤ −θ0

|ξ|2
δ

}
.

Note that the expansions of the previous lemma preclude smooth eigenvalue expansions
with respect to (ξ, δ) in a neighborhood of the origin.

Proof. Let C > 1 be given. We choose δ0 small enough so that we may replace E with Ẽ.
First, dividing (4.2) by δ3 and setting λ = λ̄δ, ξ = ξ̄δ yields the equation

(4.9)
3∏
j=1

(λ̄− iαj(δξ̄)ξ̄) + γ
2∏

k=1

(λ̄− iβ0
k ξ̄) + δẽ2,2(λ̄, ξ̄, δ) + δẽ3,1(λ̄, ξ̄, δ̄) = 0,

with ẽ2,2 = δ−2Ẽ2,2(λ̄δ, ξ̄δ, δ) and ẽ3,1 = δ−3Ẽ3,1(λ̄δ, ξ̄δ, δ) analytic with respect to (λ̄, ξ̄)
and Cr with respect to δ. Then, for |(δ, ξ̄)| sufficiently small, one obtains by comparing
polynomial growth a uniform bound on possible roots λ̄. Now a root counting argument
yields that there are exactly three roots, two λ̄1, λ̄2 lying in an o(1)-neighborhood of the
origin, one λ̄3 contained in an o(1)-neighborhood of −γ, when (δ, ξ̄) → 0. Undoing the
renormalization yields already the expected expansion of λ3 and that the two other roots
belong to an o(δ)-neighborhood of the origin when (δ, ξ̄)→ 0.

Let us choose a neighborhood of the origin small enough so that it contains only the
two roots λ1 and λ2 and focus on this neighborhood. We expect, for j = 1, 2, not only the
known λj = o(δ) but λj = O(ξ). In order to get this, we note that (4.9) implies

λ̄2
j =

O(|λ̄j | |ξ̄|+ |ξ̄|2)

λ̄j + γ +O(|ξ̄|)
= O(|λ̄j | |ξ̄|+ |ξ̄|2), j = 1, 2,

so that a growth comparison provides λ̄2
j = O(|ξ̄|2), j = 1, 2. To go further, we replace the

previous eigenvalue scaling by λ = λ̃ξ, or equivalently λ̄ = λ̃ξ̄, and rewrite (4.9) as

(4.10) ξ̄
3∏
j=1

(λ̃− iαj(δξ̄)) + γ
2∏

k=1

(λ̃− iβ0
k) + δ ˜̃e2,2(λ̃, ξ̄, δ) + δξ̄ ˜̃e3,1(λ̃, ξ̄, δ̄) = 0,
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with ˜̃e2,2 = (δξ̄)−2 ˜̃E2,2(λ̃ξ̄δ, ξ̄δ, δ) and ˜̃e3,1 = (δξ̄)−3Ẽ3,1(λ̃ξ̄δ, ξ̄δ, δ). Then, for j = 1, 2,
applying the implicit function theorem in a neighborhood of (λ̃, ξ̄, δ) = (iβj , 0, 0) yields the
relevant regularity and the expected expansion

λ̃j(ξ̄, δ) = iβ0
j +Bj ξ̄ +O

(
δ + |ξ̄|2

)
.

Then, for j = 1, 2, by using that <λ̃j is an odd function of ξ̄, one obtains

<(λ̃j(ξ̄, δ)) = Bj ξ̄ +O
(
δ|ξ̄|+ |ξ̄|2

)
.

Moreover, by an elementary investigation, the sign of the Bj is deduced from (S1)-(S3).
Condition (D3) and the conclusion on the spectrum σ(Lξ[uδ]) directly follow from the

expansions. In turn it is known that (D3) implies (H1); see [NR2, Lemma 2.1]. At last,
provided δ0 is small enough, condition (H2) follows from (S1) and, for j = 1, 2, βj =
β0
j +O(δ).

Proof of Theorem 1.4. By gathering the results of Corollary 3.10 and Lemmas 4.4, 4.74.6 and
4.7, we achieve the proof of Theorem 1.4. Indeed, one may complete the explicit bounds on
the real part of the spectrum contained in Corollary 3.10 and Lemmas 4.4 and 4.7 by noting
that the non-crossing argument of Lemma 4.6 combined with a uniformity argument and a
comparison on boundaries where one may apply either Lemma 4.4 or Lemma 4.7 yields that,
provided that C0 is large enough and δ0 is sufficiently small, for a corresponding X-periodic
wave uδ, δ ∈ (0, δ0), there exists θ0(X, δ) > 0 such that, for all C−1

0 δ ≤ |ξ| ≤ C0δ,

σ(Lξ[uδ]) ∩B(0, η1) ⊂ { λ | <(λ) ≤ −θ0 } .

Hence (D3) follows from Corollary 3.10 for large λ, and, for small λ, from Lemmas 4.7, 4.7
and 4.4, and Corollary 3.10 respectively for |ξ| ≤ C−1

0 δ, C−1
0 δ ≤ |ξ| ≤ C0δ, C0δ ≤ |ξ| ≤ η1

and η1 ≤ |ξ| ≤ π/X. Uniformity of δ0( · ) is deduced from a close inspection of the proof.�

Before we continue, we emphasize that it follows from Lemmas 4.4, 4.6 and 4.7 that,
when (A1) and (A2) hold, the subcharacteristic conditions (S1), (S2), and (S3) are suffi-
cient for the diffusive spectral stability under slow low-Floquet perturbations16. Given this
role and though we know from Lemma 4.4 that they are implied by (A1)-(A3), we wish to
provide an independent numerical verification of the subcharacteristic conditions (S1)-(S3)
that are independent of the numerical calculations in [BN] or, equivalently, independent of
the numerical investigation of condition (A3). In the process, we will justify our termi-
nology in refering to (S1)-(S3) as the subcharacteristic conditions. The terminology comes
directly from the singular version of the Whitham modulation theory developped in [NR2].
Actually, this is precisely on the basis of the following formal discussion that the subcharac-
teristic conditions (S1)-(S3) were first conjectured to play a major in the slow/small-Floquet
stability of ”near-KdV” waves [NR2].

16That is corresponding to |λ| ≤ η1 and |ξ| ≤ η1, with η1 sufficiently small independently of δ.
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4.2 Whitham’s modulation equations

It is now a classical result that Whitham’s modulation equations for periodic waves of
conservation laws provide an accurate description of the spectral curves at the origin, i.e.
of the stability of a given wave train to weak large-scale perturbations Let us mention here
the work [Se] in the general case, [NR1] for shallow water equations, [NR2] for KdV-KS
either for fixed δ > 0 or in the KdV limit and [JZB, JZ1] for the generalized Korteweg-
de Vries equation. When considering (1.1) in the singular limit δ → 0+, however, even
the formal derivation of such a connection is more involved. In particular, we note that
it is not sufficient to simply let δ → 0 in the modulation equations derived for (1.1) with
δ > 0 fixed. Instead, in this singular limit the introduction of a new set of modulation
equations is required [NR2]. In this section, we recall the derivation of the appropriate
modulation equations in this singular limit and emphasize in which way the previous analysis
demonstrates their connection with the spectrum at the origin of the linearized operator
about a given wave train. In particular, the structure of the modulation equations will
justify our terminology referring to conditions (S1), (S2), and (S3) as the “subcharacteristic”
conditions.

Recall that the KdV-KS equation reads

(4.11) ∂tu+ ∂x

(
u2

2

)
+ ∂3

xu+ δ(∂2
xu+ ∂3

xu) = 0.

Reproducing [NR2], we derive the Whitham modulation equations about a given periodic
wave train of (4.11) in the singular limit δ → 0+. To this end, we introduce the slow
coordinates (X,T ) = (εx, εt), ε� 1, set δ = δ̄ε with δ̄ ∈ (0,∞), and note that in the slow
(X,T ) variables equation (4.11) reads

(4.12) ∂Tu+ ∂X

(
u2

2

)
+ ε2∂3

Xu+ δ̄(ε2∂2
Xu+ ε4∂4

Xu) = 0.

Following [Se], we search for an expansion of u, solution of (4.12), in the form

(4.13) u(X,T ) = U (0)

(
φ(X,T )

ε
;X,T

)
+ εU (1)

(
φ(X,T )

ε
,X, T

)
+O(ε2)

with U (i)(y;X,T ) 1-periodic in y. Notice then that the local period of oscillation of u0 in
the variable y is ε/∂Xφ, where we assume the unknown phase a priori satisfies the condition
∂Xφ 6= 0. By inserting this ansatz into (4.12) and collecting O(ε−1) terms, one finds

(4.14) Ω∂yU
(0) + κU (0)∂yU

(0) + κ3∂3
yU

(0) = 0,

where Ω = ∂Tφ and κ = ∂Xφ. Equation (4.14) is recognized as the traveling wave ODE
for the KdV equation (2.1) in the variable κy with wave speed −Ω/κ. As such, equation
(4.14) has a solution provided Ω = −κc0(u0, κ, k) where now u0, κ and k are considered as
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functions of the slow variables(X,T ). In this case, the solutions of (4.14) can be expressed
as

(4.15)
U (0)(y,X, T ) = U0(y, u0, κ, k) = u0 + 12k2κ2cn2(κy, k),

c0(u0, κ, k) = u0 + 8κ2k2 − 4κ2.

In what follows, we derive a system of “modulation equations” describing the evolution of
(u0, κ, k) as functions of the slow variables (X,T ). One such equation comes from noticing
that the compatibility condition ∂Tκ = ∂XΩ yields the equation

(4.16) ∂Tκ+ ∂X(κc0(u0, κ, k)) = 0

for the local wave number κ.
To find other modulation equations we continue the above expansion and note that

collecting the O(1) terms yields an equation of the form LKdV,0U
(1) = . . . where LKdV,0 is

the operator describing the linearized evolution of the KdV equation about U (0). Since the
kernel of the adjoint of LKdV,0 is spanned by 1 and U (0), solvability conditions and thus
the needed extra equations will be obtained by averaging in y against 1 and U (0) the O(1)
equation. Yet this equation being of the form

(4.17) ∂TU
(0) + ∂X

(
(U (0))2

2

)
= ∂y (· · · ) .

it follows, averaging it over a single period in y, that

(4.18) ∂T 〈U0(·;u0, κ, k)〉+ ∂X

〈
U2

0

2
(·, u0, κ, k)

〉
= 0

must be satisfied, where here 〈f〉 :=
∫ 1

0 f(y)dy. To obtain the other solvability condition in
an easy way, let us first remark, following the method used in [JZ1] to derive modulations
equations for the generalized Korteweg-de Vries equation, that by multiplying (4.11) by u
we obtain an equation of the form

(4.19) ∂t

(
u2

2

)
+ ∂x

(
u3

3
− 3(∂xu)2

2

)
= δ

(
(∂xu)2 − (∂2

xu)2
)

+ ∂2
x(· · · ).

This implies that equation (4.17) multiplied by U0 yields

(4.20) ∂T

(
U2

0

2

)
+ ∂X

(
U3

0

3
− 3(U ′0)2

2

)
= δ̄

(
(U ′0)2 − (U ′′0 )2

)
+ ∂y(· · · ).

Averaging (4.20) over a period in y then provides the balance law

(4.21) ∂T

〈
U2

0

2

〉
+ ∂X

〈
U3

0

3
− 3(U ′0)2

2

〉
= δ̄

(
〈(U ′0)2〉 − 〈(U ′′0 )2〉

)
.
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Together, the homogenized system (4.16,4.18,4.21) forms a closed system of three conserva-
tion laws with a source term, called the averaged Whitham modulation system, describing
the evolution of the quantities (u0, κ, k) as functions of the slow variables (X,T ).

Again repeating [NR2], let us now comment on the previous system. As a first step in
analyzing the modulation system (4.16,4.18,4.21), notice that the steady states are given
by points (u?0, κ

?, k?) ∈ R3 such that〈
(U ′0)2( · , u?0, κ?, k?)

〉
=
〈
(U ′′0 )2( · , u?0, κ?, k?)

〉
,

where U0 is given as in (4.15), i.e. U0 corresponds to periodic traveling waves of (4.11)
in the limit δ → 0. Indeed, by Proposition 2.4, these are simply the cnoidal wave trains
of the KdV equation that can be continued as solutions of (1.1). Now, letting δ̄ → 0,
corresponding to large scale perturbations with frequency/wave number of order ε � δ,
in the homogenized system (4.16,4.18,4.21) yields the Whitham averaged system for the
Korteweg-de Vries equation; see [W, JZ1]. As stated previously, the numerical results in
Figure 3 in Section 4.3 below demonstrate that for all KdV cnoidal wave trains considered
here the Whitham averaged system for (2.1) is strictly hyperbolic with eigenvalues

α1(u0, κ, k) < α2(u0, κ, k) < α3(u0, κ, k), ∀(u0, κ, k) ∈ R3.

Furthermore, in the limit δ̄ → ∞, corresponding to a relaxation limit and large scale
perturbations with frequency/wave number ε� δ we obtain the relaxed system

(4.22)
∂TG(k) + ∂X (G(k)c0(u0,G(k), k)) = 0,

∂T 〈U0(·;u0,G(k), k)〉+ ∂X

〈
U2

0

2
(·;u0,G(k), k)

〉
= 0,

where here κ = G(k) is given by the selection principal in Proposition 2.4. Notice that this
system may also be obtained directly from the Whitham averaged system of conservation
laws for the KdV-KS equation (1.1), derived in [NR2] for fixed δ > 0 as

∂Tκ+ ∂X(κcδ(M,κ)) = 0, ∂TM + ∂X

〈
U2
δ

2
(M,κ)

〉
= 0, M = 〈Uδ(M,κ)〉 ,

in the limit as δ → 0. It is now well established [Se, NR2] that a necessary condition for
spectral stability of periodic traveling waves under large scale perturbations is that system
(4.22) be hyperbolic, i.e. have only real eigenvalues. In our analysis from Section 4.1,
however, we assume the stronger condition that the modulation system (4.22) is strictly
hyperbolic with eigenvalues

(4.23) β1(u0, k) < β2(u0, k);

this corresponds precisely to condition (S1) in Lemma 4.4. It clearly follows that in con-
sidering only the relaxed hyperbolic system (4.22), obtained by simply letting δ → 0 in the
Whitham modulation equations for (1.1) derived for fixed δ > 0 that some information is
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lost: namely, in this particular limit we obtain no information regarding conditions (S2)
and (S3).

To understand the roles of conditions (S2) and (S3), we must consider rather the full
modulation system (4.16,4.18,4.21) derived in the singular limit δ → 0. For the sake of
clarity, let us write this system with the parameterization (κ,M,E) with M = 〈U〉 corre-
sponding to the spatial average of U over a period and E = 〈U2/2〉; see [JZB, JZ1] for a
discussion on such a parameterization of periodic wave trains of the KdV equation (2.1).

In this parameterization, the modulation system (4.16,4.18,4.21) recovers the form ob-
tained in [NR2]

(4.24) ∂Tκ−∂X(Ω(κ,M,E)) = 0, ∂TM +∂XE = 0, ∂TE+∂XQ(κ,M,E) = δ̄R(κ,M,E),

where Ω(κ,M,E) = −κc0(κ,M,E), Q = 〈U3
0 − 3(U ′0)2/2〉 and R = 〈(U ′0)2 − (U ′′0 )2〉. In

the context of relaxation theory it is a classical assumption to suppose that the condition
∂ER(κ?,M?, E?) 6= 0 is satisfied, ensuring that near the equilibrium state (κ?,M?, E?) the
equation E(κ,M,E) = 0 defines E implicitly in terms of (κ,M); in what follows, we assume
that this condition holds.

Under this assumption, the subcharacteristic condition (S3) can be easily interpreted.
Indeed, linearizing the modulation system (4.24) about the steady state (κ?,M?, E?) and
restricting to spatially homogeneous, i.e. X-independent, perturbations yields the equation

(4.25) ∂T κ̃ = 0, ∂T M̃ = 0, ∂T Ẽ = δ̄
(
∂ER

?Ẽ + dκ,MR
?(κ̃, M̃)

)
,

where R? = R(κ?,M?, E?). Considered as a constant coefficient equation in the slow
variables (X,T ), the dispersion relation of (4.25) is then given by

(4.26) λ2(λ− δ̄∂ER?) = 0.

From this, it is clear from our spectral analysis in Section 4.1 that the condition (S3) is
equivalent to ∂ER

? < 0. We note that this condition is a standard assumption in the
context of relaxation theory, and is equivalent to requiring that the manifold of solutions of
R(κ,M,E) = 0 is stable.

Furthermore, the dispersion relation (4.26) implies that two spectral curves bifurcate
from the origin as one allows the period of the perturbations to vary, corresponding to
stability or instability with respect to weak long-wavelength perturbations. It is a classical
result [W, Yo] that a necessary condition for the stability of the steady states of (4.24) to
such large-scale perturbations is given by the subcharacteristic condition

(4.27) α?1 ≤ β?1 ≤ α?2 ≤ β?2 ≤ α?3,

where here the α?j and β?j denote the functions α0
j and β0

j , respectively, evaluated at the
associated steady state. Notice that in our analysis from Section 4.1, however, we assume
the stronger condition that the inequalities in (4.27) are strict, corresponding precisely to
condition (S2).
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In summary, we have just reviewed how conditions (S1), (S2), and (S3) were introduced
in [NR2] as the strict subcharacteristic conditions for the relaxation type Whitham mod-
ulation system (4.24), derived from (1.1) in the singular limit δ → 0. As a byproduct
of the analysis, carried out in Section 4.1, of the exact role of conditions (S1)-(S3), our
present work has also rigorously validated the role of the modulation system (4.24) in the
determination of the presence of unstable spectrum near the origin for ”near KdV” waves.

4.3 Numerical computation of subcharacteristic conditions

To finish this section, we use the explicit connection to the singular Whitham modulation
system of [NR2], reviewed in Section 4.2, to provide an independent verification of the
conditions (S1)–(S3). In particular, we also rely on the parametrization of the “near-KdV”
wave trains of (1.1) described in Proposition 2.4. We recall, however, that, when (A1) and
(A2) hold, these subcharacteristic conditions follow directly from condition (A3), which
was numerically investigated in [BN], and that, without (A3), we may only conclude to
slow/small-Floquet spectral stability, which is insufficient to apply the recent analysis in
[BJNRZ1] that proves that any wave that satisfies (H1)-(H2) and (D1)-(D3) is nonlinearly
stable (in a suitable sense).

It is well known that the Whitham modulation equations for the KdV equation (2.1)
can be diagonalized by quantities referred to as Riemann invariants; see [W]. To describe
this diagonalization and introduce the appropriate set of Riemann invariants, we first recall
some properties concerning the parametrization of the KdV wave trains. To begin, notice
that traveling wave solutions of (2.1) are solutions of the form u(x, t) = u(x− ct) for some
c ∈ R, where the profile u(·) satisfies the equation

uu′ − cu′ + u′′′ = 0.

Integrating once, one finds that the profile u satisfies the Hamiltonian ODE

u′′ +
u2

2
− cu = a,

for some constant of integration a ∈ R, which can then be reduced to the form of a nonlinear
oscillator as

(4.28)
(u′)2

2
= q −W (u; a, c), W (u; a, c) =

u3

6
− cu

2

2
− au,

where again q denotes a constant of integration and W represents the effective potential
energy of the Hamiltonian ODE (4.28). On open sets of the parameter space (a, q, c) ∈ R3

the cubic polynomial q−W (u; a, c) has positive discriminant so that there exist real numbers
u1 ≤ u2 ≤ u3 such that

q −W (u; a, c) =
1

6
(u− u1)(u− u2)(u3 − u).
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By elementary phase plane analysis, it follows that for such (a, q, c) the profile ODE (4.28)
admits non-constant periodic solutions. Moreover, by identifying powers of u we find in this
parameterization that

(4.29) c =
u1 + u2 + u3

3
, a = −1

6
(u1u2 + u1u3 + u2u3), q =

u1u2u3

6
.

Using straightforward elliptic integral calculations, we find that the periodic solutions of
(4.28) can be written in terms of the Jacobi cnoidal function cn(x, k) as

(4.30) u(ξ) = u2 + (u3 − u2) cn2

(√
u3 − u1

3
ξ, k

)
, ξ = x− ct, k2 =

u3 − u2

u3 − u1
.

In particular, notice that all solutions of (2.1) are of form (4.30) up to a Galilean shift and

spatial translation. Letting X =
2π

κ
denote the period of the above wave train, it follows

again by standard elliptic function considerations that κ can be expressed as

(4.31) κ =
π

K(k)

√
u3 − u1

3
,

where here

(4.32) K(k) =

∫ 1

0

dx√
1− x2

√
1− k2x2

denotes the complete elliptic integral of the first kind.
Furthermore, in terms of this parameterization we note that

〈u〉 = u1 + 2(u3 − u1)
E(k)

K(k)
,

〈
u2

2

〉
= c〈u〉+ a,

where here 〈·〉 denotes the spatial average (in ξ) over a period X and

(4.33) E(k) =

∫ 1

0

√
1− k2x2

√
1− x2

dx

denotes the complete elliptic integral of the second kind.
With this preparation, we can introduce the Riemann invariants (ω1, ω2, ω3) for the KdV

equation (2.1), which are defined in terms of the ui as

ω1 =
u1 + u2

2
, ω2 =

u1 + u3

2
, ω3 =

u2 + u3

2
.

In terms of this parameterization, we have

u(ξ) = ω1 + β3 − ω2 + 2(ω2 − ω1) cn2

(√
2(ω3 − ω1)

3
ξ, k

)
, κ =

2π

K(k)

√
2(ω3 − ω1)

3
,

c =
ω1 + ω2 + ω3

3
, k2 =

ω2 − ω1

ω3 − ω1
, 〈u〉 = ω1 + ω2 − ω3 + 4(ω3 − ω1)

E(k)

K(k)
,〈

u2

2

〉
= c〈u〉+ a, a = −1

6
(2β1(ω2 + ω3 − ω1) + (ω1 + ω2 − ω3)(ω1 + ω3 − ω2))
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The Whitham modulation equations for the KdV equations can be diagonalized by the
Riemann invariants ωi, in the sense that they can be written as

∂Tωi + Vi(ω1, ω2, ω3)∂Xωi = 0,

where the characteristic velocities Vi are given explicitly by

Vi(ω1, ω2, ω3) =
∂ωi(κc)

∂ωiκ

or, alternatively, as Vi(ω1, ω2, ω3) = c + (∂ωi ln(κ)). Clearly, the characteristic velocities
Vi(ω1, ω2, ω3) correspond to the eigenvalues of the Whitham modulation equations for (2.1)
about the periodic traveling wave given in (4.30) associated with (ω1, ω2, ω3). To describe
these velocities more explicitly, we find it more convenient to parameterize the problem by
the variables ω1,∆ = ω3 − ω1 and k2 = (ω2 − ω1)(ω3 − ω1)−1. In terms of (ω1,∆, k

2),
an elementary calculation shows that the characteristic velocities Vi can be expressed as
Vi(ω1, ω2, ω3) = c+ ζi, where ζi = 2∆

3 bi(k) and

b1(k) =
k2K(k)

E(k)−K(k)
, b2(k) =

k2(1− k2)K(k)

(1− k2)K(k)− E(k)
, b3(k) =

(1− k2)K(k)

E(k)
,

with K(k), E(k) as in (4.32), (4.33) denoting elliptic integrals of the first and second kind.
In Figure 3 we plot the characteristic velocities in terms of the period X(k) of the underlying
KdV wave train. In particular, we see that for all k ∈ (0, 1) the characteristic velocities are
distinct, corresponding to satisfaction of (4.3) i.e. to strict hyperbolicity of the associated
Whitham modulation equation.

Next, we compute the eigenvalues of the relaxed Whitham modulation system (4.22),
which is also the limit as δ → 0 of the Whitham modulation system associated to (1.1)
for fixed δ > 0 [NR2]. Recall from Proposition 2.4 that we must restrict ourselves to those
cnoidal waves of form (4.30) such that the selection principle κ = G(k) holds. In terms
of the (ω1, k

2,∆) parameterization of the KdV Whitham system, this modulation system
restricted to the “near-KdV” wave trains discussed in Proposition 2.4 can be expressed as

(4.34) ∂Tκ+ κ∂Xc = 0, ∂T 〈u〉+ 〈u〉∂Xc+ ∂Xa = 0,

where

〈u〉 = β1 +

(
k2 − 1 + 4

E(k)

K(k)

)
∆, a = −1

6

(
3β2

1 + 2(k2 + 1)∆β1 − (k2 − 1)2∆2
)
,

and, recalling Proposition 2.4,

κ = G(k), ∆(k) =
3

2

(
K(k)G(k)

2π

)2

.

To compute the eigenvalues of this relaxed modulation system, using the Galilean invariance
of (2.1) we require 〈u〉 = 0, which is equivalent to requiring ω1 = −(k2 − 1 + 4E(k)

K(k))∆(k).
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This reduction thus leaves the elliptic modulus k as the only parameter of the problem. It is
then a lengthly but straightforward calculation to show that the eigenvalues β?i (k), i = 1, 2
of (4.34) are given by the roots of the polynomial equation

(4.35) A(k)λ2 −B(k)λ+ C(k) = 0,

where the coefficients are given by A(k) = G′(k),

B(k) = G′(k)

(
k2 − 1− k2 + 1

3
+

4E(k)

K(k)

)
∆(k)

−G(k)

[(
k2 − 1− k2 + 1

3
+

4E(k)

K(k)

)
∆(k)

]′
,

C(k) = −2G(k)∆(k)(2k2 − 1)

9

(
2k∆(k) + (k2 + 1)∆′(k)

)
.

Notice that the roots of (4.35) correspond to the eigenvalues β∗j considered earlier. In Fig-
ure 3 we have plotted the characteristic wave speeds {α∗i (X(k))}i=1,2,3 and {β∗j (X(k))}j=1,2

as functions of the period X(k) of the underlying wave train. From these numerics, it is
clear that the subcharacteristic conditions (S1) and (S2) are satisfied for all waves with
period X ≥ Xc, where the critical period is Xc ≈ 8. For X < Xc, condition (S2) is violated,
corresponding to a sideband (modulational) instability of the associated wave train. This
threshold is consistent with the one found in [BN]. Furthermore, since the low-frequency
stability conditions (S1)-(S3) are satisfied for all periods X ≥ Xc, we see also that the
upper stability boundary X ≈ 26.17 cannot be associated with a sideband instability, again
consistent with the observations of [BN].

Finally, we check the subcharacteristic condition (S3) and consider the spatially ho-
mogeneous perturbations (independent of the space variable). The Whitham’s equations
read

(4.36) ∂Tκ = 0, ∂T 〈u〉 = 0, ∂T

〈
u2

2

〉
= δ̄

(
〈(u′)2〉 − 〈(u′′)2〉

)
,

where u is defined by (4.30). In this setting, we use k,M = 〈u〉 and ∆ = u3 − u1 as
parameters. One thus has

κ =
π

K(k)

√
∆

3
,

〈
u2

2

〉
=
M2

2
− 1

6
P (k)∆2,

with P (k) = 1− k2 + 4(k2 − 2)E(k)/K(k) + 12(E(k)/K(k))2. Next, one can show that the
source term is written in a simpler form

R(k,M,∆) = δ̄
(
〈(u′)2〉 − 〈(u′′)2〉

)
= r(k,M,∆)

(
∆̄(k)−∆

)
,

with r(k,M,∆) > 0 and ∆̄ given by:

∆̄(k) =
21

20

2(k4 − k2 + 1)E(k)− (1− k2)(2− k2)K(k)

(−2 + 3k2 + 3k4 − 2k6)E(k) + (k6 + k4 − 4k2 + 2)K(k)
.
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Figure 3: Here, we plot the characteristic velocities {αj(X(k))}3j=1 and {βj(X(k))}2j=1 for
the Whitham system for Korteweg-de Vries equation and the relaxed Whitham’s system
(4.34), respectively, as functions of the period X(k) of the underlying wave train.
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Figure 4: Here, we zoom in on the largest eigenvalues α2,3(X(k)) and β2(X(k)) in Figure
3, noting in particular that α2(X(k)) < β2(X(k)) < α3(X(k)) for all periods X(k) ≥ Xc of
the underling wave train.

The steady states of (4.36) correspond to ∆ = ∆̄(k). By linearizing (4.36) about a steady
state (k∗,M∗,∆∗ = ∆̄(k∗)) and searching for solutions that grow in time exponentially, one
finds the dispersion relation

Λ2(Λ− Λ∗) = 0,

with Λ∗ satisfying((
P (k∗)K

′(k∗)

3K(k∗)
+
P ′(k∗)

12

)
∆2
∗

)
Λ∗ = r(k∗,M∗,∆∗)

(
∆∗K

′(k∗)

K(k∗)
− ∆̄′(k∗)

2

)
.

The subcharacteristic condition (S3) is satisfied if and only if Λ∗ < 0. In Figure 5, we have
represented λ∗ = Λ∗/r(k∗,M∗, ∆̄∗) as a function of the period X. We clearly see that the
subcharacteristic condition (S3) is always satisfied on the range of period [2π,Xm] with
Xm ≥ 30. In particular, (S3) holds for all near-KdV wave trains with period X ≥ Xc,
corresponding to the low-frequency stability boundary, and X ≤ 26.17, corresponding to
the high-frequency stability boundary computed in [BN].
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function computations carried out for δ � 1, some but not all of which appear in [BJNRZ1].
Also, we thank the anonymous referee for their careful reading of the paper and for helpful
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Figure 5: Here, we plot λ∗(X(k)) as a function of the period X(k) of the underling wave
train.

A High-frequency spectra: the computations of [BN]

In this appendix, we review the formal expansions of [BN], upon which condition (A3)
is based. In particular, we rigorously justify the formal calculations contained therein by
using Corollary 3.8 to expand all the high-frequency eigenvalues of the KdV-KS equation
for 0 < δ � 1, showing that, in our rigorous framework, we exactly recover the formulas in
[BN] for <(λ1(λ0, ξ)) when λ0 6= 0 is an eigenvalue of some (Bloch) linearized KdV operator
LKdV,ξ. In this way, we provide justification that condition (A3) is meaningful and has
indeed been numerically investigated in [BN].

A.1 Formal Asymptotics as δ → 0

To begin, we fix X ∈ W and let uδ be an X-periodic traveling wave solution of (1.1),
defined for all δ ∈ (0, δ0) for some δ0 > 0 sufficiently small. Recall that in the proof of
Proposition 3.7 we obtained an asymptotic expansion for 0 < δ � 1 of the periodic Evans
function associated with the linearization of (1.1) about uδ up to O(δ3). However, an
explicit expansion of the eigenvalues of such a spectral problem is often complicated to
obtain by analytic Evans function techniques. As an alternative, recalling the notation in
(1.4), here we fix a Bloch wave number ξ ∈ [−π/X, π/X) and a non-zero eigenvalue λ0 of
LKdV,ξ[u0]k and search, for 0 < δ � 1, directly for an expansion of the L∞(R) eigenvalues
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λ(ξ, λ0, δ) and eigenfunctions v(·; ξ, λ0, δ) of Lξ[uδ] in the form

(A.1)

{
λ(ξ, λ0, δ) = λ0 + δλ1(ξ, λ0) + δ2λ2(ξ, λ0) +O(δ3)

v(·; ξ, λ0, δ) = v0(·; ξ, λ0) + δv1(·; ξ, λ0) + δ2v2(·; ξ, λ0) +O(δ3).

Note that such expansions are guaranteed to exist by Corollary 3.8 and the Dunford Cal-
culus.

Now, recall that the spectral problem (3.1) for the operator L[uδ] can be written as

(A.2)

{
v′′′ +

(
(uδ − c)v

)′
+ δ
(
v′′ + v′′′′

)
+ λv = 0

v(x+X) = eiξXv(x),

with v ∈ L2
per([0, X]). For δ = 0, it is known by the results of [BD] that the spectrum lies

on the imaginary axis and it is parameterized by

=λ = ±8
√
|η − η1||η − η2||η − η3|, η ∈ (−∞, η1] ∪ [η2, η3],

where η1 = k2 − 1, η2 = 2k2 − 1 and η3 = k2 and k is the elliptic modulus associated with
the underlying elliptic function solution u0 of the KdV equation for this particular period
X. Moreover, the Bloch wave number ξ can be written as

ξ =
Nπ

2K(k)
±
√
|η − η1||η − η2||η − η3|

K(k)

∫ K(k)

0

dy

η − k2 + dn(y, k)

for some N ∈ N.
Before beginning our analysis of the perturbation expansion (A.1), we make some pre-

liminary remarks concerning the spectrum of the linearized KdV operator. Let

LKdV = −∂x
(
u0 − c0

)
− ∂3

x

denote the linearized KdV operator, considered as a closed densely defined operator on
L2(R), and let (LKdV,ξ)ξ∈[−π/X,π/X) denote the associated family of Bloch operators defined
on L2

per([0, X]). By the results of [BD], σ(LKdV) = iR corresponding to spectral stability of
the underlying cnoidal wave solution u0. Furthermore, when condition (A1) holds17, given
any ξ ∈ [−π/X, π/X) the non-zero eigenvalues of the KdV Bloch operators LKdV,ξ are
simple. Notice one may be easily misled by the fact that, in some sense, each λ ∈ iR \ {0}
lies in the spectrum of LKdV with multiplicity either 1, 2, or 3, since there exists either
a unique ξ ∈ [−π/X, π/X) such that λ ∈ σ(LKdV,ξ) (corresponding to multiplicity 1) or
else there exist either two18 or three distinct such ξ (corresponding to multiplicity 2 and
3, respectively); see [BD] for details. However, assuming the period of the underlying

17We recall that it is justified numerically for some given waves in both [BD] and Figure 1.
18The points of multiplicity two correspond to the “turning points” of the triply covered region of the

KdV spectrum surrounding the origin. That is, they are found at the endpoints of the triply covered region.
See Figure 1.
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wave satisfies condition (A1), when expanding such eigenvalues for a fixed ξ one is doing
simple perturbation theory. On the other hand, λ = 0 is known to be an eigenvalue of
the KdV Bloch operator LKdV,0, corresponding to ξ = 0, with algebraic multiplicity three
and geometric multiplicity two. Indeed, one can easily verify that Ker(LKdV,0) is two
dimensional and 1 ∈ Ker(L2

KdV,0); see [BrJ, BrJK] for details. Thus, a separate analysis
is indeed necessary when considering the bifurcation of the neutral modes of LKdV,0 for
0 < δ � 1.

We now begin our perturbation analysis by fixing ξ ∈ [−π/X, π/X) and considering the
continuation of a fixed non-zero eigenvalue λ0 of LKdV,ξ. To this end, let v0 ∈ L2

per([0, X])
be a non-trivial function in the null-space of the operator LKdV,ξ − λ0I. and insert the
expansions (2.12) and (A.1) into (A.2). Collecting the O(δ0) terms we find that v0 must
satisfy {

v′′′0 +
(
(u0 − c0)v0

)′
+ λ0v0 = 0

v0(x+X) = eiξXv0(x),

which clearly holds by our choice of (λ0, v0). Continuing the expansion, identifying the
O(δ1) terms implies that v1(·; ξ, λ0) and λ1(ξ, λ0) must satisfy

(A.3)

{
v′′′1 +

(
(u0 − c0)v1

)′
+ λ0v1 + λ1v0 + (U1v0)′ + v′′0 + v′′′′0 = 0

v1(x+X) = eiξXv1(x),

where here the function U1 is defined as in Proposition 2.4. To analyze the solvability of

(A.3) we consider the operator L̃KdV,ξ = ∂3
x + ∂x(u0 − c0) defined on all functions v ∈

H3(0, X) such that v(x + X) = eiξjXv(x), and note then that the operator L̃KdV,ξ +

λ0I is Fredholm of index 0 on H3(0, X). In particular, we have Range(L̃KdV,ξ + λ0I) =

Ker
(

(L̃KdV,ξ + λ0I)∗
)⊥

, where the adjoint operator of L̃KdV,ξ + λ0I is given by

(L̃KdV,ξ + λ0I)∗ = −∂3
x − (u0 − c0)∂x − λ0I,

defined here for all v ∈ H3(0, X) such that v(x+X) = eiξjXv(x). Notice that since λ0 6= 0

we easily identify Ker(L̃KdV,ξ + λ0I)∗. Indeed, as is easily verified, the function

(A.4) w0(x) =

∫ x+X

x
v0(s)ds

is nontrivial, satisfies the boundary condition w0(x+X) = eiξXw0(x), and lies in Ker(L̃KdV,ξ+

λ0I)∗. In this way, we obtain a complete basis19 of Ker(L̃KdV,ξ + λ0I)∗.

19Notice that when λ0 = 0, corresponding to ξ = 0 by (A1), the above construction yields only constant
functions; indeed, one readily finds as a consequence of the conservative structure of the KdV equation (2.1)

that 1 ∈ KerL̃KdV,0

∗
.
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Now, with the above notation it follows by the Fredholm alternative that equation (A.3)
has a solution provided the compatibility condition

(A.5)
〈
λ1v0 + (U1v0)′ + v′′0 + v′′′′0 ; w0

〉
= 0

is satisfied, where here 〈·, ·〉 denotes the standard (sesquilinear) inner product on L2
per([0, X]).

We now give an expression for λ1 with respect to functions w0. To this end, note that by
definition we have the identity

w′0(x) = v0(x+X)− v0(x) = (eiξX − 1)v0(x),

from which it follows that

〈v0, w0〉 =
1

eiξX − 1

∫ X

0
w′0w̄0dx =

e−iξX/2

2 sin(ξX/2)
=
(∫ X

0
w′0w̄0dx

)
.

Similar computations yield the following identities:〈(
U1v0

)′
;w0

〉
= 2ie−iξX/2 sin(ξX/2)

∫ X

0
U1|v0|2dx,〈

v′′0 ;w0

〉
= −2e−iξX/2 sin(ξX/2)=

(∫ X

0
v′0v̄0dx

)
,〈

v′′′′0 ;w0

〉
= 2e−iξX/2 sin(ξX/2)=

(∫ X

0
v′′0 v̄
′
0dx

)
.

Taking real and imaginary parts of (A.5), we find

(A.6)
=
(∫ X

0
w′0w̄0dx

)
<(λ1) = =

(∫ X

0
w′′0w̄

′
0 − w′′′0 w̄′′0dx

)
,

=
(∫ X

0
w′0w̄0dx

)
=(λ1) = −

∫ X

0
U1|w′0|2dx.

Note that, up to O(δ), the O(δ) correction U1 of the underlying periodic profile U can only
contribute to the imaginary part of λ. Furthermore, this contribution actually vanishes as
is seen from parity: indeed, note that |w′0|2 = sin2(ξX/2)(1 + |λ−1

0 u′0|2) is an even function
whereas, by Proposition 2.4, U1 is an odd function. As these functions are both 2X-periodic,
assuming that20

∫ X
0 w′0w̄0dx 6= 0, the integral which defines =(λ1) then vanishes, implying

that =(λ1) = 0. As a result, we have obtained an expansion valid up to order O(δ2) for any

eigenvalue λ(ξ, λ0, δ) such that λ0 6= 0 and
∫ X

0 w′0w̄0dx 6= 0. Furthermore, we find that

(A.7) <(λ1(ξ, λ0)) =
=
(∫ X

0 w′′0 v̄
′
0 − w′′′0 w̄0dx

)
=
(∫ X

0 w′0w̄0dx
) ,

20The non-vanishing of this integral is part of the numerical investigation of condition (A3), as carried out
in [BN], but was seen there to not be an issue.
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which is precisely the formula determined in the formal analysis of [BN]. In particular, in
[BN] the above quantity was computed numerically and was found to be strictly negative
for all ξ ∈ [−π/X, π/X) and λ ∈ Ri \ {0} provided the period X of the underlying wave
uδ satisfies X ∈ (X1, X2) where X1 ≈ 8.49 and X2 ≈ 26.17; see Section A.2 below for a
summary of the numerical scheme used in [BN].

Remark A.1. Using similar methods to those discussed above, one can also derive an
expansion for the triple eigenvalue λ0 = 0 for the linearized KdV operator LKdV,0 with
ξ = 0 held fixed and 0 < δ � 1. Indeed, one can show that near the origin the operator
L0[uδ] has λ = 0 as as an eigenvalue with algebraic multiplicity two, and a third eigenvalue
λcrit(δ) that can be expanded analytically with respect to δ for δ � 1 with

<
(
λ′crit(0)

)
= −〈(U1ψ)′ + ψ′′2 + ψ′′′′2 , u0〉

〈ψ2, u0〉
∈ R,

where u0 and U1 are as in Proposition 2.4 and

ψ = 1− (∂kc0)−1 ∂ku0.

See the appendix of [BN] for details. Notice that, by Lemma 4.7, this gives an explicit
definition of the constant γ introduced in Proposition 4.1.

A.2 Numerical Computations

In this appendix, we describe in our own notation the numerical computations carried out
in [BN] determining the sign of the real part of the O(δ) corrector λ1(ξ, λ0) for a fixed
ξ ∈ [−π/X, π/X) and a nonzero eigenvalue λ0 ∈ σ(LKdV,ξ[u0]). To this end, recall that for
a fixed ξ ∈ [−π/X, π/X) the L∞(R) eigenvalues λ(ξ, λ0, δ) can be expanded for 0 < δ � 1
as in (A.1), where we recall that for λ0 6= 0 the real part of the O(δ) corrector can be found

from (A.6), assuming
∫ X

0 w′0w̄0dx 6= 0, as

(A.8) <(λ1) =
=
(∫ X

0 w′′0w̄
′
0 − w′′′0 w̄′′0

)
=
(∫ X

0 w′0w̄0

) =
〈w′0, w′′0 + w′′′′0 〉
〈w′0, w0〉

;

notice that this is precisely formula (54) on page 593, with Φ0 = w0, for the O(δ) correction
of non-zero KdV eigenvalues λ0 found in [BN]. Using Mathematica, the authors of [BN]
then numerically evaluate the quantity

sup
ξ∈[−π/X,π/X)

λ0∈σ(LKdV,ξ[u0])\{0}

<(λ1(ξ, λ0)),

which clearly must be non-positive to prevent instability. The details of these computations
are as follows.
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First, denote

ω =
π

κ
, ω′ =

K(
√

1− k2)π

K(k)κ
.

Following the stability analysis for the KdV equation (2.1) presented in [Sp], the authors of
[BN] parameterize the eigenvalues and eigenfunctions λ0 and v̂0 and the Bloch wave number
ξ as

(A.9) v̂0(x) =
σ2(x+ iω′ + α)

σ2(x+ iω′)σ2(α)
e−2(x+iω′)ζ(α), λ0 = −4ν ′(α), ξ = 2i

(
ζ(α)− α

ω
ζ(ω)

)
,

where here σ and ζ denote Weierstrass’s sigma- and zeta-functions, respectively, ν(z) de-

notes the Weierstrass elliptic function with periods ω = π
κ and iω′ where ω′ = K(

√
1−k2)π

κK(k) .

Notice that ξ ∈ R only if <(α) = nω, n ∈ N. In this case, the problem is parameterized by
α and k, since κ is determined by the selection criterion κ = G̃(k) given by formula (34)
on page 590 in [BN]. In [BN], the authors described the computations for α = nω + iβ for
n = 0, 1 and β ∈ [0, 2ω], claiming that the other cases n ≥ 2 do not provide any new results.
There, the parameter k was restricted to the interval [0, 1 − 10−7], which corresponds to
periods X = 2π

κ lying approximately in the interval [2π, 10π]. In order to evaluate the
Weierstrass elliptic functions, the usual theta functions are used:

Θ(z) = 2
∞∑
n=1

(−1)n+1q
(2n+1)4/4
0 sin ((2n− 1)πz/2K(k)) ,

Θ1(z) = 2
∞∑
n=1

(−1)n+1q
(2n+1)4/4
0 cos ((2n− 1)πz/2K(k)) ,

with q0 = exp(−πK(
√

1− k2)/K(k)). Then the various Weierstrass functions are repre-
sented as

ν(z) = e1 + λ

(
Θ1(z

√
λ)Θ′(0)

Θ1(0)Θ(z
√
λ)

)2

,

ζ(z) = ζ(ω)
z

ω
+
√
λ

Θ′(z
√
λ)

Θ(z
√
λ)
,

σ(z) =
1√
λ

exp(
ζ(ω)z2

2ω
)
Θ(z
√
λ)

Θ′(0)
,

where e1 = ν(ω), λ = ν(ω)− ν(ω + iω′).
Using the above approach, it is numerically demonstrated in [BN] that the quantity

sup
ξ∈[−π/X,π/X)

λ0∈σ(LKdV,ξ[u0])\{0}

<(λ1(ξ, λ0))

is strictly negative for all periods in the interval [8.49, 26.17]. In particular, notice that
from Figure 3 the subcharacteristic conditions (S1)-(S3) hold in this interval, as indicated
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in Section 4.1. Furthermore, the left stability boundary corresponds to ξ ≈ 0, hence to a
sideband type instability; as noted in the previous section, the right stability boundary does
not. For each k, and thus each period, the authors determine approximately the value ξm
where the functions ξ 7→ supλ0∈σ(LKdV,ξ[u0])\{0}<λ1(ξ, λ0) take their maximal values,which
provides the boundaries of the stability region (in the period).

As mentioned throughout our analysis, it is important to note that the analysis of [BN]
a priori explores regions where the eigenvalues expand as

λ(ξ, λ0, δ) = λ0 + δλ1(ξ, λ0) +O(δ2),

and is thus limited only to some particular regions of the (|ξ|, δ) plane. In particular, we
stress that only the unveiling of the role of subcharacteristic conditions enables us to prove
that, though from the analysis of [BN] it is not possible to conclude spectral stability, their
numerical investigation is still sufficient to complete our analysis.

Finally, we note that another way of carrying out these computations would be to use
instead the parameterization of eigenvalues and eigenvectors presented in [BD]. In this case,
one has

λ0(η) = ±8i
√
|η − η1||η − η2||η − η3|, η ∈]−∞, η1] ∪ [η2, η3],

ξ =
Nπ

2K(k)
±

8
√
|η − η1||η − η2||η − η3|

K(k)

∫ K(k)

0

dy

η − k2 + dn(y, k)
,

w0(x) =

∫ x+X(k)

x
(λ0(η)− u′0(y)

3
) exp

(
−
∫ y

0

λ0(η)dz

u0(z)/3− c0 + η

)
dy,

with η1 = k2 − 1, η2 = 2k2 − 1, η3 = k2 and u0 the cnoidal wave given by setting κ = G(k)
as defined in Proposition 2.4.
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